Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 255
Filtrar
Más filtros

Intervalo de año de publicación
1.
FASEB J ; 38(7): e23569, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38551610

RESUMEN

Early in sepsis, a hyperinflammatory response is dominant, but later, an immunosuppressive phase dominates, and the host is susceptible to opportunistic infections. Anti-inflammatory agents may accelerate the host into immunosuppression, and few agents can reverse immunosuppression without causing inflammation. Specialized pro-resolving mediators (SPMs) such as resolvin D2 (RvD2) have been reported to resolve inflammation without being immunosuppressive, but little work has been conducted to examine their effects on immunosuppression. To assess the effects of RvD2 on immunosuppression, we established a model of macrophage exhaustion using two lipopolysaccharide (LPS) treatments or hits. THP-1 monocyte-derived macrophages were first treated with RvD2 or vehicle for 1 h. One LPS hit increased NF-κB activity 11-fold and TNF-α release 60-fold compared to unstimulated macrophages. RvD2 decreased LPS-induced NF-κB activity and TNF-α production but increased bacterial clearance. Two LPS hits reduced macrophage bacterial clearance and decreased macrophage NF-κB activity (45%) and TNF-α release (75%) compared to one LPS hit, demonstrating exhaustion. RvD2 increased NF-κB activity, TNF-α release, and bacterial clearance following two LPS hits compared to controls. TLR2 inhibition abolished RvD2-mediated changes. In a mouse sepsis model, splenic macrophage response to exogenous LPS was reduced compared to controls and was restored by in vivo administration of RvD2, supporting the in vitro results. If RvD2 was added to monocytes before differentiation into macrophages, however, RvD2 reduced LPS responses and increased bacterial clearance following both one and two LPS hits. The results show that RvD2 attenuated macrophage suppression in vitro and in vivo and that this effect was macrophage-specific.


Asunto(s)
Ácidos Docosahexaenoicos , Lipopolisacáridos , Sepsis , Ratones , Animales , Lipopolisacáridos/toxicidad , FN-kappa B/farmacología , Factor de Necrosis Tumoral alfa/farmacología , Macrófagos , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Sepsis/inducido químicamente , Sepsis/tratamiento farmacológico
2.
J Biol Chem ; 299(6): 104750, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37100289

RESUMEN

Sterile alpha motif and histidine-aspartate (HD) domain-containing protein 1 (SAMHD1) inhibits HIV-1 replication in nondividing cells by reducing the intracellular dNTP pool. SAMHD1 also suppresses NF-κB activation induced by inflammatory stimuli and viral infections. Specifically, SAMHD1-mediated reduction of NF-κB inhibitory protein (IκBα) phosphorylation is important for the suppression of NF-κB activation. However, while the inhibitors of NF-κB kinase subunit alpha and beta (IKKα and IKKß) regulate IκBα phosphorylation, the mechanism by which SAMHD1 regulates phosphorylation of IκBα remains unclear. Here, we report that SAMHD1 suppresses phosphorylation of IKKα/ß/γ via interaction with IKKα and IKKß, thus inhibiting subsequent phosphorylation of IκBα in monocytic THP-1 cells and differentiated nondividing THP-1 cells. We show that knockout of SAMHD1 enhanced phosphorylation of IKKα, IKKß, and IKKγ in THP-1 cells treated with the NF-κB activator lipopolysaccharide or infected with Sendai virus and SAMHD1 reconstitution inhibited phosphorylation of IKKα/ß/γ in Sendai virus-infected THP-1 cells. We demonstrate that endogenous SAMHD1 interacted with IKKα and IKKß in THP-1 cells and recombinant SAMHD1 bound to purified IKKα or IKKß directly in vitro. Mapping of these protein interactions showed that the HD domain of SAMHD1 interacts with both IKKα and IKKß and that the kinase domain of IKKα and the ubiquitin-like domain of IKKß are required for their interactions with SAMHD1, respectively. Moreover, we found that SAMHD1 disrupts the interaction between upstream kinase TAK1 and IKKα or IKKß. Our findings identify a new regulatory mechanism by which SAMHD1 inhibits phosphorylation of IκBα and NF-κB activation.


Asunto(s)
Quinasa I-kappa B , Proteína 1 que Contiene Dominios SAM y HD , Virosis , Humanos , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Inhibidor NF-kappaB alfa/metabolismo , Fosforilación , Proteína 1 que Contiene Dominios SAM y HD/genética , Proteína 1 que Contiene Dominios SAM y HD/metabolismo , Virosis/inmunología , Virosis/metabolismo , Línea Celular
3.
Infect Immun ; 92(4): e0050323, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38451079

RESUMEN

Non-neutralizing functions of antibodies, including phagocytosis, may play a role in Chlamydia trachomatis (CT) infection, but these functions have not been studied and assays are lacking. We utilized a flow-cytometry-based assay to determine whether serum samples from a well-characterized cohort of CT-infected and naïve control individuals enhanced phagocytosis via Fc-receptor-expressing THP-1 cells, and whether this activity correlated with antibody titers. Fc-receptor-mediated phagocytosis was detected only in CT+ donors. Phagocytosis generally did not correlate well with antibody titer. In addition, we found that complement from both CT+ and negative individuals enhanced phagocytosis of CT into primary neutrophils. These results suggest that anti-CT antibodies can have functions that are not reflected by titer. This method could be used to quantitively measure Fc-receptor-mediated function of anti-CT antibodies or complement activity and could reveal new immune correlates of protection.


Asunto(s)
Infecciones por Chlamydia , Receptores Fc , Humanos , Fagocitosis , Neutrófilos , Anticuerpos Antibacterianos , Chlamydia trachomatis
4.
Mol Med ; 30(1): 102, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009982

RESUMEN

BACKGROUND: Acute monocytic leukemia-M5 (AML-M5) remains a challenging disease due to its high morbidity and poor prognosis. In addition to the evidence mentioned earlier, several studies have shown that programmed cell death (PCD) serves a critical function in treatment of AML-M5. However, the role and relationship between ferroptosis and necroptosis in AML-M5 remains unclear. METHODS: THP-1 cells were mainly treated with Erastin and IMP-366. The changes of ferroptosis and necroptosis levels were detected by CCK-8, western blot, quantitative real-time PCR, and electron microscopy. Flow cytometry was applied to detect the ROS and lipid ROS levels. MDA, 4-HNE, GSH and GSSG were assessed by ELISA kits. Intracellular distribution of FSP1 was studied by immunofluorescent staining and western blot. RESULTS: The addition of the myristoylation inhibitor IMP-366 to erastin-treated acute monocytic leukemia cell line THP-1 cell not only resulted in greater susceptibility to ferroptosis characterized by lipid peroxidation, glutathione (GSH) depletion and mitochondrial shrinkage, as the FSP1 position on membrane was inhibited, but also increased p-RIPK1 and p-MLKL protein expression, as well as a decrease in caspase-8 expression, and triggered the characteristic necroptosis phenomena, including cytoplasmic translucency, mitochondrial swelling, membranous fractures by FSP1 migration into the nucleus via binding importin α2. It is interesting to note that ferroptosis inhibitor fer-1 reversed necroptosis. CONCLUSION: We demonstrated that inhibition of myristoylation by IMP-366 is capable of switching ferroptosis and ferroptosis-dependent necroptosis in THP-1 cells. In these findings, FSP1-mediated ferroptosis and necroptosis are described as alternative mechanisms of PCD of THP-1 cells, providing potential therapeutic strategies and targets for AML-M5.


Asunto(s)
Ferroptosis , Necroptosis , Humanos , Acrilamidas , Apoptosis , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Proteínas de Complejo Poro Nuclear , Piperazinas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Unión al ARN , Sulfonamidas , Células THP-1
5.
Cytokine ; 175: 156502, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38237388

RESUMEN

BACKGROUND: Hyperuricemia has been shown to be an inducer of pro-inflammatory mediators by human primary monocytes. To study the deleterious effects of hyperuricemia, a reliable and stable in vitro model using soluble urate is needed. One recent report showed different urate-dissolving methods resulted in either pro-inflammatory or anti-inflammatory properties. The aim of this study was to compare the effect of two methods of dissolving urate on both primary human peripheral blood mononuclear cells (PBMCs) and THP-1 cells. The two methods tested were 'pre-warming' and 'dissolving with NaOH'. METHODS: Primary human PBMCs and THP-1 cells were exposed to urate solutions, prepared using the two methodologies: pre-warming and dissolving with NaOH. Afterwards, cells were stimulated with various stimuli, followed by the measurement of the inflammatory mediators IL-1ß, IL-6, IL-1Ra, TNF, IL-8, and MCP-1. RESULTS: In PBMCs, we observed an overall pro-inflammatory effect of urate, both in the pre-warming and the NaOH dissolving method. A similar pro-inflammatory effect was seen in THP-1 cells for both dissolving methods after restimulation. However, THP-1 cells exhibited pro-inflammatory profile with exposure to urate alone without restimulation. We did not find MSU crystals in our cellular assays. CONCLUSIONS: Overall, the urate dissolving methods do not have critical impact on its inflammatory properties. Soluble urate prepared using either of the two methods showed mostly pro-inflammatory effects on human primary PBMCs and monocytic cell line THP-1. However, human primary PBMCs and the THP-1 differ in their response to soluble urate without restimulation.


Asunto(s)
Hiperuricemia , Ácido Úrico , Humanos , Ácido Úrico/farmacología , Ácido Úrico/metabolismo , Hiperuricemia/metabolismo , Leucocitos Mononucleares/metabolismo , Hidróxido de Sodio/metabolismo , Hidróxido de Sodio/farmacología , Monocitos , Mediadores de Inflamación/metabolismo
6.
FASEB J ; 37(8): e23098, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37462621

RESUMEN

Pseudomonas aeruginosa is a gram-negative, opportunistic bacteria commonly found in wounds and in lungs of immunocompromised patients. These bacteria commonly form biofilms which encapsulate the bacteria, making it difficult for antibiotics or immune cells to reach the bacterial cells. We previously reported that Lipoxin A4 (LxA4 ), a Specialized Pro-resolving Mediator, has direct effects on P. aeruginosa where it reduced biofilm formation and promoted ciprofloxacin antibiotic efficacy in a static biofilm-forming system. In the current studies, we examined the actions of LxA4 on established biofilms formed in a biofilm reactor under dynamic conditions with constant flow and shear stress. These conditions allow for biofilm growth with nutrient replenishment and for examination of bacteria within the biofilm structure. We show that LxA4 helped ciprofloxacin reduction of live/dead ratio of bacteria within the biofilm. THP-1 monocytes interacted with the biofilm to increase the number of viable bacteria within the biofilm as well as TNF-α production in the biofilm milieu, suggesting that monocyte interaction with bacterial biofilm exacerbates the inflammatory state. Pre-treatment of the THP-1 monocytes with LxA4 abolished the increase in biofilm bacteria and reduced TNF-α production. The effect of decreased biofilm bacteria was associated with increased LxA4 -induced monocyte adherence to biofilm but not increased bacteria killing suggesting that the mechanism for the reduced biofilm bacteria was due to LxA4 -mediated increase in adherence to biofilm. These results suggest that LxA4 can help antibiotic efficacy and promote monocyte activity against established P. aeruginosa biofilm formed under hydrodynamic conditions.


Asunto(s)
Lipoxinas , Monocitos , Humanos , Antibacterianos/farmacología , Pseudomonas aeruginosa , Lipoxinas/farmacología , Hidrodinámica , Factor de Necrosis Tumoral alfa/farmacología , Biopelículas , Ciprofloxacina/farmacología
7.
Microbiol Immunol ; 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39380416

RESUMEN

Monocytes and macrophages are at the frontline of defense against pathogens. Human cytomegalovirus (HCMV) uses myeloid cells as vehicles to facilitate viral dissemination. HCMV infection in monocytes and macrophages leads to the downregulation of several cell surface markers via an undefined mechanism. Previously, we showed that HCMV pUL42 associates with the Nedd4 family ubiquitin E3 ligases through the PPXY motif on pUL42 and downregulates Nedd4 and Itch proteins in HCMV-infected fibroblasts. Homologous proteins of HCMV pUL42, such as HHV-6 U24, downregulate cell surface markers. To reveal the downregulation property of pUL42, we focused on CD86, the key costimulatory factor for acquired immunity. Here, we constructed CD86-expressing THP-1 cells using a retroviral vector and analyzed the effects of HCMV infection and pUL42 on CD86 downregulation. Disruption of the PPXY motifs of pUL42 (UL42PA) decelerated the degradation of CD86 in recombinant virus-infected cells, indicating the involvement of Nedd4 family functions. However, no direct interactions were observed between CD86 and Itch. Interestingly, unlike fibroblast infection, the expression of Nedd4 and Itch proteins increased in HCMV-infected THP-1 cells, accompanied by an increase in their transcript levels. Although the function of pUL42 did not relate to the increase of Nedd4 and Itch proteins, pUL42 should affect these Nedd4 proteins to downregulate CD86.

8.
J Pharmacol Sci ; 155(2): 35-43, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677784

RESUMEN

Imeglimin is a novel oral antidiabetic drug for treating type 2 diabetes. However, the effect of imeglimin on NLRP3 inflammasome activation has not been investigated yet. Here, we aimed to investigate whether imeglimin reduces LPS-induced NLRP3 inflammasome activation in THP-1 macrophages and examine the associated underlying mechanisms. We analyzed the mRNA and protein expression levels of NLRP3 inflammasome components and IL-1ß secretion. Additionally, reactive oxygen species (ROS) generation, mitochondrial membrane potential, and mitochondrial permeability transition pore (mPTP) opening were measured by flow cytometry. Imeglimin inhibited NLRP3 inflammasome-mediated IL-1ß production in LPS-stimulated THP-1-derived macrophages. In addition, imeglimin reduced LPS-induced mitochondrial ROS production and mitogen-activated protein kinase phosphorylation. Furthermore, imeglimin restored the mitochondrial function by modulating mitochondrial membrane depolarization and mPTP opening. We demonstrated for the first time that imeglimin reduces LPS-induced NLRP3 inflammasome activation by inhibiting mPTP opening in THP-1 macrophages. These results suggest that imeglimin could be a promising new anti-inflammatory agent for treating diabetic complications.


Asunto(s)
Inflamasomas , Macrófagos , Mitocondrias , Triazinas , Humanos , Antiinflamatorios/farmacología , Hipoglucemiantes/farmacología , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Interleucina-1beta/metabolismo , Lipopolisacáridos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Fosforilación/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Células THP-1 , Triazinas/farmacología
9.
Exp Parasitol ; 260: 108745, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38521196

RESUMEN

Autophagy is a key step involved in many unicellular eukaryotic diseases, including leishmaniasis, for cellular remodelling and differentiation during parasite's lifecycle. Lipids play a significant role in the infection process that begins with Leishmania major invading host cells. MicroRNAs (miRNAs), a family of small, 22-24 nucleotide noncoding regulatory RNAs, target mRNAs to modify gene expression and, subsequently, proteome output may have a regulatory role in altering the host cell processes. We observed miR-146a-3p expression increases in a time-dependent manner post Leishmania major infection. Transfecting miR-146a-3p mimic increases the expression of ATG7, an autophagy gene that encodes an E1-like enzyme in two ubiquitin-like conjugation systems required for autophagosome progression. HPGD (15-hydroxyprostaglandin dehydrogenase) operates as an enzyme, converting prostaglandin to its non-active form. Microarray data and western studies reveal that miR-146a-3p targets and inhibits HPGD, thereby increasing prostaglandin activity in lipid droplets. Herein, our research focuses on miR-146a-3p, which boosts ATG7 expression while reducing HPGD post Leishmania major infections helping us comprehend the intricate network of microRNA, autophagy, and lipid metabolism in leishmaniasis.


Asunto(s)
Autofagia , Leishmania major , Leishmaniasis Cutánea , Metabolismo de los Lípidos , MicroARNs , MicroARNs/metabolismo , MicroARNs/genética , Leishmania major/genética , Leishmania major/fisiología , Leishmania major/metabolismo , Leishmaniasis Cutánea/parasitología , Animales , Ratones , Proteína 7 Relacionada con la Autofagia/metabolismo , Proteína 7 Relacionada con la Autofagia/genética , Ratones Endogámicos BALB C , Macrófagos/parasitología , Macrófagos/metabolismo , Humanos , Transfección , Western Blotting
10.
Small ; 19(11): e2205429, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36638251

RESUMEN

Fluorescent nanodiamonds (FNDs) with negative nitrogen-vacancy (NV- ) defect centers are great probes for biosensing applications, with potential to act as biomarkers for cell differentiation. To explore this concept, uptake of FNDs (≈120 nm) by THP-1 monocytes and monocyte-derived M0-macrophages is studied. The time course analysis of FND uptake by monocytes confirms differing FND-cell interactions and a positive time-dependence. No effect on cell viability, proliferation, and differentiation potential into macrophages is observed, while cells saturated with FNDs, unload the FNDs completely by 25 cell divisions and subsequently take up a second dose effectively. FND uptake variations by THP-1 cells at early exposure-times indicate differing phagocytic capability. The cell fraction that exhibits relatively enhanced FND uptake is associated to a macrophage phenotype which derives from spontaneous monocyte differentiation. In accordance, chemical-differentiation of the THP-1 cells into M0-macrophages triggers increased and homogeneous FND uptake, depleting the fraction of cells that were non-responsive to FNDs. These observations imply that FND uptake allows for distinction between the two cell subtypes based on phagocytic capacity. Overall, FNDs demonstrate effective cell labeling of monocytes and macrophages, and are promising candidates for sensing biological processes that involve cell differentiation.


Asunto(s)
Técnicas Biosensibles , Colorantes Fluorescentes , Macrófagos , Monocitos , Nanodiamantes , Fagocitosis , Nanodiamantes/química , Nanodiamantes/toxicidad , Nitrógeno/química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/toxicidad , Humanos , Línea Celular , Monocitos/citología , Monocitos/efectos de los fármacos , Monocitos/fisiología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/fisiología , Supervivencia Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Fagocitosis/efectos de los fármacos
11.
Cytokine ; 161: 156077, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36356495

RESUMEN

BACKGROUND: Studies have shown that lipoproteins, such as LDL and VLDL, as well as its major protein component ApoE2 impact on macrophage polarization important in atherosclerosis. Proprotein convertase subtilisin/kexin 9 (PCSK9) is a key regulator of lipoprotein receptor expression. The present study investigated the effect of the VLDL/VLDL-receptor (VLDL-R) axis on mononuclear cell polarization, as well as the role of PCSK9 and PCSK9 inhibitors (PCSK9i) within this network. METHODS: Human monocytic THP-1 cells and human monocyte-derived macrophages isolated from peripheral blood mononuclear cells (PBMC) were treated with either LPS/IFN-γ to induce a pro-inflammatory phenotype, or with IL-4/IL-13 to induce an anti-inflammatory phenotype. Cells were then subjected to further treatments by lipoproteins, PCSK9, PCSK9i and lipoprotein receptor blockers. RESULTS: LPS/IFN-γ treatment promoted a pro-inflammatory state with an increased expression of pro-inflammatory mediators such as TNF-α, CD80 and IL-1ß. VLDL co-treatment induced a switch of this pro-inflammatory phenotype to an anti-inflammatory phenotype. In pro-inflammatory cells, VLDL significantly decreased the expression of pro-inflammatory markers e.g., TNF-α, CD80, and IL-1ß. These effects were eliminated by PCSK9 and restored by co-incubation with a specific anti-PCSK9 monoclonal antibody (PCSK9i). Migration assays demonstrated that pro-inflammatory cells displayed a significantly higher invasive capacity when compared to untreated cells or anti-inflammatory cells. Moreover, pro-inflammatory cell chemotaxis was significantly decreased by VLDL-mediated acquisition of the anti-inflammatory phenotype. PCSK9 significantly lessened this VLDL-mediated migration inhibition, which was reversed by the PCSK9i. CONCLUSION: VLDL promotes mononuclear cell differentiation towards an anti-inflammatory phenotype. PCSK9, via its capacity to inhibit VLDL-R expression, reverses the VLDL-mediated anti-inflammatory action, thereby promoting a pro-inflammatory phenotype. Thus, PCSK9 targeting therapies may exert anti-inflammatory properties within the vessel wall.


Asunto(s)
Leucocitos Mononucleares , Proproteína Convertasa 9 , Humanos , Proproteína Convertasa 9/genética , Lipopolisacáridos , Factor de Necrosis Tumoral alfa , Lipoproteínas , Antiinflamatorios
12.
Toxicol Appl Pharmacol ; 475: 116650, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37541627

RESUMEN

Allergic contact dermatitis (ACD) is the predominant form of immunotoxicity in humans. The sensitizing potential of chemicals can be assessed in vitro. However, a better mechanistic understanding could improve the current OECD-validated test battery. The aim of this study was to get insights into toxicity mechanisms of four contact allergens, p-benzoquinone (BQ), 2,4-dinitrochlorobenzene (DNCB), p-nitrobenzyl bromide (NBB) and NiSO4, by analyzing differential proteome alterations in THP-1 cells using two common proteomics workflows, stable isotope labeling by amino acids in cell culture (SILAC) and label-free quantification (LFQ). Here, SILAC was found to deliver more robust results. Overall, the four allergens induced similar responses in THP-1 cells, which underwent profound metabolic reprogramming, including a striking upregulation of the TCA cycle accompanied by pronounced induction of the Nrf2 oxidative stress response pathway. The magnitude of induction varied between the allergens with DNCB and NBB being most potent. A considerable overlap between transcriptome-based signatures of the GARD assay and the proteins identified in our study was found. When comparing the results of this study to a previous proteomics study in human primary monocyte-derived dendritic cells, we found a rather low share in regulated proteins. However, on pathway level, the overlap was high, indicating that affected pathways rather than single proteins are more eligible to investigate proteomic changes induced by contact allergens. Overall, this study confirms the potential of proteomics to obtain a profound mechanistic understanding, which may help improving existing in vitro assays for skin sensitization.


Asunto(s)
Alérgenos , Dermatitis Alérgica por Contacto , Humanos , Alérgenos/toxicidad , Dinitroclorobenceno , Células THP-1 , Proteómica , Redes y Vías Metabólicas
13.
Environ Res ; 232: 116356, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37295592

RESUMEN

Considering the increase in the use of graphene derivatives in different fields, the environmental and human exposure to these materials is likely, and the potential consequences are not fully elucidated. This study is focused on the human immune system, as this plays a key role in the organism's homeostasis. In this sense, the cytotoxicity response of reduced graphene oxide (rGO) was investigated in monocytes (THP-1) and human T cells (Jurkat). A mean effective concentration (EC50-24 h) of 121.45 ± 11.39 µg/mL and 207.51 ± 21.67 µg/mL for cytotoxicity was obtained in THP-1 and Jurkat cells, respectively. rGO decreased THP-1 monocytes differentiation at the highest concentration after 48 h of exposure. Regarding the inflammatory response at genetic level, rGO upregulated IL-6 in THP-1 and all cytokines tested in Jurkat cells after 4 h of exposure. At 24 h, IL-6 upregulation was maintained, and a significant decrease of TNF-α gene expression was observed in THP-1 cells. Moreover, TNF-α, and INF-γ upregulation were maintained in Jurkat cells. With respect to the apoptosis/necrosis, gene expression was not altered in THP-1 cells, but a down regulation of BAX and BCL-2 was observed in Jurkat cells after 4 h of exposure. These genes showed values closer to negative control after 24 h. Finally, rGO did not trigger a significant release of any cytokine at any exposure time assayed. In conclusion, our data contributes to the risk assessment of this material and suggest that rGO has an impact on the immune system whose final consequences should be further investigated.


Asunto(s)
Grafito , Monocitos , Humanos , Monocitos/metabolismo , Grafito/toxicidad , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Linfocitos T/metabolismo , Interleucina-6 , Citocinas/metabolismo
14.
Chem Biodivers ; 20(7): e202300051, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37358490

RESUMEN

Acute monocytic leukemia is a type of myeloid leukemia that develops in monocytes. The current clinical therapies for leukemia are unsatisfactory due to their side effects and nonspecificity toward target cells. Some lectins display antitumor activity and may specifically recognize cancer cells by binding to carbohydrate structures on their surface. Therefore, this study evaluated the response of the human monocytic leukemia cell lines THP-1 to the Olneya tesota PF2 lectin. The induction of apoptosis and reactive oxygen species production in PF2-treated cells was evaluated by flow cytometry, and the lectin-THP-1 cell interaction and mitochondrial membrane potential were evaluated by confocal fluorescence microscopy. PF2 genotoxicity was evaluated by DNA fragmentation analysis via gel electrophoresis. The results showed that PF2 binds to THP-1 cells, triggers apoptosis and DNA degradation, changes the mitochondrial membrane potential, and increases reactive oxygen species levels in PF2-treated THP-1 cells. These results suggest the potential use of PF2 for developing alternative anticancer treatments with enhanced specificity.


Asunto(s)
Lectinas , Leucemia Monocítica Aguda , Humanos , Lectinas/farmacología , Lectinas/metabolismo , Leucemia Monocítica Aguda/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Apoptosis/fisiología , Células THP-1
15.
Int J Mol Sci ; 24(13)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37445719

RESUMEN

The expression of CD14 in monocytic cells is elevated in atherosclerotic lesions where 7-oxyterols are abundant. However, it remains unknown whether atheroma-relevant 7-oxysterols are involved in receptor expression. Therefore, we investigated the effects of 7α-hydroxycholesterol (7αOHChol), 7ß-hydroxycholesterol (7ßOHChol), and 7-ketocholesterol (7K) on CD14 levels in THP-1 cells. The three 7-oxysterols increased CD14 transcript levels at a distinct time point, elevated cellular CD14 protein levels, and promoted the release of soluble CD (sCD14) from THP-1 cells. Our data revealed that CD14 expression was most strongly induced after treatment with 7αOHChol. Moreover, 7αOHChol alone upregulated membrane-bound CD14 levels and enhanced responses to lipopolysaccharides, as determined by CCL2 production and monocytic cell migration. The 7-oxysterols also increased the gelatinolytic activity of MMP-9, and a cell-permeable, reversible MMP-9 inhibitor, MMP-9 inhibitor I, significantly impaired sCD14 release. These results indicate that 7-oxysterols differentially induce CD14 expression in vascular cells and contribute to the monocytic cell expression of CD14 via overlapping, but distinct, mechanisms.


Asunto(s)
Oxiesteroles , Placa Aterosclerótica , Humanos , Oxiesteroles/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , Receptores de Lipopolisacáridos/genética , Receptores de Lipopolisacáridos/metabolismo , Hidroxicolesteroles/farmacología , Hidroxicolesteroles/metabolismo , Monocitos/metabolismo
16.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36768396

RESUMEN

A simulation of the effect of metal nano-oxides at various concentrations (25, 50, 100, and 200 milligrams per millilitre) on cell viability in THP-1 cells (%) based on data on the molecular structure of the oxide and its concentration is proposed. We used a simplified molecular input-line entry system (SMILES) to represent the molecular structure. So-called quasi-SMILES extends usual SMILES with special codes for experimental conditions (concentration). The approach based on building up models using quasi-SMILES is self-consistent, i.e., the predictive potential of the model group obtained by random splits into training and validation sets is stable. The Monte Carlo method was used as a basis for building up the above groups of models. The CORAL software was applied to building the Monte Carlo calculations. The average determination coefficient for the five different validation sets was R2 = 0.806 ± 0.061.


Asunto(s)
Relación Estructura-Actividad Cuantitativa , Programas Informáticos , Humanos , Estructura Molecular , Células THP-1 , Supervivencia Celular , Simulación por Computador , Óxidos , Método de Montecarlo
17.
Fa Yi Xue Za Zhi ; 39(1): 45-49, 2023 Feb 25.
Artículo en Inglés, Zh | MEDLINE | ID: mdl-37038855

RESUMEN

OBJECTIVES: To compare the effects of cell lysis method and magnetic beads method in forensic DNA identification and to explore these two methods in forensic DNA identification. METHODS: The genome DNA of THP-1 cells in different quantities was extracted by the cell lysis method and magnetic beads method, and the DNA content was quantified by real-time quantitative PCR. The cell lysis method and magnetic beads method were used to type the STR of human blood with different dilution ratios. RESULTS: When the numbers of THP-1 cell were 100, 400 and 800, the DNA content extracted by cell lysis method were (1.219±0.334), (5.081±0.335), (9.332±0.318) ng, respectively; and the DNA content extracted by magnetic beads method were (1.020±0.281), (3.634±0.482), (7.896±0.759) ng, respectively. When the numbers of THP-1 cells were 400 and 800, the DNA content extracted by the cell lysis method was higher than that by the magnetic beads method. The sensitivity of cell lysis method and magnetic beads method was similar in STR typing of human blood at different dilution ratios. Complete STR typing could be obtained at 100, 300 and 500-fold dilutions of blood samples, but could not be detected at 700-fold dilution. STR typing of undiluted human blood could not be detected by cell lysis method. CONCLUSIONS: The cell lysis method is easy to operate and can retain template DNA to the maximum extend. It is expected to be suitable for trace blood evidence tests.


Asunto(s)
ADN , Medicina Legal , Humanos , ADN/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Fenómenos Magnéticos , Dermatoglifia del ADN/métodos , Repeticiones de Microsatélite
18.
J Nutr ; 152(1): 331-342, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34601601

RESUMEN

BACKGROUND: Milk proteins contain many encrypted bioactive peptides. Whether these bioactive peptides are released in the infant intestine and exert immunomodulatory activity remains unknown. OBJECTIVE: This study examined in vitro immunomodulatory activities of peptides from in vitro- and in vivo-digested human milk. METHODS: Peptides were extracted from in vitro-digested human milk and pooled intestinal samples from 8 infants fed human milk. Peptides extracted from in vitro-digested samples were fractionated. The in vitro effects of these peptides and fractions on the secretion of TNF-α and IL-8 in LPS-treated human immune THP-1 macrophages were evaluated. The significance of differences between in vitro peptide fraction treatment and control on cytokine production was analyzed by t test. LC-MS/MS-based peptidomics was conducted to identify the peptides. The peptides were screened for potential bioactivity using a sequence homology search using the Milk Bioactive Peptide Database (MBPDB). RESULTS: Six fractions of the peptide mixture extracted from the in vitro-digested human milk significantly inhibited TNF-α production by LPS-challenged THP-1 macrophages. Fractions F4, F8, F11, F14, and F17 attenuated IL-8 secretion, and F6/7 and F18 increased IL-8 secretion. Peptides extracted from the pooled in vivo intestinal samples attenuated both TNF-α and IL-8 secretion. There were 266 and 418 peptides identified in the in vitro and in vivo samples, respectively. Among the peptides, 34 and 50 in the in vitro and in vivo samples, respectively, had >80% sequence similarity to bioactive peptides in the MBPDB. CONCLUSIONS: Peptides released by in vitro and in vivo infant digestion of human milk were immunomodulatory in human immune cells; fractions F4, F8, and F11 were anti-inflammatory; and F6/7 and F18 were proinflammatory. Thirteen peptides were present in all fractions with anti-inflammatory activity, and 38 peptides were present in all fractions with proinflammatory activity. These peptides potentially contributed to the observed immunomodulatory activity of the peptide mixtures.


Asunto(s)
Leche Humana , Espectrometría de Masas en Tándem , Cromatografía Liquida , Digestión , Humanos , Macrófagos/metabolismo , Proteínas de la Leche/metabolismo , Leche Humana/química , Péptidos/metabolismo , Péptidos/farmacología
19.
Cell Microbiol ; 23(11): e13390, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34464019

RESUMEN

Rickettsia conorii is a Gram-negative, cytosolic intracellular bacterium that has classically been investigated in terms of endothelial cell infection. However, R. conorii and other human pathogenic Rickettsia species have evolved mechanisms to grow in various cell types, including macrophages, during mammalian infection. During infection of these phagocytes, R. conorii shifts the host cell's overall metabolism towards an anti-inflammatory M2 response, metabolically defined by an increase in host lipid metabolism and oxidative phosphorylation. Lipid metabolism has more recently been identified as a key regulator of host homeostasis through modulation of immune signalling and metabolism. Intracellular pathogens have adapted mechanisms of hijacking host metabolic pathways including host lipid catabolic pathways for various functions required for growth and survival. In the present study, we hypothesised that alterations of host lipid droplets initiated by lipid catabolic pathways during R. conorii infection is important for bacterial survival in macrophages. Herein, we determined that host lipid droplet modulation is initiated early during R. conorii infection, and these alterations rely on active bacteria and lipid catabolic pathways. We also find that these lipid catabolic pathways are essential for efficient bacterial survival. Unlike the mechanisms used by other intracellular pathogens, the catabolism of lipid droplets induced by R. conorii infection is independent of upstream host peroxisome proliferator-activated receptor-alpha (PPARα) signalling. Inhibition of PPARÉ£ signalling and lipid droplet accumulation in host cells cause a significant decrease in R. conorii survival suggesting a negative correlation with lipid droplet production and R. conorii survival. Together, these results strongly suggest that the modulation of lipid droplets in macrophage cells infected by R. conorii is an important and underappreciated aspect of the infection process. TAKE AWAYS: Host lipid droplets are differentially altered in early and replicative stages of THP-1 macrophage infection with R. conorii. Lipid droplet alterations are initiated in a bacterial-dependent manner and do not require host peroxisome proliferator-activated receptors α or É£ activation. Pharmacological inhibition of host lipid catabolic processes during R. conorii infection indicates a requirement of lipid catabolism for bacterial survival and initiation of lipid droplet modulation. A significant increase in host lipid droplets during infection has a negative impact on R. conorii survival in THP-1 macrophages.


Asunto(s)
Rickettsia conorii , Rickettsia , Animales , Células Endoteliales , Humanos , Gotas Lipídicas , Macrófagos
20.
Exp Parasitol ; 242: 108382, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36122701

RESUMEN

The incidence of oral colonization by the protozoan Trichomonas tenax correlates with gingival inflammation and periodontitis in humans. To determine whether T. tenax might contribute to inflammation by eliciting cytokines from human cells, differentiated THP-1 (dTHP-1) macrophages were cultured with live or sonicated T. tenax trophozoites, and the conditioned media were assayed for 36 different mediators by a membrane-based cytokine array. Scanning densitometry of the membranes revealed that live T. tenax trophozoites stimulated secretion of interleukin-8 (IL-8), macrophage migration inhibitory factor (MIF), IL-1ß, intercellular adhesion molecule-1 (ICAM-1), and IL-1 receptor antagonist (IL-1ra) from dTHP-1 macrophages. T. tenax lysates stimulated release of IL-8, MIF, and IL-1ra. Despite often being classified as a commensal organism, T. tenax elicited a wider variety of cytokines than the human urogenital pathogen, T. vaginalis, which elicited only IL-8 and MIF production from dTHP-1 cells.


Asunto(s)
Interleucina-8 , Factores Inhibidores de la Migración de Macrófagos , Humanos , Medios de Cultivo Condicionados , Inflamación , Molécula 1 de Adhesión Intercelular , Proteína Antagonista del Receptor de Interleucina 1 , Receptores de Interleucina-1 , Macrófagos/metabolismo , Trichomonas , Tricomoniasis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA