Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35074918

RESUMEN

MeCP2 is associated with Rett syndrome (RTT), MECP2 duplication syndrome, and a number of conditions with isolated features of these diseases, including autism, intellectual disability, and motor dysfunction. MeCP2 is known to broadly bind methylated DNA, but the precise molecular mechanism driving disease pathogenesis remains to be determined. Using proximity-dependent biotinylation (BioID), we identified a transcription factor 20 (TCF20) complex that interacts with MeCP2 at the chromatin interface. Importantly, RTT-causing mutations in MECP2 disrupt this interaction. TCF20 and MeCP2 are highly coexpressed in neurons and coregulate the expression of key neuronal genes. Reducing Tcf20 partially rescued the behavioral deficits caused by MECP2 overexpression, demonstrating a functional relationship between MeCP2 and TCF20 in MECP2 duplication syndrome pathogenesis. We identified a patient exhibiting RTT-like neurological features with a missense mutation in the PHF14 subunit of the TCF20 complex that abolishes the MeCP2-PHF14-TCF20 interaction. Our data demonstrate the critical role of the MeCP2-TCF20 complex for brain function.


Asunto(s)
Proteína 2 de Unión a Metil-CpG/metabolismo , Complejos Multiproteicos/metabolismo , Trastornos del Neurodesarrollo/etiología , Trastornos del Neurodesarrollo/metabolismo , Factores de Transcripción/metabolismo , Alelos , Animales , Biomarcadores , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Ratones Noqueados , Ratones Transgénicos , Modelos Biológicos , Mutación , Neuronas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Sinapsis/metabolismo , Factores de Transcripción/genética
2.
Liver Int ; 43(8): 1822-1836, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37312667

RESUMEN

BACKGROUND & AIMS: Transcription co-activator factor 20 (TCF20) is a regulator of transcription factors involved in extracellular matrix remodelling. In addition, TCF20 genomic variants in humans have been associated with impaired intellectual disability. Therefore, we hypothesized that TCF20 has several functions beyond those described in neurogenesis, including the regulation of fibrogenesis. METHODS: Tcf20 knock-out (Tcf20-/- ) and Tcf20 heterozygous mice were generated by homologous recombination. TCF20 gene genotyping and expression was assessed in patients with pathogenic variants in the TCF20 gene. Neural development was investigated by immufluorescense. Mitochondrial metabolic activity was evaluated with the Seahorse analyser. The proteome analysis was carried out by gas chromatography mass-spectrometry. RESULTS: Characterization of Tcf20-/- newborn mice showed impaired neural development and death after birth. In contrast, heterozygous mice were viable but showed higher CCl4 -induced liver fibrosis and a differential expression of genes involved in extracellular matrix homeostasis compared to wild-type mice, along with abnormal behavioural patterns compatible with autism-like phenotypes. Tcf20-/- embryonic livers and mouse embryonic fibroblast (MEF) cells revealed differential expression of structural proteins involved in the mitochondrial oxidative phosphorylation chain, increased rates of mitochondrial metabolic activity and alterations in metabolites of the citric acid cycle. These results parallel to those found in patients with TCF20 pathogenic variants, including alterations of the fibrosis scores (ELF and APRI) and the elevation of succinate concentration in plasma. CONCLUSIONS: We demonstrated a new role of Tcf20 in fibrogenesis and mitochondria metabolism in mice and showed the association of TCF20 deficiency with fibrosis and metabolic biomarkers in humans.


Asunto(s)
Fibroblastos , Hígado , Humanos , Ratones , Animales , Fibroblastos/patología , Hígado/patología , Cirrosis Hepática/patología , Mitocondrias/patología , Factores de Transcripción/genética
3.
Clin Genet ; 101(3): 364-370, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34904221

RESUMEN

Transcriptor co-activator factor 20 gene (TCF20) encodes a nuclear chromatin-binding protein involved in regulation of gene expression. In human pathology, pathogenic variants or deletions in TCF20 were identified in patients with developmental delay, variable intellectual disability and behavioral impairment (OMIM: 618430). The shared core phenotype includes developmental delay, hypotonia, motor delay, autism spectrum disorders, neurobehavioral anomalies, neurological features such as ataxia, seizures, movement disorders, structural brain anomalies, craniofacial features and various congenital anomalies. Most pathogenic variants are loss-of-function variants. Duplication including TCF20 was suspected to cause a neurodevelopmental disorder (NDD) with mirror traits compared to patients with TCF20 deletions. In the present study, we report three patients from three unrelated families with NDD with a de novo duplication at 22q13.2 encompassing TCF20. We propose that the TCF20 duplication could be involved in a new 22q13.2 microduplication syndrome with high penetrance, enlarging the genotype-phenotype knowledge of TCF20-associated NDDs.


Asunto(s)
Trastorno del Espectro Autista , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Trastorno del Espectro Autista/genética , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Hipotonía Muscular/genética , Trastornos del Neurodesarrollo/genética , Proteínas Nucleares/genética , Penetrancia , Fenotipo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
EMBO Rep ; 21(8): e49239, 2020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32510763

RESUMEN

Recently, de novo mutations of transcription factor 20 (TCF20) were found in patients with autism by large-scale exome sequencing. However, how TCF20 modulates brain development and whether its dysfunction causes ASD remain unclear. Here, we show that TCF20 deficits impair neurogenesis in mouse. TCF20 deletion significantly reduces the number of neurons, which leads to abnormal brain functions. Furthermore, transcriptome analysis and ChIP-qPCR reveal that the DNA demethylation factor TDG is a downstream target gene of TCF20. As a nonspecific DNA demethylation factor, TDG potentially affects many genes. Combined TDG ChIP-seq and GO analysis of TCF20 RNA-Seq identifies T-cell factor 4 (TCF-4) as a common target. TDG controls the DNA methylation level in the promoter area of TCF-4, affecting TCF-4 expression and modulating neural differentiation. Overexpression of TDG or TCF-4 rescues the deficient neurogenesis of TCF20 knockdown brains. Together, our data reveal that TCF20 is essential for neurogenesis and we suggest that defects in neurogenesis caused by TCF20 loss are associated with ASD.


Asunto(s)
Trastorno Autístico , Animales , Trastorno Autístico/genética , Metilación de ADN , Humanos , Ratones , Neurogénesis/genética , Regiones Promotoras Genéticas , Factores de Transcripción/genética
5.
Genet Med ; 21(9): 2036-2042, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30739909

RESUMEN

PURPOSE: To define the clinical characteristics of patients with variants in TCF20, we describe 27 patients, 26 of whom were identified via exome sequencing. We compare detailed clinical data with 17 previously reported patients. METHODS: Patients were ascertained through molecular testing laboratories performing exome sequencing (and other testing) with orthogonal confirmation; collaborating referring clinicians provided detailed clinical information. RESULTS: The cohort of 27 patients all had novel variants, and ranged in age from 2 to 68 years. All had developmental delay/intellectual disability. Autism spectrum disorders/autistic features were reported in 69%, attention disorders or hyperactivity in 67%, craniofacial features (no recognizable facial gestalt) in 67%, structural brain anomalies in 24%, and seizures in 12%. Additional features affecting various organ systems were described in 93%. In a majority of patients, we did not observe previously reported findings of postnatal overgrowth or craniosynostosis, in comparison with earlier reports. CONCLUSION: We provide valuable data regarding the prognosis and clinical manifestations of patients with variants in TCF20.


Asunto(s)
Trastorno del Espectro Autista/genética , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Factores de Transcripción/genética , Adolescente , Adulto , Anciano , Trastorno del Espectro Autista/epidemiología , Trastorno del Espectro Autista/patología , Niño , Preescolar , Exoma/genética , Femenino , Humanos , Discapacidad Intelectual/epidemiología , Discapacidad Intelectual/patología , Masculino , Persona de Mediana Edad , Mutación , Trastornos del Neurodesarrollo/epidemiología , Trastornos del Neurodesarrollo/patología , Secuenciación del Exoma , Adulto Joven
6.
J Med Genet ; 55(4): 269-277, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29378768

RESUMEN

INTRODUCTION: Phelan-McDermid syndrome (PMS) is caused by SHANK3 haploinsufficiency. Its wide phenotypic variation is attributed partly to the type and size of 22q13 genomic lesion (deletion, unbalanced translocation, ring chromosome), partly to additional undefined factors. We investigated a child with severe global neurodevelopmental delay (NDD) compatible with her distal 22q13 deletion, complicated by bilateral perisylvian polymicrogyria (BPP) and urticarial rashes, unreported in PMS. METHODS: Following the cytogenetic and array-comparative genomic hybridization (CGH) detection of a r(22) with SHANK3 deletion and two upstream duplications, whole-genome sequencing (WGS) in blood and whole-exome sequencing (WES) in blood and saliva were performed to highlight potential chromothripsis/chromoanagenesis events and any possible BPP-associated variants, even in low-level mosaicism. RESULTS: WGS confirmed the deletion and highlighted inversion and displaced order of eight fragments, three of them duplicated. The microhomology-mediated insertion of partial Alu-elements at one breakpoint junction disrupted the topological associating domain joining NFAM1 to the transcriptional coregulator TCF20. WES failed to detect BPP-associated variants. CONCLUSIONS: Although we were unable to highlight the molecular basis of BPP, our data suggest that SHANK3 haploinsufficiency and TCF20 misregulation, both associated with intellectual disability, contributed to the patient's NDD, while NFAM1 interruption likely caused her skin rashes, as previously reported. We provide the first example of chromoanasynthesis in a constitutional ring chromosome and reinforce the growing evidence that chromosomal rearrangements may be more complex than estimated by conventional diagnostic approaches and affect the phenotype by global alteration of the topological chromatin organisation rather than simply by deletion or duplication of dosage-sensitive genes.


Asunto(s)
Trastornos de los Cromosomas/genética , Cromotripsis , Translocación Genética , Cesárea , Preescolar , Deleción Cromosómica , Trastornos de los Cromosomas/epidemiología , Trastornos de los Cromosomas/patología , Cromosomas Humanos Par 22/genética , Hibridación Genómica Comparativa , Femenino , Genómica , Haploinsuficiencia/genética , Humanos , Lactante , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Embarazo , Cromosomas en Anillo , Factores de Transcripción/genética
7.
Am J Med Genet A ; 176(12): 2791-2797, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30216695

RESUMEN

Phelan-McDermid syndrome (PMS, OMIM 606232) is a heterozygous contiguous gene microdeletion syndrome occurring at the distal region of chromosome 22q13. This deletion encompasses the SHANK3 gene at 22q13.33, which is thought to be the critical gene for the neurodevelopmental features seen in this syndrome. PMS is typically characterized by intellectual disability, autism spectrum disorder, absent to severely delayed speech, neonatal hypotonia, and dysmorphic features. Two patients presenting with classic clinical features of PMS have been reported to have interstitial microdeletions in the 22q13.2 region that map proximal to the SHANK3 gene (0.54 and 0.72 Mb, respectively). Here, we describe a 13-month-old girl with a de novo 1.16 Mb interstitial deletion in the 22q13.2 region who presented with global developmental delay, subtle dysmorphic features, and immunodeficiency. This deletion overlaps with the two previously published cases and five cases from the DECIPHER database. All eight patients share features common to patients with PMS including developmental delay and language delay, which suggests that this represents a previously unrecognized microdeletion syndrome in the 22q13.2 region. Our patient's deletion encompasses the TCF20 and TNFRSF13C genes, which are thought to play causative roles in the patient's neurodevelopmental and immunological features, respectively.


Asunto(s)
Receptor del Factor Activador de Células B/genética , Trastornos de los Cromosomas/diagnóstico , Trastornos de los Cromosomas/genética , Fenotipo , Factores de Transcripción/genética , Alelos , Deleción Cromosómica , Cromosomas Humanos Par 22/genética , Hibridación Genómica Comparativa , Análisis Citogenético , Femenino , Estudios de Asociación Genética , Humanos , Lactante , Mutación
8.
Cardiovasc Toxicol ; 24(10): 1037-1046, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39060884

RESUMEN

One of the causes of coronary heart disease (CHD) is genetic factors. In this study, we explored the relationship between CYP2D7 and TCF20 gene polymorphisms and the risk of CHD in the Han Chinese population. Three single nucleotide polymorphisms (CYP2D7 rs1800754, CYP2D7 rs2743461, and TCF20 rs760648) were selected and genotyped from 490 cases and 480 controls. The odds ratios (ORs) and 95% confidence intervals (CIs) were used to assess the association between CYP2D7 and TCF20 polymorphisms and the risk of CHD. The association between clinical indicators and polymorphisms was analyzed using one-way ANOVA and Tukey's HSD. The SNP-SNP interactions were obtained by performing multifactor dimensionality reduction (MDR). CYP2D7 rs1800754 and rs2743461 were closely associated with increased risk of CHD (alleles: p = 0.014, p = 0.031). Stratified analysis showed that CYP2D7 rs1800754 and rs2743461 were associated with an increased risk of CHD in men, age > 60 years, BMI ≥ 24, and smoking. Rs1800754 is also associated with an increased risk of CHD associated with alcohol consumption. In addition, TCF20 rs760648 was associated with a reduced risk of CHD in patients aged ≤ 60 years and with CALs. A significant association was found between CYP2D7 rs1800754 and rs2743461 genotypes and levels of UREA, Cr, and LDL-C; TCF20 rs760648 genotypes and levels of RBC. The MDR analysis showed that the three-locus interaction model was the best in the multi-locus model. In conclusion, CYP2D7 rs1800754 and rs2743461 polymorphisms were associated with CHD risk.


Asunto(s)
Enfermedad Coronaria , Sistema Enzimático del Citocromo P-450 , Predisposición Genética a la Enfermedad , Factores de Transcripción , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Consumo de Bebidas Alcohólicas/genética , Consumo de Bebidas Alcohólicas/efectos adversos , Estudios de Casos y Controles , China/epidemiología , Enfermedad Coronaria/genética , Enfermedad Coronaria/enzimología , Enfermedad Coronaria/epidemiología , Enfermedad Coronaria/diagnóstico , Estudios de Asociación Genética , Fenotipo , Polimorfismo de Nucleótido Simple , Medición de Riesgo , Factores de Riesgo , Fumar/efectos adversos , Fumar/genética , Pueblos del Este de Asia/genética , Sistema Enzimático del Citocromo P-450/genética , Factores de Transcripción/genética
9.
Front Genet ; 14: 1192668, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37303953

RESUMEN

Background: The expression of TCF20 is the most widespread in brain tissue. TCF20 depletion or mutation can affect the proliferation and differentiation of embryonic neurons, leading to developmental disorder of the central nervous system and subsequent rare syndrome featuring. Case presentation: Here, we report a 3-year-old boy carrying a novel frameshift mutation in TCF20, c.1839_1872del (p.Met613IlefsTer159), resulting in multisystem disease. In addition to symptoms of neurodevelopmental disorder, a large head circumference, special appearance, overgrowth, abnormal testicular descent. Remarkably, previously infrequently reported symptoms of the immune system such as hyperimmunoglobulinemia E (hyper-IgE), immune thrombocytopenic purpura, cows milk protein allergy, and wheezy bronchitis, were observed. Conclusion: This study broadens the mutation spectrum of the TCF20 and the phenotypic spectrum of TCF20-associated disease.

10.
Genome Med ; 11(1): 12, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30819258

RESUMEN

BACKGROUND: Neurodevelopmental disorders are genetically and phenotypically heterogeneous encompassing developmental delay (DD), intellectual disability (ID), autism spectrum disorders (ASDs), structural brain abnormalities, and neurological manifestations with variants in a large number of genes (hundreds) associated. To date, a few de novo mutations potentially disrupting TCF20 function in patients with ID, ASD, and hypotonia have been reported. TCF20 encodes a transcriptional co-regulator structurally related to RAI1, the dosage-sensitive gene responsible for Smith-Magenis syndrome (deletion/haploinsufficiency) and Potocki-Lupski syndrome (duplication/triplosensitivity). METHODS: Genome-wide analyses by exome sequencing (ES) and chromosomal microarray analysis (CMA) identified individuals with heterozygous, likely damaging, loss-of-function alleles in TCF20. We implemented further molecular and clinical analyses to determine the inheritance of the pathogenic variant alleles and studied the spectrum of phenotypes. RESULTS: We report 25 unique inactivating single nucleotide variants/indels (1 missense, 1 canonical splice-site variant, 18 frameshift, and 5 nonsense) and 4 deletions of TCF20. The pathogenic variants were detected in 32 patients and 4 affected parents from 31 unrelated families. Among cases with available parental samples, the variants were de novo in 20 instances and inherited from 4 symptomatic parents in 5, including in one set of monozygotic twins. Two pathogenic loss-of-function variants were recurrent in unrelated families. Patients presented with a phenotype characterized by developmental delay, intellectual disability, hypotonia, variable dysmorphic features, movement disorders, and sleep disturbances. CONCLUSIONS: TCF20 pathogenic variants are associated with a novel syndrome manifesting clinical characteristics similar to those observed in Smith-Magenis syndrome. Together with previously described cases, the clinical entity of TCF20-associated neurodevelopmental disorders (TAND) emerges from a genotype-driven perspective.


Asunto(s)
Anomalías Craneofaciales/genética , Discapacidades del Desarrollo/genética , Mutación INDEL , Discapacidad Intelectual/genética , Hipotonía Muscular/genética , Síndrome de Smith-Magenis/genética , Factores de Transcripción/genética , Adolescente , Niño , Preescolar , Anomalías Craneofaciales/patología , Discapacidades del Desarrollo/patología , Femenino , Humanos , Lactante , Discapacidad Intelectual/patología , Masculino , Hipotonía Muscular/patología , Síndrome de Smith-Magenis/patología , Factores de Transcripción/metabolismo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA