Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Genesis ; 62(3): e23601, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38703044

RESUMEN

HAND2 is a basic helix-loop-helix transcription factor with diverse functions during development. To facilitate the investigation of genetic and functional diversity among Hand2-expressing cells in the mouse, we have generated Hand2Dre, a knock-in allele expressing Dre recombinase. To avoid disrupting Hand2 function, the Dre cDNA is inserted at the 3' end of the Hand2 coding sequence following a viral 2A peptide. Hand2Dre homozygotes can therefore be used in complex crosses to increase the proportion of useful genotypes among offspring. Dre expression in mid-gestation Hand2Dre embryos is indistinguishable from wild-type Hand2 expression, and HandDre efficiently recombines rox target sites in vivo. In combination with existing Cre and Flp mouse lines, Hand2Dre will therefore extend the ability to perform genetic intersectional labeling, fate mapping, and functional manipulation of subpopulations of cells characterized by developmental expression of Hand2.


Asunto(s)
Alelos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Técnicas de Sustitución del Gen , Animales , Femenino , Ratones , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Técnicas de Sustitución del Gen/métodos , Integrasas/genética , Integrasas/metabolismo , Masculino
2.
J Physiol ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39141822

RESUMEN

Arrhythmogenic cardiomyopathy (AC) is a familial cardiac disease, mainly caused by mutations in desmosomal genes, which accounts for most cases of stress-related arrhythmic sudden death, in young and athletes. AC hearts display fibro-fatty lesions that generate the arrhythmic substrate and cause contractile dysfunction. A correlation between physical/emotional stresses and arrhythmias supports the involvement of sympathetic neurons (SNs) in the disease, but this has not been confirmed previously. Here, we combined molecular, in vitro and ex vivo analyses to determine the role of AC-linked DSG2 downregulation on SN biology and assess cardiac sympathetic innervation in desmoglein-2 mutant (Dsg2mut/mut) mice. Molecular assays showed that SNs express DSG2, implying that DSG2-mutation carriers would harbour the mutant protein in SNs. Confocal immunofluorescence of heart sections and 3-D reconstruction of SN network in clarified heart blocks revealed significant changes in the physiologialc SN topology, with massive hyperinnervation of the intact subepicardial layers and heterogeneous distribution of neurons in fibrotic areas. Cardiac SNs isolated from Dsg2mut/mut neonatal mice, prior to the establishment of cardiac innervation, show alterations in axonal sprouting, process development and distribution of varicosities. Consistently, virus-assisted DSG2 downregulation replicated, in PC12-derived SNs, the phenotypic alterations displayed by Dsg2mut/mut primary neurons, corroborating that AC-linked Dsg2 variants may affect SNs. Our results reveal that altered sympathetic innervation is an unrecognized feature of AC hearts, which may result from the combination of cell-autonomous and context-dependent factors implicated in myocardial remodelling. Our results favour the concept that AC is a disease of multiple cell types also hitting cardiac SNs. KEY POINTS: Arrhythmogenic cardiomyopathy is a genetically determined cardiac disease, which accounts for most cases of stress-related arrhythmic sudden death. Arrhythmogenic cardiomyopathy linked to mutations in desmoglein-2 (DSG2) is frequent and leads to a left-dominant form of the disease. Arrhythmogenic cardiomyopathy has been approached thus far as a disease of cardiomyocytes, but we here unveil that DSG2 is expressed, in addition to cardiomyocytes, by cardiac and extracardiac sympathetic neurons, although not organized into desmosomes. AC-linked DSG2 downregulation primarily affect sympathetic neurons, resulting in the significant increase in cardiac innervation density, accompanied by alterations in sympathetic neuron distribution. Our data supports the notion that AC develops with the contribution of several 'desmosomal protein-carrying' cell types and systems.

3.
Front Endocrinol (Lausanne) ; 15: 1344074, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38505753

RESUMEN

Introduction: Maternal diabetes is a recognized risk factor for both short-term and long-term complications in offspring. Beyond the direct teratogenicity of maternal diabetes, the intrauterine environment can influence the offspring's cardiovascular health. Abnormalities in the cardiac sympathetic system are implicated in conditions such as sudden infant death syndrome, cardiac arrhythmic death, heart failure, and certain congenital heart defects in children from diabetic pregnancies. However, the mechanisms by which maternal diabetes affects the development of the cardiac sympathetic system and, consequently, heightens health risks and predisposes to cardiovascular disease remain poorly understood. Methods and results: In the mouse model, we performed a comprehensive analysis of the combined impact of a Hif1a-deficient sympathetic system and the maternal diabetes environment on both heart development and the formation of the cardiac sympathetic system. The synergic negative effect of exposure to maternal diabetes and Hif1a deficiency resulted in the most pronounced deficit in cardiac sympathetic innervation and the development of the adrenal medulla. Abnormalities in the cardiac sympathetic system were accompanied by a smaller heart, reduced ventricular wall thickness, and dilated subepicardial veins and coronary arteries in the myocardium, along with anomalies in the branching and connections of the main coronary arteries. Transcriptional profiling by RNA sequencing (RNA-seq) revealed significant transcriptome changes in Hif1a-deficient sympathetic neurons, primarily associated with cell cycle regulation, proliferation, and mitosis, explaining the shrinkage of the sympathetic neuron population. Discussion: Our data demonstrate that a failure to adequately activate the HIF-1α regulatory pathway, particularly in the context of maternal diabetes, may contribute to abnormalities in the cardiac sympathetic system. In conclusion, our findings indicate that the interplay between deficiencies in the cardiac sympathetic system and subtle structural alternations in the vasculature, microvasculature, and myocardium during heart development not only increases the risk of cardiovascular disease but also diminishes the adaptability to the stress associated with the transition to extrauterine life, thus increasing the risk of neonatal death.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Gestacional , Insuficiencia Cardíaca , Animales , Niño , Femenino , Humanos , Recién Nacido , Ratones , Embarazo , Enfermedades Cardiovasculares/metabolismo , Diabetes Gestacional/metabolismo , Corazón , Miocardio/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo
4.
Cell Rep Med ; 5(5): 101559, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38744275

RESUMEN

Dysfunction of the sympathetic nervous system and increased epicardial adipose tissue (EAT) have been independently associated with the occurrence of cardiac arrhythmia. However, their exact roles in triggering arrhythmia remain elusive. Here, using an in vitro coculture system with sympathetic neurons, cardiomyocytes, and adipocytes, we show that adipocyte-derived leptin activates sympathetic neurons and increases the release of neuropeptide Y (NPY), which in turn triggers arrhythmia in cardiomyocytes by interacting with the Y1 receptor (Y1R) and subsequently enhancing the activity of the Na+/Ca2+ exchanger (NCX) and calcium/calmodulin-dependent protein kinase II (CaMKII). The arrhythmic phenotype can be partially blocked by a leptin neutralizing antibody or an inhibitor of Y1R, NCX, or CaMKII. Moreover, increased EAT thickness and leptin/NPY blood levels are detected in atrial fibrillation patients compared with the control group. Our study provides robust evidence that the adipose-neural axis contributes to arrhythmogenesis and represents a potential target for treating arrhythmia.


Asunto(s)
Adipocitos , Tejido Adiposo , Arritmias Cardíacas , Leptina , Miocitos Cardíacos , Neuropéptido Y , Pericardio , Humanos , Animales , Pericardio/metabolismo , Pericardio/patología , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Neuropéptido Y/metabolismo , Leptina/metabolismo , Adipocitos/metabolismo , Masculino , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Neuronas/metabolismo , Neuronas/patología , Intercambiador de Sodio-Calcio/metabolismo , Femenino , Receptores de Neuropéptido Y/metabolismo , Persona de Mediana Edad , Fibrilación Atrial/metabolismo , Fibrilación Atrial/fisiopatología , Fibrilación Atrial/patología , Sistema Nervioso Simpático/metabolismo , Ratones , Tejido Adiposo Epicárdico
5.
Free Radic Biol Med ; 213: 164-173, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38246514

RESUMEN

Peripheral autonomic nervous system (P-ANS) dysfunction is a critical non-motor phenotype of Parkinson's disease (PD). The majority of PD cases are sporadic and lack identified PD-associated genes involved. Epidemiological and animal model studies suggest an association with pesticides and other environmental toxins. However, the cellular mechanisms underlying toxin induced P-ANS dysfunctions remain unclear. Here, we mapped the global transcriptome changes in human induced pluripotent stem cell (iPSC) derived P-ANS sympathetic neurons during inhibition of the mitochondrial respiratory chain by the PD-related pesticide, rotenone. We revealed distinct transcriptome profiles between acute and chronic exposure to rotenone. In the acute stage, there was a down regulation of specific cation channel genes, known to mediate electrophysiological activity, while in the chronic stage, the human P-ANS neurons exhibited dysregulation of anti-apoptotic and Golgi apparatus-related pathways. Moreover, we identified the sodium voltage-gated channel subunit SCN3A/Nav1.3 as a potential biomarker in human P-ANS neurons associated with PD. Our analysis of the rotenone-altered coding and non-coding transcriptome of human P-ANS neurons may thus provide insight into the pathological signaling events in the sympathetic neurons during PD progression.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedad de Parkinson , Animales , Humanos , Enfermedad de Parkinson/metabolismo , Rotenona/toxicidad , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Neuronas/metabolismo , Fenotipo
6.
J Mol Neurosci ; 74(1): 19, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38358571

RESUMEN

The sympathetic nervous system (SNS) is a crucial branch of the autonomic nervous system (ANS) that is responsible for regulating visceral function and various physiological processes. Dysfunction of the SNS can lead to various diseases, such as hypertension and metabolic disorders. However, obtaining sympathetic neurons from human tissues for research is challenging. The current research aimed at recapitulating the process of human sympathetic neuron development and achieved the successful establishment of a stepwise, highly efficient in vitro differentiation protocol. This protocol facilitated the generation of functional and mature sympathetic neurons from human pluripotent stem cells (hPSCs) using a chemical-defined induction medium. Initially, each differentiation stage was refined to derive sympathoadrenal progenitors (SAPs) from hPSCs through neural epithelial cells (NECs) and trunk neural crest stem cells (NCSCs). hPSC-derived SAPs could be expanded in vitro for at least 12 passages while maintaining the expression of SAP-specific transcription factors and neuronal differentiation potency. SAPs readily generated functional sympathetic neurons (SymNs) when cultured in the neuronal maturation medium for 3-4 weeks. These SymNs expressed sympathetic markers, exhibited electrophysiological properties, and secreted sympathetic neurotransmitters. More importantly, we further demonstrated that hPSC-derived SymNs can efficiently regulate the adipogenesis of human adipose-derived stem cells (ADSCs) and lipid metabolism in vitro. In conclusion, our study provided a simple and robust protocol for generating functional sympathetic neurons from hPSCs, which may be an invaluable tool in unraveling the mechanisms of SNS-related diseases.


Asunto(s)
Neuronas , Células Madre Pluripotentes , Humanos , Adipocitos , Diferenciación Celular , Células Epiteliales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA