Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Biochem Biophys Res Commun ; 703: 149653, 2024 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-38364682

RESUMEN

Cellular vesicle long-distance transport along the cytoplasmic actin network has recently been uncovered in several cell systems. In metaphase mouse oocytes, the motor protein myosin-5b (Myo5b) and the actin nucleation factor Spire are recruited to the Rab11a-positive vesicle membrane, forming a ternary complex of Myo5b/Spire/Rab11a that drives the vesicle long-distance transport to the oocyte cortex. However, the mechanism underlying the intermolecular regulation of the Myo5b/Spire/Rab11a complex remains unknown. In this study, we expressed and purified Myo5b, Spire2, and Rab11a proteins, and performed ATPase activity measurements, pulldown and single-molecule motility assays. Our results demonstrate that both Spire2 and Rab11a are required to activate Myo5b motor activity under physiological ionic conditions. The GTBM fragment of Spire2 stimulates the ATPase activity of Myo5b, while Rab11a enhances this activation. This activation occurs by disrupting the head-tail interaction of Myo5b. Furthermore, at the single-molecule level, we observed that the GTBM fragment of Spire2 and Rab11a coordinate to stimulate the Myo5b motility activity. Based on our results, we propose that upon association with the vesicle membrane, Myo5b, Spire2 and Rab11a form a ternary complex, and the inhibited Myo5b is synergistically activated by Spire2 and Rab11a, thereby triggering the long-distance transport of vesicles.


Asunto(s)
Actinas , Miosina Tipo V , Ratones , Animales , Actinas/metabolismo , Miosinas/metabolismo , Citoesqueleto de Actina/metabolismo , Miosina Tipo V/metabolismo , Proteínas de Unión al GTP rab/metabolismo
2.
Small ; 20(29): e2312086, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38412409

RESUMEN

Rechargeable aqueous aluminum batteries (AABs) are promising energy storage technologies owing to their high safety and ultra-high energy-to-price ratio. However, either the strong electrostatic forces between high-charge-density Al3+ and host lattice, or sluggish large carrier-ion diffusion toward the conventional inorganic cathodes generates inferior cycling stability and low rate-capacity. To overcome these inherent confinements, a series of promising redox-active organic materials (ROMs) are investigated and a π-conjugated structure ROMs with synergistic C═O and C═N groups is optimized as the new cathode in AABs. Benefiting from the joint utilization of multi-redox centers and rich π-π intermolecular interactions, the optimized ROMs with unique ion coordination storage mechanism facilely accommodate complex active ions with mitigated coulombic repulsion and robust lattice structure, which is further validated via theoretical simulations. Thus, the cathode achieves enhanced rate performance (153.9 mAh g-1 at 2.0 A g-1) and one of the best long-term stabilities (125.7 mAh g-1 after 4,000 cycles at 1.0 A g-1) in AABs. Via molecular exploitation, this work paves the new direction toward high-performance cathode materials in aqueous multivalent-ion battery systems.

3.
Skin Res Technol ; 29(12): e13539, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38115632

RESUMEN

BACKGROUND: Repeated exposure to UV generates excessive reactive oxygen species (ROS) and damages the enzymatic antioxidant defense system including quinone oxidoreductase 1 (NQO1) and superoxide dismutase (SOD) in skin. Topical application of antioxidants may prevent the undesired damage of cellular proteins, lipids and DNA in skin. Dimethylmethoxy chromanol (DMC) is a bioinspired molecule, designed to be a structural analog to the γ-tocopherol that is naturally present in vegetables and plants. Turmeric root extract (TRE) is from a plant in South Asia extensively used as a food spice & vegetable, and its main components are turmerones. As both DMC and TRE are strong antioxidants with complementary antioxidation mechanisms, the aim of this study was to investigate the enhanced protective effects of their combination on oxidative damage in HaCaT cells following UVB exposure. MATERIALS AND METHODS: The effects of single and combined administrations of DMC and TRE on the SOD activity of HaCaT cells were evaluated by the SOD assay and qPCR. The NQO1 expression in the UVB-treated HaCaT cells was analyzed by the Western Blot. Furthermore, a clinical test involving 24 subjects was conducted to evaluate the in vivo antioxidation efficacies of the serum formulated with the combination of DMC and TRE at the optimal weight ratio. RESULTS: SOD assay showed that pretreating DMC or TRE alone could not preserve the impaired HaCaT SOD activity after UVB treatment. DMC and TRE at 1:1 weight ratio was the optimal combination to enhance the HaCaT SOD activity by approximately more than 1-fold compared with either of the single treated groups. No enhancement effect was observed at other mixing ratios. The 1:1 weight ratio was further proved to be optimal as this combination boosted the NQO1 expression by more than 50%, whereas no boosting effect was observed at other mixing ratios. The clinical test of the serum containing this optimal antioxidant combination demonstrated promising in vivo antioxidation efficacies after 4-week use, including 7.16% improvement in skin lightening, 18.29% reduction in skin redness, 35.68% decrease in TEWL, 19.05% increase in skin gloss and 32.04% enhancement in skin firmness. CONCLUSION: Collectively, our results indicated that the combination of DMC and TRE at 1:1 weight ratio attenuated the UV-induced oxidative damage by synergistically boosting endogenous antioxidant enzyme activity in HaCaT cells. Therefore, this optimal antioxidant combination is a promising treatment to boost skin antioxidation defense system.


Asunto(s)
Antioxidantes , Células HaCaT , Humanos , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/química , Estrés Oxidativo , Especies Reactivas de Oxígeno , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa/farmacología , Rayos Ultravioleta/efectos adversos , Queratinocitos/metabolismo
4.
Bioorg Chem ; 124: 105823, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35489272

RESUMEN

Combination drug therapy has become an effective strategy for chronic metabolic disease, especially cardiovascular disease. In the present study, possible drug combinations were screened and the mechanism of the combinations against cardiac hypertrophy was examined within 1,8-cineole, ß-caryophyllene, linalool, and ß-pinene.H9c2 cells were treatment with 1,8-cineole, ß-caryophyllene, linalool, and ß-pinene individually or in combination for 24 h after isoprenaline stimulation. Cell viability was detected by the MTT assay. Subsequently, bioinformatic analysis and network pharmacology were used to reveal the multi-targeted synergistic therapeutic effect of the combination treatment compounds on cardiac hypertrophy. Ultimately, western blot and elisa was performed to analyses the protein expression in vivo. MTT results found that 1,8-cineole and ß-caryophyllene synergistically increased cell viability with CalcuSyn software analyses. Specifically, bioinformatic and network pharmacology analysis showed PTGS2, TNF, IL-6, AKT1, NOS2, and CAT were identified as the key targets. P13K-AKT signaling pathway was involved in the reversal of cardiac hypertrophy by the combination of 1,8-cineole and ß-caryophyllene. The in vitro results indicated that the combination synergistically treated the isoprenaline-induced mice against structural and functional myocardial damage via the P13K-AKT signaling pathway. Collectively, the combined application of 1,8-cineole and ß-caryophyllene synergistically reverses cardiac hypertrophy in isoprenaline-induced H9c2 cells and mice.


Asunto(s)
Cardiomegalia , Proteínas Proto-Oncogénicas c-akt , Animales , Cardiomegalia/inducido químicamente , Cardiomegalia/tratamiento farmacológico , Eucaliptol/farmacología , Eucaliptol/uso terapéutico , Isoproterenol/efectos adversos , Ratones , Sesquiterpenos Policíclicos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas
5.
Apoptosis ; 21(12): 1398-1407, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27671687

RESUMEN

Oxymatrine (OMT), one of the main active components of extracts from the dry roots of Sophora flavescens, has been reported to possess many pharmacological properties including cancer-preventive and anti-cancer effects. The aim of the present study is to explore the efficiency of combination therapy with OMT and oxaliplatin (OXA) and identify the in vitro and in vivo cytotoxicity on colon cancer lines (HT29 and SW480) and mice model. Cells were treated with OMT and/or OXA and subjected to cell viability, colony formation, apoptosis, cell cycle, western blotting, xenograft tumorigenicity assay and immunohistochemistry. The results demonstrated that OMT and OXA inhibited the proliferation of colon cancer cells, and combination therapy of OMT and OXA resulted in a combination index < 1, indicating a synergistic effect. Co-treatment with OMT and OXA caused G0/G1 phase arrest by upregulating P21, P27 and downregulating cyclin D, and induced apoptosis through decreasing the expression of p-PI3K, p-AKT, p-mTOR, p-p70S6K. In addition, pretreatment with a specific PI3K/AKT activator (IGF-1) significantly neutralized the pro-apoptotic activity of OXA + OMT, demonstrating the important role of PI3K/AKT in this process. Moreover, in nude mice model, co-treatment displayed more efficient inhibition of tumor weight and volume on SW480 xenograft mouse model than single-agent treatment with OXA or OMT. Immunohistochemistry analysis suggests the combinations greatly suppressed tumor proliferation, which consistent with our in vitro results. In conclusion, our findings highlight that the combination therapy with OMT and OXA exerted synergistic antitumor effects in colon cancer cells through PI3K/AKT/mTOR pathway and combination treatment with OMT and OXA would be a promising therapeutic strategy for colon carcinoma treatment.


Asunto(s)
Alcaloides/administración & dosificación , Antineoplásicos/administración & dosificación , Neoplasias del Colon/tratamiento farmacológico , Medicamentos Herbarios Chinos/administración & dosificación , Compuestos Organoplatinos/administración & dosificación , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Quinolizinas/administración & dosificación , Serina-Treonina Quinasas TOR/metabolismo , Animales , Apoptosis/efectos de los fármacos , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Sinergismo Farmacológico , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Oxaliplatino , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Serina-Treonina Quinasas TOR/genética , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Bioorg Med Chem ; 24(16): 3353-8, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27068889

RESUMEN

The synergistically collaboration of c-Met/HGF and VEGFR-2/VEGF leads to development of tumor angiogenesis and progression of various human cancers. Therefore, inhibiting both HGF/c-Met and VEGF/VEGFR signaling may provide a novel and effective therapeutic approach for treating patients with abroad spectrum of tumors. Toward this goal, we designed and synthesized a series of derivatives bearing 4-aminopyrimidine-5-cabaldehyde oxime scaffold as potent dual inhibitors of c-Met and VEGFR-2. The cell proliferation assay in vitro demonstrated most target compounds have inhibition potency both on c-Met and VEGFR-2 with IC50 values in nanomolar range, especially compound 14i, 18a and 18b. Based on the further enzyme assay in vitro, compound 18a was considered as the most potent one, the IC50s of which were 210nM and 170nM for c-Met and VEGFR-2, respectively. Following that, we docked the compound 10 and 18a with the proteins c-Met and VEGFR-2, and interpreted the SAR of these analogs. All the results indicate that 18a is a dual inhibitors of c-Met and VEGFR-2 that holds promising potential.


Asunto(s)
4-Aminopiridina/química , Oximas/química , Oximas/farmacología , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Proliferación Celular , Diseño de Fármacos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Concentración 50 Inhibidora , Oximas/síntesis química , Relación Estructura-Actividad
7.
Int J Biol Macromol ; 271(Pt 2): 132530, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38777005

RESUMEN

Synergistically improving the mechanical and degradable properties of polylactic acid (PLA) scaffolds and endowing them with bioactivity are urgent problems to be solved in deepening their application in tissue engineering. In this work, tetracalcium phosphate (TTCP) and porous iron (pFe) were compounded by stirring and vacuum negative pressure, and then they were blended with polylactic acid and a porous scaffold (named TTCP@pFe/PLA) was prepared by selective laser sintering. On the one hand, molten polylactic acid penetrates the pores of porous iron to form an interlocking network, thereby achieving mechanical strengthening. On the other hand, the alkaline environment generated by the dissolution of tetracalcium phosphate can effectively catalyze the hydrolysis of polylactic acid to accelerate the degradation. Meanwhile, the dissolution of tetracalcium phosphate forms a local calcium-rich microenvironment, which rapidly induces apatite formation, that is, confers bioactivity on scaffolds. As a result, the TTCP@pFe/PLA scaffold exhibited a notable enhancement in mechanical strength, being 2.2 times stronger compared to the polylactic acid scaffold. More importantly, MC3T3E1 cells exhibit good adhesion, stretching, and proliferation on the composite scaffold, demonstrating good cytocompatibility. All these good properties of the TTCP@pFe/PLA scaffold indicate that it has potential applications as a novel alternative in bone tissue regeneration.


Asunto(s)
Fosfatos de Calcio , Hierro , Poliésteres , Andamios del Tejido , Poliésteres/química , Andamios del Tejido/química , Porosidad , Ratones , Animales , Hierro/química , Fosfatos de Calcio/química , Fosfatos de Calcio/farmacología , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Ingeniería de Tejidos/métodos , Línea Celular , Proliferación Celular/efectos de los fármacos , Ensayo de Materiales , Fenómenos Mecánicos
8.
Front Pharmacol ; 15: 1389761, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39144634

RESUMEN

Sinomenine hydrochloride (SH) is commonly used in the treatment of rheumatoid arthritis. It activates mast cells and induces anaphylaxis in the clinical setting. Adverse drug reactions can be caused by activation of MAS-associated G protein-coupled receptor X2 (MRGPRX2) on mast cells. Because the ligand binding site of MRGPRX2 is easily contacted in dilute solvents, it can be activated by many opioid drug structures. N-Demethylsinomenine (M-3) has a similar chemical structure to that of the opioid scaffold and is a major metabolite of SH. We sought to clarify whether M-3 induces anaphylaxis synergistically with its prototype in a mouse model. Molecular docking computer simulations suggested a similar binding effect between M-3 and SH. M-3 was chemically synthesized and analyzed by surface plasmon resonance to reveal its affinity for MRGPRX2. Temperature monitoring, in vivo hindlimb swelling and exudation test, and in vitro mast cell degranulation test were used to explore the mechanism of MRGPrx2 mediated allergic reaction triggered by M-3. Reduced M-3-induced inflammation was evident in MrgprB2 (the ortholog of MRGPRX2) conditional (Cpa3-Cre/MrgprB2flox) knockout (MrgprB2-CKO) mice. Additionally, LAD2 human mast cells with MRGPRX2 knockdown showed reduced degranulation. M-3 activated LAD2 cells synergistically with SH as regulated by GRK2 signaling and IP3R/PLC/PKC/P38 molecular signaling pathways. The results indicate that the M-3 metabolite can activate mast cells synergistically with its prototype SH via MRGPRX2 and aggravate anaphylaxis. These findings provide important insights into drug safety.

9.
ACS Appl Mater Interfaces ; 16(26): 34281-34293, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38885351

RESUMEN

Ternary nickel-rich layered oxide LiNi0.8Co0.1Mn0.1O2 (NCM811) is recognized as a cathode material with a promising future, attributed to its high energy density. However, the pulverization of cathode particles, structural collapse, and electrolyte decomposition are closely associated with the fragile cathode-electrolyte interphases (CEI), which seriously affect the electrochemical performances of ternary high-nickel materials. In this paper, fluorine- and nitrogen-containing methyl-2-nitro-4-(trifluoromethyl)benzoate (MNTB) was selected, which was synergistically regulated with fluoroethylene carbonate (FEC) to generate a robust CEI film. The preferential decomposition of MNTB/FEC results in the formation of an inorganic-rich (Li3N, LiF, and Li2O) CEI film with uniformly dense and stable characteristics, which is conducive to the migration of Li+ and the stability of the NCM811 structure and enhances the cycling stability of the battery system. Simultaneously, MNTB effectively suppresses the adverse reaction associated with increased polarization caused by higher interface impedance due to conventional single FEC additives, further improving the rate capability of the battery. Moreover, MNTB/FEC can effectively eliminate HF, preventing its corrosion on the NCM811 cathode. Under the synergistic effect of MNTB/FEC, after 300 discharge cycles at a high cutoff voltage of 4.3 V and a current density of 1 C (2 mA cm-2), the discharge capacity of the NCM811||Li battery was 150.12 mA h g-1 with a capacity retention of 81.10%, while it was only 32.8% for the standard electrolyte (STD). The discharged capacity of the MNTB/FEC-containing battery was about 115.43 mA h g-1 at the high rate of 7 C, which was considerably higher than that of the STD (93.34 mA h g-1). In this study, the designed MNTB as a novel solvent synergistically regulated with FEC will contribute to the enhanced stability of NCM811 materials at high cutoff voltages and at the same time provide an effective modified strategy to enhance the stability of commercial electrodes.

10.
Water Res ; 252: 121210, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38324984

RESUMEN

Photo-reduction of arsenic (As) by hydrated electron (eaq-) and recovery of elemental arsenic (As(0)) is a promising pathway to treat As-bearing wastewater. However, previously reported sulfite/UV system needs large amounts of sulfite as the source of eaq-. This work suggests a sulfite/iodide/UV approach that is more efficient and consumes much less chemical reagents to remove As(III) and As(V) and recover valuable As(0) from wastewater, hence preventing the production of large amounts of As-containing hazardous wastes. Our results showed that more than 99.9% of As in the aqueous phase was reduced to highly pure solid As(0) (>99.5 wt%) by sulfite/iodide/UV process under alkaline conditions. Sulfite and iodide worked synergistically to enhance reductive removal of As. Compared with sulfite/UV, the addition of iodide had a substantially greater effect on As(III) (over 200 times) and As(V) (approximately 30 times) removals because of its higher absorptivity and quantum yield of eaq-. Furthermore, more than 90% of the sulfite consumption was decreased by adding a small amount of iodide while maintaining similar reduction efficiency. Hydrated electron (eaq-) was mainly responsible for As(III) and As(V) reductions and removals under alkaline conditions, while both SO3•- and reactive iodine species (e.g., I•, I2, I2•-, and I3-) may oxidize As(0) to As(III) or As(V). Acidic circumstances caused sulfite protonation and the scavenging of eaq- by competing processes. Dissolved oxygen (O2) and CO32- prevented As reduction by light blocking or eaq- scavenging actions, but Cl-, Ca2+, and Mg2+ showed negligible impacts. This study presented an efficient method for removing and recovering As from wastewater.


Asunto(s)
Arsénico , Contaminantes Químicos del Agua , Rayos Ultravioleta , Yoduros , Aguas Residuales , Contaminantes Químicos del Agua/análisis , Sulfitos , Oxidación-Reducción
11.
Antioxidants (Basel) ; 13(9)2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39334689

RESUMEN

Colon cancer is the third most common cancer worldwide, with high mortality. Adverse side effects and chemoresistance of the first-line chemotherapy 5-fluorouracil (5-FU) have promoted the widespread use of combination therapies. Thymoquinone (TQ) is a natural compound with potent antioxidant activity. Loading antioxidants into nano delivery systems has been a major advance in enhancing their bioavailability to improve clinical application. Hence, this study aimed to prepare the optimal TQ-loaded calcium carbonate nanoparticles (TQ-CaCO3 NPs) and investigate their therapeutic potential and underlying molecular mechanisms of TQ-CaCO3 NPs in combination with 5-FU against colon cancer. Firstly, we developed purely aragonite CaCO3 NPs with a facile mechanical ball-milling method. The pH-sensitive and biocompatible TQ-CaCO3 NPs with sustained release properties were prepared using the optimal synthesized method (a high-speed homogenizer). The in vitro study revealed that the combination of TQ-CaCO3 NPs (15 µM) and 5-FU (7.5 µM) inhibited CT26 cell proliferation and migration, induced cell apoptosis and cell cycle arrest in the G0/G1 phase, and suppressed the CT26 spheroid growth, exhibiting a synergistic effect. Finally, network pharmacology and molecular docking results indicated the potential targets and crucial signaling pathways of TQ-CaCO3 NPs in combination with 5-FU against colon cancer. Therefore, TQ-CaCO3 NPs combined with 5-FU could enhance the anti-colon cancer effects of 5-FU with broader therapeutic targets, warranting further application for colon cancer treatment.

12.
PeerJ ; 11: e16404, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37953768

RESUMEN

Background: Multiple myeloma (MM) is a rare haematological disorder with few therapeutic options. BIBR1532, a telomerase inhibitor, is widely used in cancer treatment and has promising outcomes. In this study, we investigated the efficacy and mechanism of action of BIBR1532 in MM. Methods: K562 and MEG-01 cells were cultured with BIBR1532 at different concentrations. After 24 and 48 h, cell survival was analyzed. Next, these cells were cultured with 25 and 50 µM BIBR1532 for 48 h, then, cell proliferation, apoptosis, and the expression of the telomerase activity related markers were tested by 5-Ethynyl-2'-deoxyuridine (EdU) staining, flow cytometric analysis, western blot and quantitative real-time PCR (qRT-PCR), respectively. Expression of Bcl-xL, Bad, Survivin, phosphorylation of PI3K, AKT, mTOR, ERK1/2, and MAPK were tested via western blotting. Further experiments were conducted to evaluate the synergistic effects of BIBR1532 and doxorubicin (Dox) or bortezomib (Bor). Results: BIBR1532 inhibited K562 and MEG-01 cell survival in a dose- and time-dependent manner. In addition, BIBR1532 hindered cell proliferation while promoting apoptosis, and this effect was enhanced by increasing the BIBR1532 concentration. Moreover, BIBR1532 inhibited TERT and c-MYC expression, PI3K, AKT, mTOR phosphorylation, and facilitated ERK1/2 and MAPK phosphorylation. Additionally, BIBR1532 combined with Dox or Bor showed synergistic effects in MM treatment. Conclusion: BIBR1532 inhibits proliferation and promotes apoptosis in MM cells by inhibiting telomerase activity. Additionally, BIBR1532 combined with Dox or Bor exhibited synergistic effects, indicating that BIBR1532 may be a novel medicine for the treatment of MM.


Asunto(s)
Mieloma Múltiple , Telomerasa , Humanos , Telomerasa/genética , Mieloma Múltiple/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt , Apoptosis , Bortezomib , Proliferación Celular , Doxorrubicina , Serina-Treonina Quinasas TOR , Fosfatidilinositol 3-Quinasas
13.
ACS Appl Mater Interfaces ; 14(45): 50583-50591, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36322919

RESUMEN

Protein therapy has been considered to be one of the most direct and safe ways to regulate cell function and treat tumors. However, safe and effective intracellular delivery of protein drugs is still a key challenge. Herein, we developed a tannic acid-assisted biomineralization strategy for the encapsulation and intracellular delivery of protein drugs. RNase A and glucose oxidase (GOD) were choose as the protein drug model. RNase A, GOD, TA, and Mn2+ are mixed in one pot to attain RG@MT, and CaCO3 coating is subsequently carried out to construct RG@MT@C through biomineralization. Once RG@MT@C is endocytosed, the acidic environment of the lysosome will dissolve the protective layer of CaCO3 and produce plenty of CO2 to cause lysosome bursting, ensuring the lysosome escape of the RG@MT@C and thus releasing the generated TA-Mn2+, RNase A, and GOD into the cytoplasm. The released substances would activate starvation therapy, chemodynamic therapy, and protein therapy pathways to ensure a high performance of cancer therapy. Due to simple preparation, low toxicity, and controlled release in the tumor microenvironment, we expect it can realize efficient and nondestructive delivery of protein drugs and meet the needs for precise, high performance of synergistically antitumor therapy in biomedical applications.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Taninos/farmacología , Taninos/uso terapéutico , Ribonucleasa Pancreática/uso terapéutico , Preparaciones Farmacéuticas , Biomineralización , Neoplasias/tratamiento farmacológico , Glucosa Oxidasa/uso terapéutico , Línea Celular Tumoral , Microambiente Tumoral
14.
ACS Appl Mater Interfaces ; 14(16): 18578-18588, 2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35435653

RESUMEN

To improve the innate shuttle effect and the sluggish redox kinetics of lithium-sulfur batteries, a composite made of a bimetallic compound embedded in nitrogen-doped carbon nanofibers (CNFs) is synthesized by employing biomass collagen fibers (CFs) as a structure template. Metal anions WO42- and MoO42- are grafted on plant polyphenol-modified CFs and then in situ converted into WN/Mo2C implanted in a matrix of CNFs (WMCNFs). The obtained WN/Mo2C is of quantum size and uniform distribution, exposing the active sites maximally. Further, the heterostructure of the bimetallic composite enables unique electronic interaction, thereby synergistically enhancing its adsorption capability toward soluble intermediates and activating its catalytic function for liquid-liquid and liquid-solid conversions. Combining these merits, when used as a separator modification material and a sulfur host simultaneously, the WMCNFs composite exhibits remarkable cycling stability with 91.45% capacity retention after 500 cycles at 2 C and also prominent rate performance of delivering 552.75 mAh g-1 at a current rate of 10 C. Meanwhile, the stable luminescence operation of LED lights powered by the assembled pouch cell demonstrates the application potential of this biomaterial-derived composite.

15.
ACS Appl Mater Interfaces ; 14(45): 50992-51000, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36331897

RESUMEN

MOF-based materials are a class of efficient precursors for the preparation of heteroatom-doped porous carbon materials that have been widely applied as anode materials for Na-ion batteries. Thereinto, sulfur is often introduced to increase defects and act as an active species to directly react with sodium ions. Although the sulfur introduction and high surface area can synergistically improve capacity and rate capability, the initial Coulombic efficiency (ICE) and electrical conductivity of carbon material are inevitably reduced. Therefore, balancing sodium storage capacity and ICE is still the bottleneck faced by adsorbent carbon materials. Here, sulfur-encapsulated microporous carbon material with nitrogen, sulfur dual-doping (NSPC) is synthesized by postprocessing, achieving the reduced specific surface area by encapsulating sulfur in micropores, and the increased active sites by edge sulfur doping. The synergy between encapsulation and sulfur doping effectively balances specific capacity, rate capability, and ICE. The NSPC material exhibits capacities of 591.5 and 244.2 mAh g-1 at 0.5 and at 10 A g-1, respectively, and the ICE is as high as 72.3%. Moreover, the effect of nitrogen and sulfur on the improvement of electron/ion diffusion kinetics is resonantly demonstrated by density functional theory calculations. This synergistic preparation method may reveal a feasible thought for fabricating excellent-performance adsorption-type carbon materials for Na-ion batteries.

16.
Front Pharmacol ; 12: 673432, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34305593

RESUMEN

The combination of chemotherapy with natural products is a common strategy to enhance anticancer effects while alleviating the dose-dependent adverse effects of cancer treatment. Oxymatrine (OMT) has been extensively reported as having anticancer activity. Doxorubicin (DOX) is a chemotherapeutic DNA-damaging agent used for the treatment of carcinoma. In this study, we investigated whether synergistic effects exist with the combination treatment with OMT and DOX using human colorectal cancer cell (CRC) lines and the potential mechanisms involved in in vitro and in vivo activities. The MTT and colony formation assay results showed that compared to either OMT or DOX monotherapy, the combination of OMT + DOX markedly inhibited the growth of HT-29 and SW620 cells. Wound healing assays showed significant inhibition of cell migration with co-treatment, supported by the change in E-cadherin and N-cadherin expressions in Western blotting. Furthermore, flow cytometry analysis revealed that OMT + DOX co-treatment enhanced cell apoptosis as a result of ROS generation, whereas NAC attenuated OMT + DOX-induced apoptosis. Similarly, the apoptosis-related proteins (cleaved caspase-3, cleaved caspase-9, and the ratio of Bax/Bcl-2) were determined by Western blotting, which showed that the expressions of these markers were notably increased in the co-treatment group. Furthermore, co-administration of a low dose of DOX and OMT inhibited xenograft tumor growth in a dose-dependent manner. TUNEL assay and Ki67 staining images indicated more apoptosis and less proliferation occurred in OMT plus DOX-treated xenograft tumors. Meanwhile, the combination strategy decreased cardiotoxicity, which is the most serious side effect of DOX. RNA sequencing was performed to explore the precise molecular alterations involved in the combination group. Among the numerous differentially expressed genes, downregulated FHL-2 and upregulated cleaved SPTAN1 were validated in both mRNA and protein levels of HT-29 and SW620 cells. These two proteins might play a pivotal role involving in OMT + DOX synergistic activity. Overall, OMT in combination with DOX presented an outstanding synergistic antitumor effect, indicating that this beneficial combination may offer a potential therapy for CRC patients.

17.
ACS Appl Mater Interfaces ; 12(47): 52603-52614, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33174414

RESUMEN

Modulating and optimizing the diverse parameters of photocatalysts synergistically as well as exerting these advantages fully in photocatalytic reactions are crucial for the sufficient utilization of solar energy but still face various challenges. Herein, a novel and facile urea- and KOH-assisted thermal polymerization (UKATP) strategy is first developed for the preparation of defect-modified thin-layered and porous g-C3N4 (DTLP-CN), wherein the thickness of g-C3N4 was dramatically decreased, and cyano groups, nitrogen vacancies, and mesopores were simultaneously introduced into g-C3N4. Importantly, the roles of thickness, pores, and defects can be targetedly modulated and optimized by changing the mass ratio of urea, KOH, and melamine. This can remarkably increase the specific area, improve the light-harvesting capability, and enhance separation efficiency of photoexcited charge carriers, strengthening the mass transfer in g-C3N4. Consequently, the photocatalytic hydrogen evolution efficiency of the DTLP-CN (1.557 mmol h-1 g-1, λ > 420 nm) was significantly improved more than 48.5 times with the highest average apparent quantum yield (AQY) of 18.5% and reached as high as 0.82% at 500 nm. This work provides an effective strategy for synergistically regulating the properties of g-C3N4, and opens a new horizon to design g-C3N4-based catalysts for highly efficient solar-energy conversion.

18.
ACS Appl Mater Interfaces ; 12(37): 41981-41990, 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32835472

RESUMEN

Stimulus-responsive soft actuators show great potential in intelligent robot systems for their various virtues, such as arbitrary shape morphing, outstanding adaptability to environment, and multidegrees of freedom. However, it is extremely challenging to achieve a combination of excellent actuating performance and robust mechanical strength as well as self-healing property. Herein we report a near-infrared light-responsive soft actuator based on the synergistic effects of a crystalline physical cross-linked network and a hydrogen bonding supramolecular network. The actuator exhibits outstanding comprehensive performance including fast and reliable light-responsive behavior (bending angle over 90° within 1.6 s), robust mechanical strength (12.52 MPa), superfast self-healing speed (2 s), and satisfactory self-healing efficiency in both mechanical (87.68%) and actuating (99.50%) performance. In addition, it is convenient to fabricate and reconfigure the actuators by a mild-temperature molding strategy to acquire various three-dimensional structures, thus achieving diverse actuating locomotion. This work provides a powerful and facile strategy to prepare soft actuators with intriguing performance, allowing significant progress in broadening their practical application.

19.
Naunyn Schmiedebergs Arch Pharmacol ; 392(5): 615-622, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30683944

RESUMEN

Gemcitabine (GEM) has been widely used for pancreatic cancer (PC) treatment but limited by the development of drug resistance. The agents that reverse its resistance and improve the chemo-sensitivity are urgently needed. S-Adenosylmethionine (SAM) is a precursor for polyamine biosynthesis in mammalian cells and plays a key role in biological transmethylation events. It is reported that SAM could be used as a therapeutic reagent for cancer treatments. In this study, we investigated the chemo-sensitization of SAM to potentiate the antitumor effect of GEM in PC. After treating PC cells with GEM and/or SAM, different subsequent experiments were performed. Results showed that SAM plus GEM could significantly inhibit the growth and proliferation of PC cells, and SAM acts synergistically with GEM. The combinative treatment could induce cell apoptosis and inhibit invasion and migration through JAK2/STAT3 inactivation. Inhibition of JAK2/STAT3 pathway significantly enhanced the pro-apoptotic effect of SAM, suggesting the key roles of JAK2/STAT3 in the process. Moreover, co-treatment with GEM and SAM exhibited more efficient inhibition of tumor weight and volume on PANC-1 xenograft mouse model compared to GEM or SAM alone and has no significant effect on the function of the liver and kidney. In general, this study indicated that SAM synergistically enhanced the antitumor effect of GEM against PC through suppressed JAK2/STAT3 pathway, and SAM is applicable as a promising agent to improve the sensitivity of PC to GEM.


Asunto(s)
Antimetabolitos Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Desoxicitidina/análogos & derivados , Neoplasias Pancreáticas/tratamiento farmacológico , S-Adenosilmetionina/uso terapéutico , Animales , Antimetabolitos Antineoplásicos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Sinergismo Farmacológico , Femenino , Humanos , Janus Quinasa 2/metabolismo , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , S-Adenosilmetionina/farmacología , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Carga Tumoral/efectos de los fármacos , Gemcitabina
20.
Food Chem Toxicol ; 127: 182-187, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30914352

RESUMEN

The crude extract of Sonchus oleraceus Linn (CE) and its main phenolic acids (PA), chlorogenic acid and caffeic acid have anti-diabetic activity, but the mechanisms for their effects on glucose intake remain largely unknown. Aim of this study was to examine the synergistic effect of chlorogenic and caffeic acid from S. oleraceus Linn attenuate insulin resistance and modulate glucose uptake in HepG2 cells. Major phenolic acids in SOL were isolated and identified by HPLC. Insulin-resistance HepG2 cell model was used to elucidate the effect of CE on glucose metabolism. Pre-treatment of HepG2 cells with CE or PA enhanced levels of glucose production and avoided the decrease total levels of IRS-1 triggered by high insulin concentration. CE or PA pre-treatment also could prevent the inactivation of the PI3K/AKT pathway, as well as the diminution of GLUT4 levels induced by high glucose. These findings suggested that CE and its main phenolic acids improved insulin sensitivity of HepG2 cells treated with insulin, preventing or delaying a potential hepatic dysfunction through the attenuation of the insulin signaling blockade and the modulation of glucose consumption.


Asunto(s)
Ácidos Cafeicos/farmacología , Ácido Clorogénico/farmacología , Glucosa/metabolismo , Hidroxibenzoatos/farmacología , Hipoglucemiantes/farmacología , Resistencia a la Insulina , Sonchus/química , Sinergismo Farmacológico , Activación Enzimática/efectos de los fármacos , Transportador de Glucosa de Tipo 4/metabolismo , Células Hep G2 , Humanos , Hidroxibenzoatos/química , Hidroxibenzoatos/aislamiento & purificación , Proteínas Sustrato del Receptor de Insulina/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA