Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Cell Mol Life Sci ; 78(23): 7133-7144, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34626205

RESUMEN

The TLQP-21 neuropeptide has been implicated in functions as diverse as lipolysis, neurodegeneration and metabolism, thus suggesting an important role in several human diseases. Three binding targets have been proposed for TLQP-21: C3aR1, gC1qR and HSPA8. The aim of this review is to critically evaluate the molecular identity of the TLQP-21 receptor and the proposed multi-receptor mechanism of action. Several studies confirm a critical role for C3aR1 in TLQP-21 biological activity and a largely conserved mode of binding, receptor activation and signaling with C3a, its first-identified endogenous ligand. Conversely, data supporting a role of gC1qR and HSPA8 in TLQP-21 activity remain limited, with no signal transduction pathways being described. Overall, C3aR1 is the only receptor for which a necessary and sufficient role in TLQP-21 activity has been confirmed thus far. This conclusion calls into question the validity of a multi-receptor mechanism of action for TLQP-21 and should inform future studies.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas del Choque Térmico HSC70/metabolismo , Proteínas Mitocondriales/metabolismo , Fragmentos de Péptidos/metabolismo , Receptores de Complemento/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/metabolismo , Secuencia de Aminoácidos , Animales , Humanos , Ratones , Fragmentos de Péptidos/genética , Transducción de Señal/fisiología
2.
J Neurosci ; 40(17): 3320-3331, 2020 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-32060170

RESUMEN

Microglial cells are considered as sensors of brain pathology by detecting any sign of brain lesions, infections, or dysfunction and can influence the onset and progression of neurological diseases. They are capable of sensing their neuronal environment via many different signaling molecules, such as neurotransmitters, neurohormones and neuropeptides. The neuropeptide VGF has been associated with many metabolic and neurological disorders. TLQP21 is a VGF-derived peptide and has been shown to signal via C3aR1 and C1qBP receptors. The effect of TLQP21 on microglial functions in health or disease is not known. Studying microglial cells in acute brain slices, we found that TLQP21 impaired metabotropic purinergic signaling. Specifically, it attenuated the ATP-induced activation of a K+ conductance, the UDP-stimulated phagocytic activity, and the ATP-dependent laser lesion-induced process outgrowth. These impairments were reversed by blocking C1qBP, but not C3aR1 receptors. While microglia in brain slices from male mice lack C3aR1 receptors, both receptors are expressed in primary cultured microglia. In addition to the negative impact on purinergic signaling, we found stimulating effects of TLQP21 in cultured microglia, which were mediated by C3aR1 receptors: it directly evoked membrane currents, stimulated basal phagocytic activity, evoked intracellular Ca2+ transient elevations, and served as a chemotactic signal. We conclude that TLQP21 has differential effects on microglia depending on C3aR1 activation or C1qBP-dependent attenuation of purinergic signaling. Thus, TLQP21 can modulate the functional phenotype of microglia, which may have an impact on their function in health and disease.SIGNIFICANCE STATEMENT The neuropeptide VGF and its peptides have been associated with many metabolic and neurological disorders. TLQP21 is a VGF-derived peptide that activates C1qBP receptors, which are expressed by microglia. We show here, for the first time, that TLQP21 impairs P2Y-mediated purinergic signaling and related functions. These include modulation of phagocytic activity and responses to injury. As purinergic signaling is central for microglial actions in the brain, this TLQP21-mediated mechanism might regulate microglial activity in health and disease. We furthermore show that, in addition to C1qBP, functional C3aR1 responses contribute to TLQP21 action on microglia. However, C3aR1 responses were only present in primary cultures but not in situ, suggesting that the expression of these receptors might vary between different microglial activation states.


Asunto(s)
Quimiotaxis/efectos de los fármacos , Microglía/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Fagocitosis/efectos de los fármacos , Receptores Purinérgicos/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Calcio/metabolismo , Células Cultivadas , Quimiotaxis/fisiología , Femenino , Masculino , Ratones , Microglía/metabolismo , Fagocitosis/fisiología , Transducción de Señal/fisiología
3.
Biochem Biophys Res Commun ; 524(3): 764-771, 2020 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-32037089

RESUMEN

ß-Amyloid (Aß) plaque in the brains of patients with Alzheimer's disease (AD) is mainly caused by impaired clearance of Aß by glial cells, including microglia and astrocytes. Because microglia play an important protective role in the central nervous system, many efforts have been made to identify agents that effectively improve microglial Aß phagocytosis. This study found that TLQP-21, which is cleaved from VGF (VGF nerve growth factor inducible) precursor protein, enhanced Aß phagocytosis and degradation by microglial BV2 cells. TLQP-21 also improved microglial phagocytic activity and promoted fibrillar amyloid-ß (fAß) uptake by microglial BV2 cells via a C3AR1-dependent mechanism. Moreover, TLQP-21 stimulated Aß degradation by enhancing lysosome activity, thereby enhancing fAß clearance. These results suggest that treatment with TLQP-21 may be a novel therapeutic strategy to efficiently enhance microglial Aß clearance in AD.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Amiloide/metabolismo , Espacio Extracelular/metabolismo , Microglía/metabolismo , Fragmentos de Péptidos/farmacología , Amiloide/efectos de los fármacos , Animales , Línea Celular , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Ratones , Microglía/efectos de los fármacos , Neuropéptidos/farmacología , Fagocitosis/efectos de los fármacos , Proteolisis/efectos de los fármacos , Receptores de Complemento/metabolismo
4.
Pulm Pharmacol Ther ; 62: 101916, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32205280

RESUMEN

TLQP-21, a peptide encoded by the prohormone VGF, is expressed in neuroendocrine cells and can modulate inflammatory processes. Since TLQP-21 can bind the complement 3a receptor 1 on macrophages, interest has risen in this peptide as a potential drug for the treatment of Acute Respiratory Distress Syndrome (ARDS), whose hospital mortality can reach 35-46%. Since no effective pharmacologic therapies are available, our aim was to exploit the potential of a short analog of TLQP-21(JMV5656) in order to modulate the inflammatory process in ARDS and the progression to pulmonary fibrosis in an experimental model of unilateral acid aspiration in mice. Mice were divided in 2 treatment groups. In the acute protocol, mice received intra-peritoneal injection of either vehicle or 0.6 mg/kg JMV5656 on experimental days 1 and 2, and ARDS was induced on day 3 under deep anesthesia by instillation of HCl (1.5 ml/kg of 0.1 M HCl in 0.9% NaCl) into the right lung; all measurements were performed 24 h later. In the subacute protocol, mice were treated as previously, but treatment with vehicle or JMV5656 was repeated also on day 4 and measurements were made 2 weeks later. Twenty-four hours after acid instillation, the total number of immune cell in the BAL rose sharply due primarily to an increase in the PMN population which increased from 1% up to 58% of total cell numbers. JMV5656 significantly reduced PMN recruitment into the alveolar space, but had no effects on cytokine levels in BAL. Two weeks after acid injury, static compliance of the right lung was significantly higher in the JMV5656-treated group compared to vehicle-treated group. Treatment with JMV5656 also blunted the acid-induced collagen deposition in the right lung. These results suggest that JMV5656 can ameliorate mechanical compliance, and reduce collagen deposition in acid-injured lungs in mice. This effect was likely due to the ability of JMV5656 to inhibit PMN recruitment in the injured lung.


Asunto(s)
Lesión Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/tratamiento farmacológico , Drogas Sintéticas/farmacología , Animales , Lavado Broncoalveolar , Citocinas , Pulmón/efectos de los fármacos , Lesión Pulmonar/inducido químicamente , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Fragmentos de Péptidos , Fibrosis Pulmonar/inducido químicamente , Síndrome de Dificultad Respiratoria
5.
Int J Mol Sci ; 21(1)2019 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-31878142

RESUMEN

VGF gene encodes for a neuropeptide precursor of 68 kDa composed by 615 (human) and 617 (rat, mice) residues, expressed prevalently in the central nervous system (CNS), but also in the peripheral nervous system (PNS) and in various endocrine cells. This precursor undergoes proteolytic cleavage, generating a family of peptides different in length and biological activity. Among them, TLQP-21, a peptide of 21 amino acids, has been widely investigated for its relevant endocrine and extraendocrine activities. The complement complement C3a receptor-1 (C3aR1) has been suggested as the TLQP-21 receptor and, in different cell lines, its activation by TLQP-21 induces an increase of intracellular Ca2+. This effect relies both on Ca2+ release from the endoplasmic reticulum (ER) and extracellular Ca2+ entry. The latter depends on stromal interaction molecules (STIM)-Orai1 interaction or transient receptor potential channel (TRPC) involvement. After Ca2+ entry, the activation of outward K+-Ca2+-dependent currents, mainly the KCa3.1 currents, provides a membrane polarizing influence which offset the depolarizing action of Ca2+ elevation and indirectly maintains the driving force for optimal Ca2+ increase in the cytosol. In this review, we address the main endocrine and extraendocrine actions displayed by TLQP-21, highlighting recent findings on its mechanism of action and its potential in different pathological conditions.


Asunto(s)
Señalización del Calcio/efectos de los fármacos , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Neuropéptidos/química , Fragmentos de Péptidos/química , Fragmentos de Péptidos/farmacología , Animales , Citosol/efectos de los fármacos , Citosol/metabolismo , Humanos , Moléculas de Interacción Estromal/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo
6.
J Biol Chem ; 288(38): 27434-27443, 2013 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-23940034

RESUMEN

TLQP-21, a peptide derived from VGF (non-acronymic) by proteolytic processing, has been shown to modulate energy metabolism, differentiation, and cellular response to stress. Although extensively investigated, the receptor for this endogenous peptide has not previously been described. This study describes the use of a series of studies that show G protein-coupled receptor-mediated biological activity of TLQP-21 signaling in CHO-K1 cells. Unbiased genome-wide sequencing of the transcriptome from responsive CHO-K1 cells identified a prioritized list of possible G protein-coupled receptors bringing about this activity. Further experiments using a series of defined receptor antagonists and siRNAs led to the identification of complement C3a receptor-1 (C3AR1) as a target for TLQP-21 in rodents. We have not been able to demonstrate so far that this finding is translatable to the human receptor. Our results are in line with a large number of physiological observations in rodent models of food intake and metabolic control, where TLQP-21 shows activity. In addition, the sensitivity of TLQP-21 signaling to pertussis toxin is consistent with the known signaling pathway of C3AR1. The binding of TLQP-21 to C3AR1 not only has effects on signaling but also modulates cellular functions, as TLQP-21 was shown to have a role in directing migration of mouse RAW264.7 cells.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Receptores de Complemento/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Secuencia de Bases , Células CHO , Cricetinae , Cricetulus , Estudio de Asociación del Genoma Completo , Células HEK293 , Humanos , Ratones , Datos de Secuencia Molecular , Factores de Crecimiento Nervioso/farmacología , Neuropéptidos/farmacología , Toxina del Pertussis/farmacología , Ratas , Receptores de Complemento/agonistas , Receptores de Complemento/genética , Especificidad de la Especie , Transcriptoma/efectos de los fármacos
7.
Naunyn Schmiedebergs Arch Pharmacol ; 397(7): 4993-5004, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38183447

RESUMEN

Diabetes mellitus (DM) is a metabolic disease with multiple complications, including diabetic cutaneous wounds, which lacks effective treating strategies and severely influences the patients' life. Endothelial progenitor cells (EPCs) are reported to participate in maintaining the normal function of blood vessels, which plays a critical role in diabetic wound healing. TLQP-21 is a VGF-derived peptide with promising therapeutic functions on DM. Herein, the protective effects of TLQP-21 on diabetic cutaneous wound and the underlying mechanism will be investigated. Cutaneous wound model was established in T2DM mice, followed by administering 120 nmol/kg and 240 nmol/kg TLQP-21 once a day for 12 days. Decreased wound closure, reduced number of capillaries and EPCs, declined tube formation function of EPCs, and inactivated PI3K/AKT/eNOS signaling in EPCs were observed in T2DM mice, which were sharply alleviated by TLQP-21. Normal EPCs were extracted from mice and stimulated by high glucose (HG), followed by incubated with TLQP-21 in the presence or absence of LY294002, an inhibitor of PI3K. The declined cell viability, increased apoptotic rate, reduced number of migrated cells, declined migration distance, repressed tube formation function, and inactivated PI3K/AKT/eNOS signaling observed in HG-treated EPCs were markedly reversed by TLQP-21, which were dramatically abolished by the co-culture of LY294002. Collectively, TLQP-21 facilitated diabetic wound healing by inducing angiogenesis through alleviating HG-induced injuries on EPCs.


Asunto(s)
Diabetes Mellitus Experimental , Células Progenitoras Endoteliales , Glucosa , Neovascularización Fisiológica , Proteínas Proto-Oncogénicas c-akt , Cicatrización de Heridas , Animales , Células Progenitoras Endoteliales/efectos de los fármacos , Células Progenitoras Endoteliales/metabolismo , Cicatrización de Heridas/efectos de los fármacos , Masculino , Neovascularización Fisiológica/efectos de los fármacos , Diabetes Mellitus Experimental/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratones Endogámicos C57BL , Ratones , Óxido Nítrico Sintasa de Tipo III/metabolismo , Transducción de Señal/efectos de los fármacos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Fosfatidilinositol 3-Quinasas/metabolismo , Fragmentos de Péptidos/farmacología , Células Cultivadas , Angiogénesis
8.
Front Immunol ; 14: 1086673, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36776827

RESUMEN

TLQP-21 is a 21-amino acid neuropeptide derived from the VGF precursor protein. TLQP-21 is expressed in the nervous system and neuroendocrine glands, and demonstrates pleiotropic roles including regulating metabolism, nociception and microglial functions. Several possible receptors for TLQP-21 have been identified, with complement C3a receptor (C3aR) being the most commonly reported. However, few studies have characterised the activity of TLQP-21 in immune cells, which represent the major cell type expressing C3aR. In this study, we therefore aimed to define the activity of both human and mouse TLQP-21 on cell signalling in primary human and mouse macrophages. We first confirmed that TLQP-21 induced ERK signalling in CHO cells overexpressing human C3aR, and did not activate human C5aR1 or C5aR2. TLQP-21 mediated ERK signalling was also observed in primary human macrophages. However, the potency for human TLQP-21 was 135,000-fold lower relative to C3a, and only reached 45% at the highest dose tested (10 µM). Unlike in humans, mouse TLQP-21 potently triggered ERK signalling in murine macrophages, reaching near full activation, but at ~10-fold reduced potency compared to C3a. We further confirmed the C3aR dependency of the TLQP-21 activities. Our results reveal significant discrepancy in TLQP-21 C3aR activity between human and murine receptors, with mouse TLQP-21 being consistently more potent than the human counterpart in both systems. Considering the supraphysiological concentrations of hTLQP-21 needed to only partially activate macrophages, it is likely that the actions of TLQP-21, at least in these immune cells, may not be mediated by C3aR in humans.


Asunto(s)
Macrófagos , Receptores de Complemento , Cricetinae , Humanos , Ratones , Animales , Cricetulus , Receptores de Complemento/metabolismo , Macrófagos/metabolismo , Microglía/metabolismo , Receptor de Anafilatoxina C5a/metabolismo
9.
Peptides ; 136: 170444, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33245952

RESUMEN

VGF is a peptide precursor expressed in neuroendocrine cells that is suggested to play a role in the regulation of energy homeostasis. VGF is proteolytically cleaved to yield multiple bioactive peptides. However, the specific actions of VGF-derived peptides on energy homeostasis remain unclear. The aim of the present work was to investigate the role of VGF-derived peptides in energy homeostasis and explore the pharmacological actions of VGF-derived peptides on body weight in preclinical animal models. VGF-derived peptides (NERP-1, NERP-2, PGH-NH2, PGH-OH, NERP-4, TLQP-21, TLQP-30, TLQP-62, HHPD-41, AQEE-30, and LQEQ-19) were synthesized and screened for their ability to affect neuronal activity in vitro on hypothalamic brain slices and modulate food intake and energy expenditure after acute central administration in vivo. In addition, the effects of NERP-1, NERP-2, PGH-NH2, TLQP-21, TLQP-62, and HHPD-41 on energy homeostasis were studied after chronic central infusion. NERP-1, PGH-NH2, HHPD-41, and TLQP-62 increased the functional activity of hypothalamic neuronal networks. However, none of the peptides altered energy homeostasis after either acute or chronic ICV administration. The present data do not support the potential use of the tested VGF-derived peptides as novel anti-obesity drug candidates.


Asunto(s)
Fármacos Antiobesidad/farmacología , Neuropéptidos/genética , Neuropéptidos/farmacología , Obesidad/tratamiento farmacológico , Animales , Peso Corporal/efectos de los fármacos , Modelos Animales de Enfermedad , Metabolismo Energético/efectos de los fármacos , Humanos , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Hipotálamo/patología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Obesidad/genética , Obesidad/patología , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/farmacología , Ratas
10.
Tissue Cell ; 68: 101471, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33348234

RESUMEN

BACKGROUND: The TLQP-21 peptide potentiates glucose-stimulated insulin secretion, hence we investigated its endogenous response to glucose. METHODS: Fasted mice received intraperitoneal glucose (3 g/kg), or saline (controls), and were sacrificed 30 and 120 min later (4 groups, n = 6/group). We investigated TLQP-21 in pancreas and plasma using immunohistochemistry, enzyme-linked immunosorbent assay (ELISA) and high performance liquid chromatography (HPLC), as well as TLQP-21 receptors (gC1q-R and C3a-R1) expression in pancreas by immunohistochemistry. RESULTS: In pancreas, TLQP-immunoreactivity (TLQP-ir.) was shown in insulin-, glucagon- and somatostatin-containing cells. Upon glucose, TLQP-ir. decreased at 30 min (∼40 % vs. controls), while returning to basal values at 120 min. In all groups, C3a-R1 was localized in ∼50 % of TLQP labelled islet cells (mostly central), while gC1q-R was detected in ∼25 % of TLQP cells (mainly peripheral). HPLC fractions of control pancreas extracts, assessed by ELISA, confirmed the presence of a TLQP-21 compatible-form (∼2.5 kDa MW). In plasma, TLQP-ir. increased at 30 min (∼30 %), with highest concentrations at 120 min (both: p<0.05 vs. controls), while HPLC fractions showed an increase in the TLQP-21 compatible form. CONCLUSIONS: Upon hyperglycaemia, TLQP-21 would be released from islets, to enhance insulin secretion but we cannot exclude an autocrine activity which may regulate insulin storage/secretion.


Asunto(s)
Glucosa/metabolismo , Fragmentos de Péptidos/sangre , Animales , Cromatografía Líquida de Alta Presión , Cromatografía de Fase Inversa , Ensayo de Inmunoadsorción Enzimática , Masculino , Ratones , Páncreas/metabolismo , Receptores de Superficie Celular/metabolismo
11.
Mol Neurodegener ; 15(1): 4, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31924226

RESUMEN

BACKGROUND: Multiomic studies by several groups in the NIH Accelerating Medicines Partnership for Alzheimer's Disease (AMP-AD) identified VGF as a major driver of Alzheimer's disease (AD), also finding that reduced VGF levels correlate with mean amyloid plaque density, Clinical Dementia Rating (CDR) and Braak scores. VGF-derived peptide TLQP-21 activates the complement C3a receptor-1 (C3aR1), predominantly expressed in the brain on microglia. However, it is unclear how mouse or human TLQP-21, which are not identical, modulate microglial function and/or AD progression. METHODS: We performed phagocytic/migration assays and RNA sequencing on BV2 microglial cells and primary microglia isolated from wild-type or C3aR1-null mice following treatment with TLQP-21 or C3a super agonist (C3aSA). Effects of intracerebroventricular TLQP-21 delivery were evaluated in 5xFAD mice, a mouse amyloidosis model of AD. Finally, the human HMC3 microglial cell line was treated with human TLQP-21 to determine whether specific peptide functions are conserved from mouse to human. RESULTS: We demonstrate that TLQP-21 increases motility and phagocytic capacity in murine BV2 microglial cells, and in primary wild-type but not in C3aR1-null murine microglia, which under basal conditions have impaired phagocytic function compared to wild-type. RNA sequencing of primary microglia revealed overlapping transcriptomic changes induced by treatment with TLQP-21 or C3a super agonist (C3aSA). There were no transcriptomic changes in C3aR1-null or wild-type microglia exposed to the mutant peptide TLQP-R21A, which does not activate C3aR1. Most of the C3aSA- and TLQP-21-induced differentially expressed genes were linked to cell migration and proliferation. Intracerebroventricular TLQP-21 administration for 28 days via implanted osmotic pump resulted in a reduction of amyloid plaques and associated dystrophic neurites and restored expression of subsets of Alzheimer-associated microglial genes. Finally, we found that human TLQP-21 activates human microglia in a fashion similar to activation of murine microglia by mouse TLQP-21. CONCLUSIONS: These data provide molecular and functional evidence suggesting that mouse and human TLQP-21 modulate microglial function, with potential implications for the progression of AD-related neuropathology.


Asunto(s)
Enfermedad de Alzheimer/patología , Microglía/metabolismo , Fragmentos de Péptidos/metabolismo , Receptores de Complemento/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Línea Celular , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Transducción de Señal/fisiología
12.
Pain Rep ; 4(5): e786, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31875189

RESUMEN

Neuropathic pain (NP) remains an area of considerable unmet medical need. A persistent challenge in the management of NP is to target the specific mechanisms leading to a change from normal to abnormal sensory perception while ensuring that the defensive pain perception remains intact. Targeting VGF-derived neuropeptides may offer this opportunity. VGF was first identified in 1985 and is highly expressed after nerve injury and inflammation in neurons of both the peripheral and central nervous system. Subsequent studies implicate the vgf gene and its products in pain pathways. This narrative review was supported by a systematic search to identify, select, and critically appraise all relevant research investigating the role of VGF-derived neuropeptides in pain pathways. It predominantly focuses on in vivo investigations of the role of VGF in the initiation and maintenance of NP. VGF expression levels are very low under normal physiological conditions and nerve injury results in rapid and robust upregulation, increasing mechanical and thermal hypersensitivity. The identification of the 2 complement receptors with which VGF neuropeptides interact suggests a novel interplay of neuronal and immune signalling mediators. The understanding of the molecular mechanisms and signalling events by which VGF-derived active neuropeptides exert their physiological actions is in its infancy. Future work should aim to improve understanding of the downstream consequences of VGF neuropeptides thereby providing novel insights into pain mechanisms potentially leading to the identification of novel therapeutic targets.

13.
Front Pharmacol ; 9: 1274, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30542281

RESUMEN

TLQP-21 is a neuropeptide that is involved in the control of several physiological functions, including energy homeostasis. Since TLQP-21 could oppose the early phase of diet-induced obesity, it has raised a huge interest, but very little is known about its mechanisms of action on peripheral tissues. Our aim was to investigate TLQP-21 distribution in brain and peripheral tissues after systemic administration using positron emission tomography. We report here the radiolabeling of NODA-methyl phenylacetic acid (MPAA) functionalized JMV5763, a short analog of TLQP-21, with [18F]aluminum fluoride. Labeling of JMV5763 was initially performed manually, on a small scale, and then optimized and implemented on a fully automated radiosynthesis system. In the first experiment, mice were injected in the tail vein with [18F]JMV5763, and central and peripheral tissues were collected 13, 30, and 60 min after injection. Significant uptake of [18F]JMV5763 was found in stomach, intestine, kidney, liver, and adrenal gland. In the CNS, very low uptake values were measured in all tested areas, suggesting that the tracer does not efficiently cross the blood-brain barrier. Pretreatment with non-radioactive JMV5763 caused a significant reduction of tracer uptake only in stomach and intestine. In the second experiment, PET analysis was performed in vivo 10-120 min after i.v. [18F]JMV5763 administration. Results were consistent with those of the ex vivo determinations. PET images showed a progressive increase of [18F]JMV5763 uptake in intestine and stomach reaching a peak at 30 min, and decreasing at 120 min. Our results demonstrate that 18F-labeling of TLQP-21 analogs is a suitable method to study its distribution in the body.

14.
Front Pharmacol ; 9: 1386, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30542288

RESUMEN

TLQP-21 is a neuropeptide which has been implicated in regulation of nociception and other relevant physiologic functions. Although recent studies identified C3a and gC1q receptors as targets for TLQP-21, its intracellular molecular mechanisms of action remain largely unidentified. Our aim was (i) to explore the intracellular signaling pathway(s) activated by JMV5656, a novel derivative of TLQP-21, in RAW264.7 macrophages, and (ii) to assess linkages of these pathways with its purported receptors. JMV5656 stimulated, in a dose-dependent fashion, a rapid and transient increase in intracellular Ca2+ concentrations in RAW264.7 cells; repeated exposure to the peptide resulted in a lower response, suggesting a possible desensitization mechanism of the receptor. In particular, JMV5656 increased cytoplasmic Ca2+ levels by a PLC-dependent release of Ca2+ from the endoplasmic reticulum. STIM proteins and Orai Ca2+ channels were activated and played a crucial role. In fact, treatment of the cells with U73122 and thapsigargin modulated the increase of intracellular Ca2+ levels stimulated by JMV5656. Moreover, in RAW264.7 cells intracellular Ca2+ increases did not occur through the binding of JMV5656 to the C3a receptor, since the increase of intracellular Ca2+ levels induced by JMV5656 was not affected by specific siRNA against C3aR. In summary, our study provides new indications for the downstream effects of JMV5656 in macrophages, suggesting that it could activate receptors different from the C3aR.

15.
Front Pharmacol ; 8: 167, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28424618

RESUMEN

VGF is a propeptide of 617 amino acids expressed throughout the central and the peripheral nervous system. VGF and peptides derived from its processing have been found in dense core vesicles and are released from neuronal and neuroendocrine cells via the regulated secretory pathway. Among VGF-derived neuropeptides, TLQP-21 (VGF556-576) has raised a huge interest and is one of most studied. TLQP-21 is a multifunctional neuropeptide involved in the control of several physiological functions, potentially including energy homeostasis, pain modulation, stress responsiveness and reproduction. Although little information is available about its receptor and the intracellular mechanisms mediating its biological effects, recent reports suggest that TLQP-21 may bind to the complement receptors C3aR1 and/or gC1qR. The first aim of this study was to ascertain the existence and nature of TLQP-21 binding sites in CHO cells. Secondly, we endeavored to characterize the ligand binding to these sites by using a small panel of VGF-derived peptides. And finally, we investigated the influence of TLQP-21 on selected intracellular signaling pathways. We report that CHO cells express a single class of saturable and specific binding sites for TLQP-21 with an affinity and capacity of Kd = 0.55 ± 0.05 × 10-9 M and Bmax = 81.7 ± 3.9 fmol/mg protein, respectively. Among the many bioactive products derived from the C-terminal region of VGF that we tested, TLQP-21 was the most potent in stimulating intracellular calcium mobilization in CHO cells; this effect is primarily due to its C-terminal fragment (HFHH-10). TLQP-21 induced rapid and transient dephosphorylation of phospholipase Cγ1 and phospholipase A2. Generation of IP3 and diacylglycerol was crucial for TLQP-21 bioactivity. In conclusion, our results suggest that the receptor stimulated by TLQP-21 belongs to the family of the Gq-coupled receptors, and its activation first increases membrane-lipid derived second messengers which thereby induce the mobilization of Ca2+ from the endoplasmic reticulum followed by a slower store-operated Ca2+ entry from outside the cell.

16.
Front Cell Neurosci ; 11: 41, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28280458

RESUMEN

TLQP-21 (TLQPPASSRRRHFHHALPPAR) is a multifunctional peptide that is involved in the control of physiological functions, including feeding, reproduction, stress responsiveness, and general homeostasis. Despite the huge interest in TLQP-21 biological activity, very little is known about its intracellular mechanisms of action. In microglial cells, TLQP-21 stimulates increases of intracellular Ca2+ that may activate functions, including proliferation, migration, phagocytosis and production of inflammatory molecules. Our aim was to investigate whether JMV5656 (RRRHFHHALPPAR), a novel short analogue of TLQP-21, stimulates intracellular Ca2+ in the N9 microglia cells, and whether this Ca2+ elevation is coupled with the activation Ca2+-sensitive K+ channels. TLQP-21 and JMV5656 induced a sharp, dose-dependent increment in intracellular calcium. In 77% of cells, JMV5656 also caused an increase in the total outward currents, which was blunted by TEA (tetraethyl ammonium chloride), a non-selective blocker of voltage-dependent and Ca2+-activated potassium (K+) channels. Moreover, the effects of ion channel blockers charybdotoxin and iberiotoxin, suggested that multiple calcium-activated K+ channel types drove the outward current stimulated by JMV5656. Additionally, inhibition of JMV5656-stimulated outward currents by NS6180 (4-[[3-(trifluoromethyl)phenyl]methyl]-2H-1,4 benzothiazin-3(4H)-one) and TRAM-34 (triarylmethane-34), indicated that KCa3.1 channels are involved in this JMV5656 mechanisms of action. In summary, we demonstrate that, in N9 microglia cells, the interaction of JMV5656 with the TLQP-21 receptors induced an increase in intracellular Ca2+, and, following extracellular Ca2+ entry, the opening of KCa3.1 channels.

17.
Chem Biol Drug Des ; 86(4): 938-44, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25682804

RESUMEN

VGF-derived peptide, TLQP-21, is a physiologically active neuropeptide exhibiting important roles in energy expenditure and balance, gastric contractility, reproduction, pain modulation, and stress. Although the physiological functions of the peptide constitute a research area of considerable interest, structural information is clearly lacking. Here, using extensive 550 nanoseconds molecular dynamics simulation in explicit water model, we have explored the folding energy landscape of the peptide. Principal component analysis and cluster analysis have been used to identify highly populated conformational states of the peptide in solution. The most populated structure of the peptide adopts a highly compact globular form stabilized by several hydrogen-bonding interactions and π-cationic interactions. Strong surface complementarity of hydrophobic residues allows tighter spatial fit of the residues within the core region of the peptide. Our simulation also predicts that the peptide is highly flexible in solution and that the region A7 -R9 and three C-terminal residues, P19 -R21 , possess strong helical propensity.


Asunto(s)
Fragmentos de Péptidos/química , Secuencia de Aminoácidos , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Pliegue de Proteína , Estructura Secundaria de Proteína
18.
Adv Pharmacol ; 68: 93-113, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24054141

RESUMEN

Catecholamines (CAs) and granin peptides are costored in dense-core vesicles within the chromaffin cells of the adrenal medulla and in other endocrine organs and neurons. Granins play a major functional and structural role in chromaffin cells but are ubiquitous proteins, which are present also in secretory cells of the nervous, endocrine, and immune systems, where they regulate a number of cellular functions. Furthermore, recent studies also demonstrate that granin-derived peptides can functionally interact with CA to modulate key physiological functions such as lipolysis and blood pressure. In this chapter, we will provide a brief update on the interaction between CA and granins at the cellular and organ levels. We will first discuss recent data on the regulation of exocytosis of CA and peptides from the chromaffin cells by the sympathetic nervous system with a specific reference to the prominent role played by splanchnic nerve-derived pituitary adenylate cyclase-activating peptide (PACAP). Secondly, we will discuss the role of granins in the storage and regulation of exocytosis in large dense-core vesicles. Finally, we will provide an up-to-date review of the roles played by two granin-derived peptides, the chromogranin A-derived peptide catestatin and the VGF-derived peptide TLQP-21, on lipolysis and obesity. In conclusion, the knowledge gathered from recent findings on the role played by proteins/peptides in the sympathetic/target cell synapses, discussed in this chapter, would contribute to and provide novel mechanistic support for an increased appreciation of the physiological role of CA in human pathophysiology.


Asunto(s)
Tejido Adiposo/metabolismo , Catecolaminas/metabolismo , Células Cromafines/metabolismo , Cromograninas/metabolismo , Animales , Cromogranina A/fisiología , Humanos , Lipólisis , Neuropéptidos/fisiología , Fragmentos de Péptidos/fisiología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/fisiología , Sistema Nervioso Simpático/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA