Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 340
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(6): 1008-1024.e15, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35202565

RESUMEN

Vaccine-mediated immunity often relies on the generation of protective antibodies and memory B cells, which commonly stem from germinal center (GC) reactions. An in-depth comparison of the GC responses elicited by SARS-CoV-2 mRNA vaccines in healthy and immunocompromised individuals has not yet been performed due to the challenge of directly probing human lymph nodes. Herein, through a fine-needle aspiration-based approach, we profiled the immune responses to SARS-CoV-2 mRNA vaccines in lymph nodes of healthy individuals and kidney transplant recipients (KTXs). We found that, unlike healthy subjects, KTXs presented deeply blunted SARS-CoV-2-specific GC B cell responses coupled with severely hindered T follicular helper cell, SARS-CoV-2 receptor binding domain-specific memory B cell, and neutralizing antibody responses. KTXs also displayed reduced SARS-CoV-2-specific CD4 and CD8 T cell frequencies. Broadly, these data indicate impaired GC-derived immunity in immunocompromised individuals and suggest a GC origin for certain humoral and memory B cell responses following mRNA vaccination.

2.
Cell ; 183(1): 143-157.e13, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32877699

RESUMEN

Humoral responses in coronavirus disease 2019 (COVID-19) are often of limited durability, as seen with other human coronavirus epidemics. To address the underlying etiology, we examined post mortem thoracic lymph nodes and spleens in acute SARS-CoV-2 infection and observed the absence of germinal centers and a striking reduction in Bcl-6+ germinal center B cells but preservation of AID+ B cells. Absence of germinal centers correlated with an early specific block in Bcl-6+ TFH cell differentiation together with an increase in T-bet+ TH1 cells and aberrant extra-follicular TNF-α accumulation. Parallel peripheral blood studies revealed loss of transitional and follicular B cells in severe disease and accumulation of SARS-CoV-2-specific "disease-related" B cell populations. These data identify defective Bcl-6+ TFH cell generation and dysregulated humoral immune induction early in COVID-19 disease, providing a mechanistic explanation for the limited durability of antibody responses in coronavirus infections, and suggest that achieving herd immunity through natural infection may be difficult.


Asunto(s)
Infecciones por Coronavirus/inmunología , Centro Germinal/inmunología , Neumonía Viral/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Anciano , Anciano de 80 o más Años , Linfocitos B/inmunología , COVID-19 , Femenino , Centro Germinal/patología , Humanos , Masculino , Persona de Mediana Edad , Pandemias , Proteínas Proto-Oncogénicas c-bcl-6/genética , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Bazo/inmunología , Bazo/patología , Factor de Necrosis Tumoral alfa/metabolismo
3.
Immunity ; 55(8): 1414-1430.e5, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35896116

RESUMEN

Germinal centers (GCs), transient structures within B cell follicles and central to affinity maturation, require the coordinated behavior of T and B cells. IL-21, a pleiotropic T cell-derived cytokine, is key to GC biology through incompletely understood mechanisms. By genetically restricting production and receipt of IL-21 in vivo, we reveal how its independent actions on T and B cells combine to regulate the GC. IL-21 established the magnitude of the GC B cell response by promoting CD4+ T cell expansion and differentiation in a dose-dependent manner and with paracrine activity. Within GC, IL-21 specifically promoted B cell centroblast identity and, when bioavailability was high, plasma cell differentiation. Critically, these actions may occur irrespective of cognate T-B interactions, making IL-21 a general promoter of growth as distinct to a mediator of affinity-driven selection via synaptic delivery. This promiscuous activity of IL-21 explains the consequences of IL-21 deficiency on antibody-based immunity.


Asunto(s)
Sinapsis Inmunológicas , Linfocitos T Colaboradores-Inductores , Diferenciación Celular , Centro Germinal , Interleucinas
4.
Immunity ; 53(6): 1202-1214.e6, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33086036

RESUMEN

The mechanisms by which regulatory T (Treg) cells differentially control allergic and autoimmune responses remain unclear. We show that Treg cells in food allergy (FA) had decreased expression of transforming growth factor beta 1 (TGF-ß1) because of interleukin-4 (IL-4)- and signal transducer and activator of transciription-6 (STAT6)-dependent inhibition of Tgfb1 transcription. These changes were modeled by Treg cell-specific Tgfb1 monoallelic inactivation, which induced allergic dysregulation by impairing microbiota-dependent retinoic acid receptor-related orphan receptor gamma t (ROR-γt)+ Treg cell differentiation. This dysregulation was rescued by treatment with Clostridiales species, which upregulated Tgfb1 expression in Treg cells. Biallelic deficiency precipitated fatal autoimmunity with intense autoantibody production and dysregulated T follicular helper and B cell responses. These results identify a privileged role of Treg cell-derived TGF-ß1 in regulating allergy and autoimmunity at distinct checkpoints in a Tgfb1 gene dose- and microbiota-dependent manner.


Asunto(s)
Autoinmunidad/inmunología , Hipersensibilidad/inmunología , Linfocitos T Reguladores/inmunología , Factor de Crecimiento Transformador beta1/inmunología , Adolescente , Animales , Autoinmunidad/genética , Linfocitos B/inmunología , Diferenciación Celular , Niño , Preescolar , Hipersensibilidad a los Alimentos/inmunología , Dosificación de Gen , Humanos , Hipersensibilidad/genética , Inmunoglobulina G/inmunología , Lactante , Mastocitos/inmunología , Ratones , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Células T Auxiliares Foliculares/inmunología , Linfocitos T Reguladores/metabolismo , Transcripción Genética , Factor de Crecimiento Transformador beta1/genética , Adulto Joven
5.
Immunity ; 53(6): 1281-1295.e5, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33296685

RESUMEN

The deployment of effective vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical to eradicate the coronavirus disease 2019 (COVID-19) pandemic. Many licensed vaccines confer protection by inducing long-lived plasma cells (LLPCs) and memory B cells (MBCs), cell types canonically generated during germinal center (GC) reactions. Here, we directly compared two vaccine platforms-mRNA vaccines and a recombinant protein formulated with an MF59-like adjuvant-looking for their abilities to quantitatively and qualitatively shape SARS-CoV-2-specific primary GC responses over time. We demonstrated that a single immunization with SARS-CoV-2 mRNA, but not with the recombinant protein vaccine, elicited potent SARS-CoV-2-specific GC B and T follicular helper (Tfh) cell responses as well as LLPCs and MBCs. Importantly, GC responses strongly correlated with neutralizing antibody production. mRNA vaccines more efficiently induced key regulators of the Tfh cell program and influenced the functional properties of Tfh cells. Overall, this study identifies SARS-CoV-2 mRNA vaccines as strong candidates for promoting robust GC-derived immune responses.


Asunto(s)
Anticuerpos Neutralizantes/metabolismo , Linfocitos B/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , Centro Germinal/inmunología , SARS-CoV-2/fisiología , Linfocitos T Colaboradores-Inductores/inmunología , Vacunas Sintéticas/inmunología , Antígenos Virales/genética , Antígenos Virales/inmunología , Células Cultivadas , Epítopos , Humanos , Activación de Linfocitos , Polisorbatos , ARN Viral/inmunología , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Escualeno , Vacunación , Vacunas de ARNm
6.
Immunol Rev ; 322(1): 233-243, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38014621

RESUMEN

Common variable immunodeficiency (CVID) is a heterogenous disease category created to distinguish late-onset antibody deficiencies from early-onset diseases like agammaglobulinemia or more expansively dysfunctional combined immunodeficiencies. Opinions vary on which affected patients should receive a CVID diagnosis which confuses clinicians and erects reproducibility barriers for researchers. Most experts agree that CVID's most indeliable feature is defective germinal center (GC) production of isotype-switched, affinity-maturated antibodies. Here, we review the biological factors contributing to CVID-associated GC dysfunction including genetic, epigenetic, tolerogenic, microbiome, and regulatory abnormalities. We also discuss the consequences of these biological phenomena to the development of non-infectious disease complications. Finally, we opine on topics and lines of investigation we think hold promise for expanding our mechanistic understanding of this protean condition and for improving the lives of affected patients.


Asunto(s)
Inmunodeficiencia Variable Común , Humanos , Inmunodeficiencia Variable Común/genética , Linfocitos B , Reproducibilidad de los Resultados , Viento , Centro Germinal
7.
Semin Immunol ; 70: 101836, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37632992

RESUMEN

The 'immune risk profile' has been shown to predict mortality in the elderly, highlighting the need to better understand age-related immune dysfunction. While aging leads to many defects affecting all arms of the immune system, this review is focused on the accrual of immuno-suppressive CD4 + T cell populations, including FoxP3 + regulatory T cells, and subsets of IL-10-producing T follicular helper cells. New data suggest that such accumulations constitute feedback mechanisms to temper the ongoing progressive low-grade inflammation that develops with age, the so-called "inflammaging", and by doing so, how they have the potential to promote healthier aging. However, they also impair effector immune responses, notably to infections, or vaccines. These studies also reinforce the idea that the aged immune system should not be considered as a poorly functional version of the young one, but more as a dynamic system in which CD4 + T cells, and other immune/non-immune subsets, differentiate, interact with their milieu and function differently than in young hosts. A better understanding of these unique interactions is thus needed to improve effector immune responses in the elderly, while keeping inflammaging under control.


Asunto(s)
Envejecimiento , Enfermedades del Sistema Inmune , Anciano , Humanos , Linfocitos T CD4-Positivos , Linfocitos T Reguladores
8.
Immunity ; 47(4): 776-788.e5, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-29045906

RESUMEN

Antiretroviral therapy (ART) suppresses viral replication in HIV-infected individuals but does not eliminate the reservoir of latently infected cells. Recent work identified PD-1+ follicular helper T (Tfh) cells as an important cellular compartment for viral persistence. Here, using ART-treated, SIV-infected rhesus macaques, we show that CTLA-4+PD-1- memory CD4+ T cells, which share phenotypic markers with regulatory T cells, were enriched in SIV DNA in blood, lymph nodes (LN), spleen, and gut, and contained replication-competent and infectious virus. In contrast to PD-1+ Tfh cells, SIV-enriched CTLA-4+PD-1- CD4+ T cells were found outside the B cell follicle of the LN, predicted the size of the persistent viral reservoir during ART, and significantly increased their contribution to the SIV reservoir with prolonged ART-mediated viral suppression. We have shown that CTLA-4+PD-1- memory CD4+ T cells are a previously unrecognized component of the SIV and HIV reservoir that should be therapeutically targeted for a functional HIV-1 cure.


Asunto(s)
Antirretrovirales/uso terapéutico , Linfocitos T CD4-Positivos/efectos de los fármacos , Antígeno CTLA-4/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Virus de la Inmunodeficiencia de los Simios/efectos de los fármacos , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Antígeno CTLA-4/metabolismo , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/efectos de los fármacos , VIH-1/inmunología , VIH-1/fisiología , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/inmunología , Humanos , Memoria Inmunológica/efectos de los fármacos , Memoria Inmunológica/inmunología , Hibridación in Situ , Ganglios Linfáticos/efectos de los fármacos , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/virología , Macaca mulatta , Microscopía Confocal , Receptor de Muerte Celular Programada 1/metabolismo , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/inmunología , Virus de la Inmunodeficiencia de los Simios/fisiología , Linfocitos T Colaboradores-Inductores/efectos de los fármacos , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/virología , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/virología
9.
Immunity ; 47(3): 481-497.e7, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28930660

RESUMEN

Transcriptional regulation during CD4+ T cell fate decisions enables their differentiation into distinct states, guiding immune responses toward antibody production via Tfh cells or inflammation by Teff cells. Tfh-Teff cell fate commitment is regulated by mutual antagonism between the transcription factors Bcl6 and Blimp-1. Here we examined how T cell receptor (TCR) signals establish and arbitrate Bcl6-Blimp-1 counter-antagonism. We found that the TCR-signal-induced transcription factor Irf4 is essential for the differentiation of Bcl6-expressing Tfh and Blimp-1-expressing Teff cells. Increased TCR signaling raised Irf4 amounts and promoted Teff cell fates at the expense of Tfh ones. Importantly, orthogonal induction of Irf4 expression redirected Tfh cell fate trajectories toward those of Teff. Mechanistically, we linked greater Irf4 abundance with its recruitment toward low-affinity binding sites within Teff cell cis-regulatory elements, including those of Prdm1. We propose that the Irf4 locus functions as the "reader" of TCR signal strength, and in turn, concentration-dependent activity of Irf4 "writes" T helper fate choice.


Asunto(s)
Regulación de la Expresión Génica , Redes Reguladoras de Genes , Factores Reguladores del Interferón/metabolismo , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/metabolismo , Animales , Antígenos/inmunología , Sitios de Unión , Diferenciación Celular/inmunología , Línea Celular , Femenino , Perfilación de la Expresión Génica , Humanos , Inmunización , Factores Reguladores del Interferón/genética , Interleucina-2/metabolismo , Masculino , Ratones , Ratones Noqueados , Motivos de Nucleótidos , Unión Proteica , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal , Linfocitos T Colaboradores-Inductores/citología
10.
Semin Immunol ; 58: 101547, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34876330

RESUMEN

Primary Sjögren's syndrome (pSS) is a highly heterogeneous disease in terms of clinical presentation ranging from a mild disease localised to the salivary and lacrimal glands, to multiorgan complications of various degrees of severity, finishing with the evolution, in around 5% of pSS patients, to B cell lymphomas most commonly arising in the inflamed salivary glands. Currently, there are poor positive or negative predictors of disease evolution able to guide patient management and treatment at early stages of the diseases. Recent understanding of the pathogenic mechanisms driving immunopathology in pSS, particularly through histological and transcriptomic analysis of minor and parotid salivary gland (SG) biopsies, has highlighted a high degree of cellular and molecular heterogeneity of the inflammatory lesions but also allowed the identification of clusters of patients with similar underlying SG immunopathology. In particular, patients presenting with high degrees of B/T cell infiltration and the formation of ectopic lymphoid structures (ELS) in the SG have been associated, albeit with conflicting results, with higher degree of disease severity and enhanced risk of lymphoma evolution, suggesting that a dysregulated adaptive immune response plays a key role in driving disease manifestations in pSS. Recent data from randomised clinical trials with novel biological therapies in pSS have also highlighted the potential role of SG immunopathology and molecular pathology in stratifying patients for trial inclusion as well as assessing proof of mechanisms in longitudinal SG biopsies before and after treatment. Although significant progress has been made in the understanding of disease pathogenesis and heterogeneity through cellular and molecular SG pathology, further work is needed to validate their clinical utility in routine clinical settings and in randomised clinical trials.


Asunto(s)
Síndrome de Sjögren , Humanos , Síndrome de Sjögren/diagnóstico , Síndrome de Sjögren/genética , Síndrome de Sjögren/complicaciones , Glándulas Salivales/patología , Biopsia
11.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35177472

RESUMEN

While influenza infection induces robust, long-lasting, antibody responses and protection, including the T follicular helper cells (TFH) required to drive B cell germinal center (GC) responses, most influenza vaccines do not. We investigated the mechanisms that drive strong TFH responses during infection. Infection induces viral replication and antigen (Ag) presentation lasting through the CD4 effector phase, but Ag and pathogen recognition receptor signals are short-lived after vaccination. We analyzed the need for both infection and Ag presentation at the effector phase, using an in vivo sequential transfer model to time their availability. Differentiation of CD4 effectors into TFH and GC-TFH required that they recognize Ag locally in the site of TFH development, at the effector phase, but did not depend on specific Ag-presenting cells (APCs). In addition, concurrent signals from infection were necessary even when sufficient Ag was presented. Providing these signals with a second dose of live attenuated influenza vaccine at the effector phase drove TFH and GC-TFH development equivalent to live infection. The results suggest that vaccine approaches can induce strong TFH development that supports GC responses akin to infection, if they supply these effector phase signals at the right time and site. We suggest that these requirements create a checkpoint that ensures TFH only develop fully when infection is still ongoing, thereby avoiding unnecessary, potentially autoimmune, responses.


Asunto(s)
Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Células T Auxiliares Foliculares/inmunología , Animales , Anticuerpos Antivirales/inmunología , Formación de Anticuerpos/inmunología , Antígenos , Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Femenino , Centro Germinal/inmunología , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Células T Auxiliares Foliculares/metabolismo , Linfocitos T Colaboradores-Inductores/inmunología , Vacunas Atenuadas/inmunología
12.
J Allergy Clin Immunol ; 153(2): 513-520.e10, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37652139

RESUMEN

BACKGROUND: Germinal center (GC) responses controlled by T follicular helper (Tfh) and T follicular regulatory (Tfr) cells are crucial for the generation of high-affinity antibodies. Acquired immune responses to tissue-released antigens might be mainly induced in tertiary lymphoid organs (TLOs) with GCs in affected tissues. IgG4-related disease (IgG4-RD) demonstrates polarized isotype switching and TLOs in affected tissues. We performed single-cell transcriptomics of tissue-infiltrating T cells from these TLOs to obtain a comprehensive, unbiased view of tissue-infiltrating GC-Tfh cells. OBJECTIVE: To identify GC-Tfh-cell subsets in TLOs in patients with IgG4-RD using single-cell transcriptomics. METHODS: Single-cell RNA sequencing of sorted CD3+ T cells and multicolor immunofluorescence analysis were used to investigate CD4+CXCR5+Bcl6+ GC-Tfh cells in affected lesions from patients with IgG4-RD. RESULTS: Infiltrating CD4+CXCR5+Bcl6+ Tfh cells were divided into 5 main clusters. We detected HLA+ granzyme K+ (GZMK+) Tfh cells with cytotoxicity-associated features in patients with IgG4-RD. We also observed abundant infiltrating Tfr cells with suppressor-associated features in patients with IgG4-RD. These GZMK+ Tfh cells and Tfr cells clustered together in affected tissues from patients with IgG4-RD. CONCLUSIONS: This single-cell data set revealed a novel subset of HLA+GZMK+ cytotoxic Tfh cells infiltrating affected organs in patients with IgG4-RD, suggesting that infiltrating Tfr cells might suppress cytotoxic Tfh cells.


Asunto(s)
Antineoplásicos , Enfermedad Relacionada con Inmunoglobulina G4 , Estructuras Linfoides Terciarias , Humanos , Granzimas/genética , Células T Auxiliares Foliculares , Perfilación de la Expresión Génica , Linfocitos T Colaboradores-Inductores , Linfocitos T Reguladores
13.
Immunology ; 171(3): 413-427, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38150744

RESUMEN

Toll-like receptors (TLRs) play an important role in inducing innate and acquired immune responses against infection. However, the effect of Toll-like receptor 7 (TLR7) on follicular helper T (Tfh) cells in mice infected with Plasmodium is still not clear. The results showed that the splenic CD4+ CXCR5+ PD-1+ Tfh cells were accumulated after Plasmodium yoelii NSM infection, the content of splenic Tfh cells was correlated to parasitemia and/or the red blood cells (RBCs) counts in the blood. Moreover, the expression of TLR7 was found higher than TLR2, TLR3 and TLR4 in splenic Tfh cells of the WT mice. TLR7 agonist R848 and the lysate of red blood cells of infected mice (iRBCs) could induce the activation and differentiation of splenic Tfh cells. Knockout of TLR7 leads to a decrease in the proportion of Tfh cells, down-regulated expression of functional molecules CD40L, IFN-γ, IL-21 and IL-10 in Tfh cells; decreased the proportion of plasma cells and antibody production and reduces the expression of STAT3 and Ikzf2 in Tfh cells. Administration of R848 could inhibit parasitemia, enhance splenic Tfh cell activation and increase STAT3 and Ikzf2 expression in Tfh cells. In summary, this study shows that TLR7 could regulate the function of Tfh cells, affecting the immune response in the spleen of Plasmodium yoelii NSM-infected mice.


Asunto(s)
Malaria , Plasmodium yoelii , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Parasitemia/metabolismo , Plasmodium yoelii/metabolismo , Células T Auxiliares Foliculares/metabolismo , Linfocitos T Colaboradores-Inductores , Receptor Toll-Like 7/metabolismo
14.
Lab Invest ; : 102147, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39389311

RESUMEN

Angioimmunoblastic T cell lymphoma (AITL), the most common form of peripheral T cell lymphoma, originates from follicular helper T (Tfh) cells and is notably resistant to current treatments. The disease progression and maintenance, at least in early stages, are driven by a complex interplay between neoplastic Tfh and clusters of B-cells within the tumor microenvironment, mirroring the functional crosstalk observed inside germinal centers. This interaction is further complicated by recurrent mutations, such as TET2 and DNMT3A, which are present in both Tfh cells and B cells. These findings suggest that the symbiotic relationship between these two cell types could represent a therapeutic vulnerability. This review examines the key components and signaling mechanisms involved in the synapses between B cells and Tfh cells, emphasizing their significant role in the pathobiology of AITL and potential as therapeutic targets.

15.
Clin Immunol ; 266: 110329, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39067679

RESUMEN

Overwhelming evidence has shown that aging is a significant risk factor for COVID-19-related hospitalizations, death and other adverse health outcomes. Particular T cell subsets that susceptible to aging and associated with COVID-19 disease severity requires further elucidation. Our study recruited 57 elderly patients with acute COVID-19 and 27 convalescent donors. Adaptive immunity was assessed across the COVID-19 severity spectrum. Patients underwent age-dependent CD4+ T lymphopenia, preferential loss of circulating T follicular regulatory cells (cTfh) subsets including cTfh-em, cTfh-cm, cTfh1, cTfh2, cTfh17 and circulating T follicular regulatory cells (cTfr), which regulated antibody production through different pathways and correlated with COVID-19 severity, were observed. Moreover, vaccination improved cTfh-cm, cTfh2, cTfr proportion and promoted NAb production. In conclusion, the elderly had gone through age-dependent cTfh subsets deficiency, which impeded NAb production and enabled aggravation of COVID-19 to critical illness, whereas SARS-CoV-2 vaccine inoculation helped to rejuvenate cTfh, cTfr and intensify NAb responses.


Asunto(s)
COVID-19 , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Células T Auxiliares Foliculares , Humanos , COVID-19/inmunología , Anciano , Masculino , Femenino , SARS-CoV-2/inmunología , Células T Auxiliares Foliculares/inmunología , Anciano de 80 o más Años , Envejecimiento/inmunología , Linfocitos T Reguladores/inmunología , Persona de Mediana Edad , Vacunas contra la COVID-19/inmunología , Factores de Edad , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Inmunidad Adaptativa/inmunología
16.
Clin Immunol ; 264: 110260, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38788885

RESUMEN

Sjögren's disease (SjD) is a chronic autoimmune disease characterized by focal lymphocytic inflammation in lacrimal and salivary glands. We recently identified IL-27 as a requisite signal for the spontaneous SjD-like manifestations in nonobese diabetic (NOD) mice. Here, we define T cell-intrinsic effects of IL-27 in lacrimal gland disease in NOD mice. IL-27 receptor was required by both CD4 T effector (Te) cells and CD8 T cells to mediate focal inflammation. Intrinsic IL-27 signaling was associated with PD-1 and ICOS expressing T follicular helper (Tfh)-like CD4 Te cells within lacrimal glands, including subsets defined by CD73 or CD39 expression. CD8 T cells capable of IL-27 signaling also expressed PD-1 with subsets expressing ICOS and CD73 demonstrating a T follicular cytotoxic (Tfc)-like cell phenotype and others expressing a CD39hi exhausted-like phenotype. These findings suggest IL-27 is a key early signal driving a follicular-type response in lacrimal gland inflammation in NOD mice.


Asunto(s)
Linfocitos T CD8-positivos , Modelos Animales de Enfermedad , Aparato Lagrimal , Ratones Endogámicos NOD , Síndrome de Sjögren , Animales , Síndrome de Sjögren/inmunología , Ratones , Linfocitos T CD8-positivos/inmunología , Aparato Lagrimal/inmunología , Aparato Lagrimal/patología , Interleucinas/inmunología , Interleucinas/metabolismo , Linfocitos T CD4-Positivos/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Femenino , Transducción de Señal/inmunología , Receptores de Interleucina/inmunología , Interleucina-27/metabolismo , Interleucina-27/inmunología , Proteína Coestimuladora de Linfocitos T Inducibles/inmunología , Proteína Coestimuladora de Linfocitos T Inducibles/metabolismo , Apirasa/inmunología , Apirasa/metabolismo
17.
J Clin Immunol ; 44(4): 94, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578569

RESUMEN

PURPOSE: Deficiency of stromal interaction molecule 1 (STIM1) results in combined immunodeficiency accompanied by extra-immunological findings like enamel defects and myopathy. We here studied a patient with a STIM1 loss-of-function mutation who presented with severe lymphoproliferation. We sought to explore the efficacy of the mTOR inhibitor rapamycin in controlling disease manifestations and reversing aberrant T-cell subsets and functions, which has never been used previously in this disorder. METHODS: Clinical findings of the patient were collected over time. We performed immunological evaluations before and after initiation of rapamycin treatment, including detailed lymphocyte subset analyses, alterations in frequencies of circulating T follicular helper (cTFH) and regulatory T (Treg) cells and their subtypes as well as T cell activation and proliferation capacities. RESULTS: A novel homozygous exon 2 deletion in STIM1 was detected in a 3-year-old girl with severe lymphoproliferation, recurrent infections, myopathy, iris hypoplasia, and enamel hypoplasia. Lymphoproliferation was associated with severe T-cell infiltrates. The deletion resulted in a complete loss of protein expression, associated with a lack of store-operated calcium entry response, defective T-cell activation, proliferation, and cytokine production. Interestingly, patient blood contained fewer cTFH and increased circulating follicular regulatory (cTFR) cells. Abnormal skewing towards TH2-like responses in certain T-cell subpopulations like cTFH, non-cTFH memory T-helper, and Treg cells was associated with increased eosinophil numbers and serum IgE levels. Treatment with rapamycin controlled lymphoproliferation, improved T-cell activation and proliferation capacities, reversed T-cell responses, and repressed high IgE levels and eosinophilia. CONCLUSIONS: This study enhances our understanding of STIM1 deficiency by uncovering additional abnormal T-cell responses, and reveals for the first time the potential therapeutic utility of rapamycin for this disorder.


Asunto(s)
Enfermedades Musculares , Sirolimus , Femenino , Humanos , Preescolar , Molécula de Interacción Estromal 1/genética , Subgrupos de Linfocitos T , Inmunoglobulina E , Proteínas de Neoplasias
18.
Eur J Immunol ; 53(8): e2350420, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37179450

RESUMEN

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that often involves abnormal activation of regulatory IFN genes and regulation of B cells by CD4+ T cells. Radical S-adenosyl methionine domain containing 2 (RSAD2) is a viral suppressor protein regulated by type I IFN, and it has been proven to play an important regulatory role in SLE. However, the mechanism by which RSAD2 participates in the pathogenesis of SLE is unclear. In this study, we observed higher expression levels of RSAD2 in CD4+ T-cell subsets from the peripheral blood of SLE patients than in those from healthy controls by bioinformatics analysis and validation experiments. We analyzed the expression of RSAD2 in CD4+ T cells of patients with SLE and other autoimmune diseases. In addition, we found that the expression of RSAD2 in CD4+ T cells might be regulated by IFN-α, and RSAD2 significantly affected the differentiation of Th17 cells and T follicular helper (Tfh) cells. Our findings underlined that RSAD2 may promote B-cell activation by promoting the differentiation of Th17 and Tfh cells in SLE patients, a process that is regulated by IFN-α.


Asunto(s)
Lupus Eritematoso Sistémico , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Humanos , Células Th17 , Interferón-alfa , Células T Auxiliares Foliculares , Subgrupos de Linfocitos T , Lupus Eritematoso Sistémico/genética , Linfocitos T Colaboradores-Inductores
19.
Eur J Immunol ; 53(2): e2250190, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36480793

RESUMEN

T follicular helper (TFH ) cells play an essential role in promoting B cell responses and antibody affinity maturation in germinal centers (GC). A subset of memory CD4+ T cells expressing the chemokine receptor CXCR5 has been described in human blood as phenotypically and clonally related to GC TFH cells. However, the antigen specificity and relationship of these circulating TFH (cTFH ) cells with other memory CD4+ T cells remain poorly defined. Combining antigenic stimulation and T cell receptor (TCR) Vß sequencing, we found T cells specific to tetanus toxoid (TT), influenza vaccine (Flu), or Candida albicans (C.alb) in both cTFH and non-cTFH subsets, although with different frequencies and effector functions. Interestingly, cTFH and non-cTFH cells specific for C.alb or TT had a largely overlapping TCR Vß repertoire while the repertoire of Flu-specific cTFH and non-cTFH cells was distinct. Furthermore, Flu-specific but not C.alb-specific PD-1+ cTFH cells had a "GC TFH -like" phenotype, with overexpression of IL21, CXCL13, and BCL6. Longitudinal analysis of serial blood donations showed that Flu-specific cTFH and non-cTFH cells persisted as stable repertoires for years. Collectively, our study provides insights on the relationship of cTFH with non-cTFH cells and on the heterogeneity and persistence of antigen-specific human cTFH cells.


Asunto(s)
Células T Auxiliares Foliculares , Linfocitos T Colaboradores-Inductores , Humanos , Linfocitos B , Centro Germinal , Receptores de Antígenos de Linfocitos T
20.
Toxicol Appl Pharmacol ; 489: 117010, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38901696

RESUMEN

Humoral responses to respiratory viruses, such as influenza viruses, develop over time and are central to protection from repeated infection with the same or similar viruses. Epidemiological and experimental studies have linked exposures to environmental contaminants that bind the aryl hydrocarbon receptor (AHR) with modulated antibody responses to pathogenic microorganisms and common vaccinations. Other studies have prompted investigation into the potential therapeutic applications of compounds that activate AHR. Herein, using two different AHR ligands [2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and 2-(1H-Indol-3-ylcarbonyl)-4-thiazolecarboxylic acid methyl ester (ITE), to modulate the duration of AHR activity, we show that the humoral response to viral infection is dependent upon the duration and timing of AHR signaling, and that different cellular elements of the response have different sensitivities. When AHR activation was initiated prior to infection with influenza A virus, there was suppression of all measured elements of the humoral response (i.e., the frequency of T follicular helper cells, germinal center B cells, plasma cells, and circulating virus-specific antibody). However, when the timing of AHR activation was adjusted to either early (days -1 to +5 relative to infection) or later (days +5 onwards), then AHR activation affected different aspects of the overall humoral response. These findings highlight the importance of considering the timing of AHR activation in relation to triggering an immune response, particularly when targeting the AHR to manipulate disease processes.


Asunto(s)
Inmunidad Humoral , Dibenzodioxinas Policloradas , Receptores de Hidrocarburo de Aril , Receptores de Hidrocarburo de Aril/metabolismo , Animales , Inmunidad Humoral/efectos de los fármacos , Dibenzodioxinas Policloradas/toxicidad , Femenino , Factores de Tiempo , Ratones , Ratones Endogámicos C57BL , Indoles/farmacología , Transducción de Señal/efectos de los fármacos , Anticuerpos Antivirales , Infecciones por Orthomyxoviridae/inmunología , Infecciones del Sistema Respiratorio/inmunología , Infecciones del Sistema Respiratorio/virología , Infecciones del Sistema Respiratorio/metabolismo , Ligandos , Tiazoles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA