Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38338693

RESUMEN

The Gárdos channel (KCNN4) and Piezo1 are the best-known ion channels in the red blood cell (RBC) membrane. Nevertheless, the quantitative electrophysiological behavior of RBCs and its heterogeneity are still not completely understood. Here, we use state-of-the-art biochemical methods to probe for the abundance of the channels in RBCs. Furthermore, we utilize automated patch clamp, based on planar chips, to compare the activity of the two channels in reticulocytes and mature RBCs. In addition to this characterization, we performed membrane potential measurements to demonstrate the effect of channel activity and interplay on the RBC properties. Both the Gárdos channel and Piezo1, albeit their average copy number of activatable channels per cell is in the single-digit range, can be detected through transcriptome analysis of reticulocytes. Proteomics analysis of reticulocytes and mature RBCs could only detect Piezo1 but not the Gárdos channel. Furthermore, they can be reliably measured in the whole-cell configuration of the patch clamp method. While for the Gárdos channel, the activity in terms of ion currents is higher in reticulocytes compared to mature RBCs, for Piezo1, the tendency is the opposite. While the interplay between Piezo1 and Gárdos channel cannot be followed using the patch clamp measurements, it could be proved based on membrane potential measurements in populations of intact RBCs. We discuss the Gárdos channel and Piezo1 abundance, interdependencies and interactions in the context of their proposed physiological and pathophysiological functions, which are the passing of small constrictions, e.g., in the spleen, and their active participation in blood clot formation and thrombosis.


Asunto(s)
Eritrocitos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio , Reticulocitos , Transporte Biológico , Calcio/metabolismo , Eritrocitos/metabolismo , Reticulocitos/metabolismo , Humanos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Canales Iónicos/metabolismo
2.
Int J Med Sci ; 19(14): 1995-2007, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36483596

RESUMEN

Background: We previously found that intermediate conductance Ca2+-activated K+ channel (SK4) might be an important target in atrial fibrillation (AF). Objective: To investigate the role of SK4 in AF maintenance. Methods: Twenty beagles were randomly assigned to the sham group (n=6), pacing group (n=7), and pacing+TRAM-34 group (n=7). Rapid atrial pacing continued for 7 days in the pacing and TRAM-34 groups. During the pacing, the TRAM-34 group received TRAM-34 intravenous injection (10 mg/Kg) 3 times per day. Atrial fibroblasts isolated from canines were treated with angiotensin II or adenovirus carrying the SK4 gene (Ad-SK4) to overexpress SK4 channels. Results: TRAM-34 treatment significantly suppressed the increased intra-atrial conducting time (CT) and AF duration in canines after rapid atrial pacing (P<0.05). Compared with the sham group, the expression of SK4 in atria was higher in the pacing group, which was associated with an increased number of myofibroblasts and levels of extracellular matrix in atrium (all P<0.05), and this effect was reversed by TRAM-34 treatment (all P<0.05). In atrial fibroblasts, the increased expression of SK4 induced by angiotensin II stimulation or Ad-SK4 transfection contributed to higher levels of P38, ERK1/2 and their downstream factors c-Jun and c-Fos, leading to the increased expression of α-SMA (all P<0.05), and all these increases were markedly reduced by TRAM-34 treatment. Conclusion: SK4 blockade suppressed AF by attenuating cardiac fibroblast activity and atrial fibrosis, which was realized through not only a decrease in fibrogenic factors but also inhibition of fibrotic signaling pathways.


Asunto(s)
Fibrilación Atrial , Animales , Perros , Fibrilación Atrial/genética , Fibrilación Atrial/terapia , Angiotensina II , Proteína Quinasa 3 Activada por Mitógenos , Fibrosis
3.
Int J Mol Sci ; 22(12)2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34200955

RESUMEN

Nanocarriers are delivery platforms of drugs, peptides, nucleic acids and other therapeutic molecules that are indicated for severe human diseases. Gliomas are the most frequent type of brain tumor, with glioblastoma being the most common and malignant type. The current state of glioma treatment requires innovative approaches that will lead to efficient and safe therapies. Advanced nanosystems and stimuli-responsive materials are available and well-studied technologies that may contribute to this effort. The present study deals with the development of functional chimeric nanocarriers composed of a phospholipid and a diblock copolymer, for the incorporation, delivery and pH-responsive release of the antiglioma agent TRAM-34 inside glioblastoma cells. Nanocarrier analysis included light scattering, protein incubation and electron microscopy, and fluorescence anisotropy and thermal analysis techniques were also applied. Biological assays were carried out in order to evaluate the nanocarrier nanotoxicity in vitro and in vivo, as well as to evaluate antiglioma activity. The nanosystems were able to successfully manifest functional properties under pH conditions, and their biocompatibility and cellular internalization were also evident. The chimeric nanoplatforms presented herein have shown promise for biomedical applications so far and should be further studied in terms of their ability to deliver TRAM-34 and other therapeutic molecules to glioblastoma cells.


Asunto(s)
Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Glioma/tratamiento farmacológico , Liposomas/administración & dosificación , Nanopartículas/administración & dosificación , Polímeros/química , Pirazoles/administración & dosificación , Apoptosis , Proliferación Celular , Glioma/metabolismo , Glioma/patología , Humanos , Concentración de Iones de Hidrógeno , Liposomas/química , Nanopartículas/química , Células Tumorales Cultivadas
4.
Am J Physiol Cell Physiol ; 315(3): C357-C366, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29791207

RESUMEN

The choroid plexus (CP) epithelium plays a major role in the production of cerebrospinal fluid (CSF). A polarized cell line, the porcine CP-Riems (PCP-R) line, which exhibits many of the characteristics of the native epithelium, was used to study the effect of activation of the transient receptor potential vanilloid 4 (TRPV4) cation channel found in the PCP-R cells as well as in the native epithelium. Ussing-style electrophysiological experiments showed that activation of TRPV4 with a specific agonist, GSK1016790A, resulted in an immediate increase in both transepithelial ion flux and conductance. These changes were inhibited by either of two distinct antagonists, HC067047 or RN1734. The change in conductance was reversible and did not involve disruption of epithelial junctional complexes. Activation of TRPV4 results in Ca2+ influx, therefore, we examined whether the electrophysiological changes were the result of secondary activation of Ca2+-sensitive channels. PCP-R cells contain two Ca2+-activated K+ channels, the small conductance 2 (SK2) and the intermediate conductance (IK) channels. Based on inhibitor studies, the former is not involved in the TRPV4-mediated electrophysiological changes whereas one of the three isoforms of the IK channel (KCNN4c) may play a role in the apical secretion of K+. Blocking the activity of this IK isoform with TRAM34 inhibited the TRPV4-mediated change in net transepithelial ion flux and the increased conductance. These studies implicate TRPV4 as a hub protein in the control of CSF production through stimulation by multiple effectors resulting in transepithelial ion and subsequent water movement.


Asunto(s)
Plexo Coroideo/metabolismo , Células Epiteliales/metabolismo , Potenciales de la Membrana/fisiología , Canales Catiónicos TRPV/metabolismo , Animales , Calcio/metabolismo , Línea Celular , Plexo Coroideo/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Leucina/análogos & derivados , Leucina/farmacología , Isoformas de Proteínas/metabolismo , Sulfonamidas/farmacología , Porcinos
5.
Glia ; 65(1): 106-121, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27696527

RESUMEN

Microglia are highly plastic cells that can assume different phenotypes in response to microenvironmental signals. Lipopolysaccharide (LPS) and interferon-γ (IFN-γ) promote differentiation into classically activated M1-like microglia, which produce high levels of pro-inflammatory cytokines and nitric oxide and are thought to contribute to neurological damage in ischemic stroke and Alzheimer's disease. IL-4 in contrast induces a phenotype associated with anti-inflammatory effects and tissue repair. We here investigated whether these microglia subsets vary in their K+ channel expression by differentiating neonatal mouse microglia into M(LPS) and M(IL-4) microglia and studying their K+ channel expression by whole-cell patch-clamp, quantitative PCR and immunohistochemistry. We identified three major types of K+ channels based on their biophysical and pharmacological fingerprints: a use-dependent, outwardly rectifying current sensitive to the KV 1.3 blockers PAP-1 and ShK-186, an inwardly rectifying Ba2+ -sensitive Kir 2.1 current, and a Ca2+ -activated, TRAM-34-sensitive KCa 3.1 current. Both KV 1.3 and KCa 3.1 blockers inhibited pro-inflammatory cytokine production and iNOS and COX2 expression demonstrating that KV 1.3 and KCa 3.1 play important roles in microglia activation. Following differentiation with LPS or a combination of LPS and IFN-γ microglia exhibited high KV 1.3 current densities (∼50 pA/pF at 40 mV) and virtually no KCa 3.1 and Kir currents, while microglia differentiated with IL-4 exhibited large Kir 2.1 currents (∼ 10 pA/pF at -120 mV). KCa 3.1 currents were generally low but moderately increased following stimulation with IFN-γ or ATP (∼10 pS/pF). This differential K+ channel expression pattern suggests that KV 1.3 and KCa 3.1 inhibitors could be used to inhibit detrimental neuroinflammatory microglia functions. GLIA 2016;65:106-121.


Asunto(s)
Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Canal de Potasio Kv1.3/metabolismo , Microglía/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Animales , Células Cultivadas , Interferón gamma/metabolismo , Lipopolisacáridos/farmacología , Activación de Macrófagos , Potenciales de la Membrana , Ratones Endogámicos C57BL
6.
Pediatr Diabetes ; 18(5): 356-366, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-27174668

RESUMEN

BACKGROUND: Diabetic ketoacidosis (DKA) causes brain injuries in children ranging from subtle to life-threatening. Previous studies suggest that DKA-related brain injury may involve both stimulation of Na-K-Cl cotransport and microglial activation. Other studies implicate the Na-K-Cl cotransporter and the Ca-activated K channel KCa3.1 in activation of microglia and ischemia-induced brain edema. In this study, we determined whether inhibiting cerebral Na-K-Cl cotransport or KCa3.1 could reduce microglial activation and decrease DKA-related inflammatory changes in the brain. METHODS: Using immunohistochemistry, we investigated cellular alterations in brain specimens from juvenile rats with DKA before, during and after insulin and saline treatment. We compared findings in rats treated with and without bumetanide (an inhibitor of Na-K-Cl cotransport) or the KCa3.1 inhibitor TRAM-34. RESULTS: Glial fibrillary acidic protein (GFAP) staining intensity was increased in the hippocampus during DKA, suggesting reactive astrogliosis. OX42 staining intensity was increased during DKA in the hippocampus, cortex and striatum, indicating microglial activation. Treatment with TRAM-34 decreased both OX42 and GFAP intensity suggesting a decreased inflammatory response to DKA. Treatment with bumetanide did not significantly alter OX42 or GFAP intensity. CONCLUSIONS: Inhibiting KCa3.1 activity with TRAM-34 during DKA treatment decreases microglial activation and reduces reactive astrogliosis, suggesting a decreased inflammatory response.


Asunto(s)
Antiinflamatorios no Esteroideos/uso terapéutico , Encéfalo/efectos de los fármacos , Cetoacidosis Diabética/tratamiento farmacológico , Encefalitis/prevención & control , Bloqueadores de los Canales de Potasio/uso terapéutico , Pirazoles/uso terapéutico , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/antagonistas & inhibidores , Animales , Biomarcadores/metabolismo , Encéfalo/inmunología , Encéfalo/metabolismo , Encéfalo/patología , Bumetanida/uso terapéutico , Antígeno CD11b/antagonistas & inhibidores , Antígeno CD11b/metabolismo , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/inmunología , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/inmunología , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Cetoacidosis Diabética/inmunología , Cetoacidosis Diabética/metabolismo , Cetoacidosis Diabética/patología , Encefalitis/etiología , Femenino , Proteína Ácida Fibrilar de la Glía/antagonistas & inhibidores , Proteína Ácida Fibrilar de la Glía/metabolismo , Gliosis/etiología , Gliosis/prevención & control , Hipocampo/efectos de los fármacos , Hipocampo/inmunología , Hipocampo/metabolismo , Hipocampo/patología , Masculino , Microglía/efectos de los fármacos , Microglía/inmunología , Microglía/metabolismo , Microglía/patología , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/metabolismo , Distribución Aleatoria , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico/uso terapéutico
7.
Pflugers Arch ; 468(11-12): 1865-1875, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27752766

RESUMEN

In the recent decades, ion channels became the focus of cancer biologists, as many channels are overexpressed in tumour tissue and functionally they are linked to abnormal cell behaviour with processes including apoptosis, chemo- and radioresistance, proliferation and migration. KCa3.1 is a Ca2+-activated K+ channel that plays a central role in tumour progression in many cancer types. Therefore, the aim of the present study was to investigate KCa3.1 expression in pancreatic cancer cells and assess possible implications to disease progression. Using qPCR technique, we found abundant expression of KCa3.1 in pancreatic cancer cell lines. Patch clamp measurements on MiaPaCa-2 cells revealed a Ca2+-activated K+ current that matched biophysical characteristics as described for KCa3.1. Moreover, the current was sensitive to the commonly used channel modulators TRAM-34, clotrimazole and DC-EBIO, and it was abolished following transient gene knockdown of KCa3.1. We utilized both pharmacology and RNAi to assess a possible role of the channel in tumour cell behaviour. We found that the channel supported MiaPaCa-2 cell proliferation. Using RNAi protocols, we also identified KCa3.1 as important entity in cell invasion. However, TRAM-34 had unexpected stimulatory effects on cell migration and invasion estimated in various assays. Moreover, TRAM-34 increased intracellular Ca2+. In conclusion, we found prominent functional expression of KCa3.1 in pancreatic cancer cells. We provide evidence that the channel has a key role in cell proliferation and for the first time identify KCa3.1 as important entity in PDAC cell migration. We further reveal anomalous effects of TRAM-34.


Asunto(s)
Adenocarcinoma/metabolismo , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Neoplasias Pancreáticas/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Pirazoles/farmacología , Potenciales de Acción , Bencimidazoles/farmacología , Calcio/metabolismo , Línea Celular Tumoral , Clotrimazol/farmacología , Humanos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/antagonistas & inhibidores , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/genética
8.
Liver Int ; 35(4): 1244-52, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25212242

RESUMEN

BACKGROUND & AIMS: In liver fibrosis, activated hepatic stellate cells (HSC) secrete excess extracellular matrix, thus, represent key targets for antifibrotic treatment strategies. Intermediate-conductance Ca(2) (+) -activated K(+) -channels (KCa3.1) are expressed in non-excitable tissues affecting proliferation, migration and vascular resistance rendering KCa3.1 potential targets in liver fibrosis. So far, no information about KCa3.1 expression and their role in HSC exists. Aim was to quantify the KCa3.1 expression in HSC depending on HSC activation and investigation of antifibrotic properties of the specific KCa3.1 inhibitor TRAM-34 in vitro and in vivo. METHODS: KCa3.1 expression and functionality were studied in TGF-ß1-activated HSC by quantitative real time PCR, western-blot and patch-clamp analysis respectively. Effects of TRAM-34 on HSC proliferation, cell cycle and fibrosis-related gene expression were assessed by [(3) H]-thymidine incorporation, FACS-analysis and RT-PCR respectively. In vivo, vascular resistance and KCa3.1 gene and protein expression were determined in bile duct ligated rats by in situ liver perfusion, Taqman PCR and immunohistochemistry respectively. RESULTS: Fibrotic tissues and TGF-ß1-activated HSC exhibited higher KCa3.1-expressions than normal tissue and untreated cells. KCa3.1 inhibition with TRAM-34 reduced HSC proliferation by induction of cell cycle arrest and reduced TGF-ß1-induced gene expression of collagen I, alpha-smooth muscle actin and TGF-ß1 itself. Furthermore, TRAM-34 blocked TGF-ß1-induced activation of TGF-ß signalling in HSC. In vivo, TRAM-34 reduced the thromboxane agonist-induced portal perfusion pressure. CONCLUSION: Inhibition of KCa3.1 with TRAM-34 downregulates fibrosis-associated gene expression in vitro, and reduces portal perfusion pressure in vivo. Thus, KCa3.1 may represent novel targets for the treatment of liver fibrosis.


Asunto(s)
Células Estrelladas Hepáticas/efectos de los fármacos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/antagonistas & inhibidores , Cirrosis Hepática Experimental/tratamiento farmacológico , Hígado/efectos de los fármacos , Presión Portal/efectos de los fármacos , Bloqueadores de los Canales de Potasio/farmacología , Pirazoles/farmacología , Actinas/genética , Actinas/metabolismo , Animales , Ciclo Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/genética , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática Experimental/genética , Cirrosis Hepática Experimental/metabolismo , Cirrosis Hepática Experimental/patología , Cirrosis Hepática Experimental/fisiopatología , Masculino , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Transfección , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , Resistencia Vascular/efectos de los fármacos
9.
Am J Physiol Gastrointest Liver Physiol ; 306(10): G873-85, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24674776

RESUMEN

The intermediate-conductance Ca(2+)-activated K(+) channel KCa3.1/KCNN4 plays an important role in the modulation of Ca(2+) signaling through the control of the membrane potential in T lymphocytes. Here, we study the involvement of KCa3.1 in the enlargement of the mesenteric lymph nodes (MLNs) in a mouse model of inflammatory bowel disease (IBD). The mouse model of IBD was prepared by exposing male C57BL/6J mice to 5% dextran sulfate sodium for 7 days. Inflammation-induced changes in KCa3.1 activity and the expressions of KCa3.1 and its regulators in MLN CD4(+) T lymphocytes were monitored by real-time PCR, Western blot, voltage-sensitive dye imaging, patch-clamp, and flow cytometric analyses. Concomitant with an upregulation of KCa3.1a and nucleoside diphosphate kinase B (NDPK-B), a positive KCa3.1 regulator, an increase in KCa3.1 activity was observed in MLN CD4(+) T lymphocytes in the IBD model. Pharmacological blockade of KCa3.1 elicited the following results: 1) a significant decrease in IBD disease severity, as assessed by diarrhea, visible fecal blood, inflammation, and crypt damage of the colon and MLN enlargement compared with control mice, and 2) the restoration of the expression levels of KCa3.1a, NDPK-B, and Th1 cytokines in IBD model MLN CD4(+) T lymphocytes. These findings suggest that the increase in KCa3.1 activity induced by the upregulation of KCa3.1a and NDPK-B may be involved in the pathogenesis of IBD by mediating the enhancement of the proliferative response in MLN CD4(+) T lymphocyte and, therefore, that the pharmacological blockade of KCa3.1 may decrease the risk of IBD.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Enfermedades Inflamatorias del Intestino/fisiopatología , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Ganglios Linfáticos/metabolismo , Nucleósido Difosfato Quinasas NM23/biosíntesis , Animales , Proteínas de Unión al ADN/biosíntesis , Sulfato de Dextran , Modelos Animales de Enfermedad , Enfermedades Inflamatorias del Intestino/inducido químicamente , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Ganglios Linfáticos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Nucleares/biosíntesis , Pirazoles/uso terapéutico , Ubiquitina-Proteína Ligasas , Regulación hacia Arriba
10.
Pharmacol Res ; 85: 6-14, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24813858

RESUMEN

Vascular calcifications are a hallmark of advanced cardiovascular disease in patients with chronic kidney disease. A key event is the transition of contractile vascular smooth muscle cells (VSMC) into an osteoblast-like phenotype, promoting a coordinated process of vascular remodeling resembling bone mineralization. Intermediate-conductance calcium-activated potassium channels (KCa3.1) are expressed in various tissues including VSMC. Aiming for novel therapeutic targets in vascular calcification, we here studied effects of KCa3.1-inhibition on VSMC calcification by the specific KCa3.1 inhibitor TRAM-34. Calcification in the murine VSMC cell line MOVAS-1 and primary rat VSMC was induced by calcification medium (CM) containing elevated levels of PO4(3-) and Ca(2+). Cell signaling, calcification markers, and release of nitric oxide and alkaline phosphatase were assessed by luciferase reporter plasmids, RT-PCR and specific enzymatic assays, respectively. KCa3.1 gene silencing was achieved by siRNA experiments. TRAM-34 at 10nmol/l, decreased CM-induced calcification and induced NO release of VSMC accompanied by decreased TGF-ß signaling. The CM-induced mRNA expressions of osterix, osteocalcin, matrix-metalloproteinases (MMP)-2/-9 were reduced by TRAM-34 while osteopontin expression was increased. Further, TRAM-34 attenuated the CM- and TNF-α-induced activation of NF-κB and reduced the release of MMP-2/-9 by VSMC. Finally, TRAM-34 abrogated CM-induced apoptosis and KCa3.1 gene silencing protected VSMC from CM-induced onset of calcification. In summary, TRAM-34 interferes with calcification relevant signaling of NF-κB and TGF-ß thereby blocking the phenotypic transition/calcification of VSMC. We conclude that the results provide a rationale for further studies regarding a possible therapeutic role of KCa3.1 inhibition by TRAM-34 or other inhibitors in vascular calcification.


Asunto(s)
Canales de Potasio de Conductancia Intermedia Activados por el Calcio/antagonistas & inhibidores , Miocitos del Músculo Liso/efectos de los fármacos , Bloqueadores de los Canales de Potasio/farmacología , Pirazoles/farmacología , Calcificación Vascular/metabolismo , Fosfatasa Alcalina , Animales , Aorta Torácica/citología , Apoptosis/efectos de los fármacos , Calcio , Línea Celular , Células Cultivadas , Expresión Génica/efectos de los fármacos , Silenciador del Gen , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Miocitos del Músculo Liso/metabolismo , Óxido Nítrico/metabolismo , Osteocalcina/genética , Osteopontina/genética , Fosfatos , Ratas , Factores de Transcripción/genética , Factor de Crecimiento Transformador beta/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Calcificación Vascular/inducido químicamente , Calcificación Vascular/tratamiento farmacológico
11.
Pharmacol Res ; 77: 30-8, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24055799

RESUMEN

Airway smooth muscle (ASM) cell phenotype modulation, characterized by reversible switching between contractile and proliferative phenotypes, is considered to contribute to proliferative diseases such as allergic asthma and chronic obstructive pulmonary disease (COPD). KCa3.1 has been suggested to be involved in regulating ASM cell activation, proliferation, and migration. However, little is known regarding the exact role of KCa3.1 in ASM cell phenotypic modulation. To elucidate the role of KCa3.1 in regulating ASM cell phenotypic modulation, we investigated the effects of KCa3.1 channels on ASM contractile marker protein expression, proliferation and migration of primary human bronchial smooth muscle (BSM) cells. We found that PDGF increased KCa3.1 channel expression in BSM cells with a concomitant marked decrease in the expression of contractile phenotypic marker proteins including smooth muscle myosin heavy chain (SMMHC), smooth muscle α-actin (α-SMA), myocardin and KCa1.1. These changes were significantly attenuated by the KCa3.1 blocker, TRAM-34, or gene silencing of KCa3.1. Pharmacological blockade or gene silencing of KCa3.1 also suppressed PDGF-induced human BSM cell migration and proliferation accompanied by a decrease in intracellular free Ca(2+) levels as a consequence of membrane depolarization, resulting in a reduction in cyclin D1 level and cell cycle arrest at G0-G1 phase. Additionally, PDGF-induced up-regulation of KCa3.1 and down-regulation of BSM contractile marker proteins were regulated by the ERK inhibitor U0126 and the AKT inhibitor LY294002. These findings highlight a novel role for the KCa3.1 channel in human BSM cell phenotypic modulation and provide a potential target for therapeutic intervention for proliferative airway diseases.


Asunto(s)
Canales de Potasio de Conductancia Intermedia Activados por el Calcio/biosíntesis , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/fisiología , Miocitos del Músculo Liso/fisiología , Fenotipo , Regulación hacia Arriba , Actinas/biosíntesis , Bronquios/efectos de los fármacos , Bronquios/metabolismo , Bronquios/fisiología , Butadienos/farmacología , Calcio/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Cromonas/farmacología , Ciclina D1/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/fisiología , Silenciador del Gen , Humanos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/antagonistas & inhibidores , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/genética , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/biosíntesis , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/genética , Morfolinas/farmacología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Cadenas Pesadas de Miosina/biosíntesis , Nitrilos/farmacología , Proteínas Nucleares/biosíntesis , Factor de Crecimiento Derivado de Plaquetas/antagonistas & inhibidores , Factor de Crecimiento Derivado de Plaquetas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/farmacología , Transactivadores/biosíntesis , Regulación hacia Arriba/efectos de los fármacos
12.
Pharmacol Res ; 78: 18-27, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24075884

RESUMEN

The purpose of the present study was to characterize TRPV4 channels in the rat pulmonary artery and examine their role in endothelium-dependent relaxation. Tension, Real-Time polymerase chain reaction (Real-Time PCR) and Western blot experiments were conducted on left and right branches of the main pulmonary artery from male Wistar rats. TRPV4 channel agonist GSK1016790A (GSK) caused concentration-related robust relaxation (Emax 88.6±5.5%; pD2 8.7±0.2) of the endothelium-intact pulmonary artery. Endothelium-denudation nearly abolished the relaxation (Emax 5.6±1.3%) to GSK. TRPV4 channel selective antagonist HC067047 significantly attenuated GSK-induced relaxation (Emax 56.2±6.6% vs. control Emax 87.9±3.3%) in endothelium-intact vessels, but had no effect on either ACh-induced endothelium-dependent or SNP-induced endothelium-independent relaxations. GSK-induced relaxations were markedly inhibited either in the presence of NO synthase inhibitor L-NAME (Emax 8.5±2.7%) or sGC inhibitor ODQ (Emax 28.1±5.9%). A significant portion (Emax 30.2±4.4%) of endothelium-dependent relaxation still persisted in the combined presence of L-NAME and cyclooxygenase inhibitor indomethacin. This EDHF-mediated relaxation was sensitive to inhibition by 60mM K(+) depolarizing solution or K(+) channel blockers apamin (SKCa; KCa2.3) and TRAM-34 (IKCa; KCa3.1). GSK (10(-10)-10(-7)M) caused either modest decrease or increase in the basal tone of endothelium-intact or denuded rings, respectively. We found a greater abundance (>1.5 fold) of TRPV4 mRNA and protein expressions in endothelium-intact vs. denuded vessels, suggesting the presence of this channel in pulmonary endothelial and smooth muscle cells as well. The present study demonstrated that NO and EDHF significantly contributed to TRPV4 channel-mediated endothelium-dependent relaxation of the rat pulmonary artery.


Asunto(s)
Factores Biológicos/metabolismo , Factores Relajantes Endotelio-Dependientes/metabolismo , Óxido Nítrico/metabolismo , Arteria Pulmonar/fisiología , Canales Catiónicos TRPV/metabolismo , Vasodilatación , Animales , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/fisiología , Masculino , Arteria Pulmonar/efectos de los fármacos , Ratas , Ratas Wistar , Canales Catiónicos TRPV/agonistas , Canales Catiónicos TRPV/análisis , Canales Catiónicos TRPV/antagonistas & inhibidores , Vasodilatación/efectos de los fármacos
13.
Cancers (Basel) ; 14(24)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36551685

RESUMEN

Reportedly, the intermediate-conductance Ca2+-activated potassium channel KCa3.1 contributes to the invasion of glioma cells into healthy brain tissue and resistance to temozolomide and ionizing radiation. Therefore, KCa3.1 has been proposed as a potential target in glioma therapy. The aim of the present study was to assess the variability of the temozolomide- and radiation-sensitizing effects conferred by the KCa3.1 blocking agent TRAM-34 between five different glioma cell lines grown as differentiated bulk tumor cells or under glioma stem cell-enriching conditions. As a result, cultures grown under stem cell-enriching conditions exhibited indeed higher abundances of mRNAs encoding for stem cell markers compared to differentiated bulk tumor cultures. In addition, stem cell enrichment was paralleled by an increased resistance to ionizing radiation in three out of the five glioma cell lines tested. Finally, TRAM-34 led to inconsistent results regarding its tumoricidal but also temozolomide- and radiation-sensitizing effects, which were dependent on both cell line and culture condition. In conclusion, these findings underscore the importance of testing new drug interventions in multiple cell lines and different culture conditions to partially mimic the in vivo inter- and intra-tumor heterogeneity.

14.
Front Cell Neurosci ; 16: 1002487, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36589283

RESUMEN

Tumor associated macrophages (TAMs) are the mostprevalent cells recruited in the tumor microenvironment (TME). Once recruited, TAMs acquire a pro-tumor phenotype characterized by a typical morphology: ameboid in the tumor core and with larger soma and thick branches in the tumor periphery. Targeting TAMs by reverting them to an anti-tumor phenotype is a promising strategy for cancer immunotherapy. Taking advantage of Cx3cr1GFP/WT heterozygous mice implanted with murine glioma GL261-RFP cells we investigated the role of Ca2+-activated K+ channel (KCa3.1) on the phenotypic shift of TAMs at the late stage of glioma growth through in vivo two-photon imaging. We demonstrated that TAMs respond promptly to KCa3.1 inhibition using a selective inhibitor of the channel (TRAM-34) in a time-dependent manner by boosting ramified projections attributable to a less hypertrophic phenotype in the tumor core. We also revealed a selective effect of drug treatment by reducing both glioma cells and TAMs in the tumor core with no interference with surrounding cells. Taken together, our data indicate a TRAM-34-dependent progressive morphological transformation of TAMs toward a ramified and anti-tumor phenotype, suggesting that the timing of KCa3.1 inhibition is a key point to allow beneficial effects on TAMs.

15.
Cell Mol Immunol ; 19(8): 925-943, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35799057

RESUMEN

Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, has increased in incidence and prevalence in recent decades. Both clinical and animal studies are critical for understanding the pathogenesis of this disease. Dextran sodium sulfate (DSS)-induced colitis is a frequently used animal model of IBD, but the underlying mechanism of the model remains incompletely understood. In this study, we found that NOD-like receptor family pyrin containing 3 (NLRP3) depletion markedly mitigated DSS-induced colitis and was accompanied by decreased activation of the inflammasome in the colons of mice. However, in vitro assays showed that DSS did not directly trigger but instead potentiated NLRP3 inflammasome assembly in macrophages in response to suboptimal ATP or nigericin stimulation. Mechanistically, DSS potentiated NLRP3 inflammasome activation in macrophages by augmenting KCa3.1-mediated potassium ion (K+) efflux. Furthermore, we found that pharmacologic blockade of the K+ channel KCa3.1 with TRAM-34 or genetic depletion of the Kcnn4 gene (encoding KCa3.1) not only ameliorated the severity of DSS-induced colitis but also attenuated in vivo inflammasome assembly in the colonic tissues of mice, suggesting a causal link between KCa3.1-mediated augmentation of the NLRP3 inflammasome and DSS-induced inflammatory injuries. Collectively, these results indicate that KCa3.1 plays a critical role in mediating DSS-induced colitis in mice by potentiating NLRP3 inflammasome activation. Our data provide a previously unknown mechanism by which DSS induces colitis in mice and suggests that KCa3.1 is an alternative therapeutic target for treating IBD.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Animales , Colitis/inducido químicamente , Colitis/patología , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Inflamasomas/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Canales de Potasio , Sulfatos
16.
Colloids Surf B Biointerfaces ; 208: 112141, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34624599

RESUMEN

Chimeric or mixed nanosystems belong to the class of advanced therapeutics. Their distinctive characteristic compared with other types of nanoparticles is that they combine two or more different classes of biomaterials. These platforms have created a promising and versatile field of nanomedicine, incorporating materials that are biocompatible, such as lipids, but also functional, such as stimuli-responsive polymers. In the present work, thermoresponsive chimeric nanocarriers composed of l-α-phosphatidylcholine (Egg, Chicken) (EPC) phospholipids and poly(N-isopropylacrylamide)-b-poly(lauryl acrylate) (PNIPAM-b-PLA) block copolymers were designed and developed. Initially, model lipid bilayers with incorporated polymers and drug molecule TRAM-34 were built and studied for their thermodynamics, in order to assess the stability and functionality of the systems. Chimeric nanoparticles of EPC and PNIPAM-b-PLA were then developed and evaluated for their physicochemical properties in different medium conditions, as well as for their morphology. Polymer incorporation led to alterations in the properties and morphology of the nanoparticles, while interactions with serum proteins were absent. TRAM-34 was also incorporated inside the developed nanocarriers, followed by incorporation and release studies, which revealed the functionality of the system in elevated temperature conditions. Finally, in vitro studies on normal cells suggest the biocompatibility of these nanosystems. The proposed platforms are promising for further studies and applications in vitro and in vivo.


Asunto(s)
Liposomas , Polímeros , Sistemas de Liberación de Medicamentos , Membrana Dobles de Lípidos , Fosfolípidos
17.
Brain Sci ; 9(10)2019 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-31652564

RESUMEN

Although early reperfusion after stroke salvages the still-viable ischemic tissue, peri-infarct selective neuronal loss (SNL) can cause sensorimotor deficits (SMD). We designed a longitudinal protocol to assess the effects of cytoprotectants on SMD, microglial activation (MA) and SNL, and specifically tested whether the KCa3.1-blocker TRAM-34 would prevent SNL. Spontaneously hypertensive rats underwent 15 min middle-cerebral artery occlusion and were randomized into control or treatment group, which received TRAM-34 intraperitoneally for 4 weeks starting 12 h after reperfusion. SMD was assessed longitudinally using the sticky-label test. MA was quantified at day 14 using in vivo [11C]-PK111195 positron emission tomography (PET), and again across the same regions-of-interest template by immunofluorescence together with SNL at day 28. SMD recovered significantly faster in the treated group (p = 0.004). On PET, MA was present in 5/6 rats in each group, with no significant between-group difference. On immunofluorescence, both SNL and MA were present in 5/6 control rats and 4/6 TRAM-34 rats, with a non-significantly lower degree of MA but a significantly (p = 0.009) lower degree of SNL in the treated group. These findings document the utility of our longitudinal protocol and suggest that TRAM-34 reduces SNL and hastens behavioural recovery without marked MA blocking at the assessed time-points.

18.
Cancers (Basel) ; 11(9)2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31480522

RESUMEN

KCa3.1 K+ channels reportedly contribute to the proliferation of breast tumor cells and may serve pro-tumor functions in the microenvironment. The putative interaction of KCa3.1 with major anti-cancer treatment strategies, which are based on cytotoxic drugs or radiotherapy, remains largely unexplored. We employed KCa3.1-proficient and -deficient breast cancer cells derived from breast cancer-prone MMTV-PyMT mice, pharmacological KCa3.1 inhibition, and a syngeneic orthotopic mouse model to study the relevance of functional KCa3.1 for therapy response. The KCa3.1 status of MMTV-PyMT cells did not determine tumor cell proliferation after treatment with different concentrations of docetaxel, doxorubicin, 5-fluorouracil, or cyclophosphamide. KCa3.1 activation by ionizing radiation (IR) in breast tumor cells in vitro, however, enhanced radioresistance, probably via an involvement of the channel in IR-stimulated Ca2+ signals and DNA repair pathways. Consistently, KCa3.1 knockout increased survival time of wildtype mice upon syngeneic orthotopic transplantation of MMTV-PyMT tumors followed by fractionated radiotherapy. Combined, our results imply that KCa3.1 confers resistance to radio- but not to chemotherapy in the MMTV-PyMT breast cancer model. Since KCa3.1 is druggable, KCa3.1 targeting concomitant to radiotherapy seems to be a promising strategy to radiosensitize breast tumors.

19.
Cancers (Basel) ; 11(1)2019 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-30658505

RESUMEN

Several tumor entities have been reported to overexpress KCa3.1 potassium channels due to epigenetic, transcriptional, or post-translational modifications. By modulating membrane potential, cell volume, or Ca2+ signaling, KCa3.1 has been proposed to exert pivotal oncogenic functions in tumorigenesis, malignant progression, metastasis, and therapy resistance. Moreover, KCa3.1 is expressed by tumor-promoting stroma cells such as fibroblasts and the tumor vasculature suggesting a role of KCa3.1 in the adaptation of the tumor microenvironment. Combined, this features KCa3.1 as a candidate target for innovative anti-cancer therapy. However, immune cells also express KCa3.1 thereby contributing to T cell activation. Thus, any strategy targeting KCa3.1 in anti-cancer therapy may also modulate anti-tumor immune activity and/or immunosuppression. The present review article highlights the potential of KCa3.1 as an anti-tumor target providing an overview of the current knowledge on its function in tumor pathogenesis with emphasis on vasculo- and angiogenesis as well as anti-cancer immune responses.

20.
Curr Neuropharmacol ; 16(5): 618-626, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28676010

RESUMEN

BACKGROUND: The intermediate-conductance Ca2+-activated K+ channel KCa3.1 is widely expressed in cells of the immune system such as T- and B-lymphocytes, mast cells, macrophages and microglia, but also found in dedifferentiated vascular smooth muscle cells, fibroblasts and many cancer cells including pancreatic, prostate, leukemia and glioblastoma. In all these cell types KCa3.1 plays an important role in cellular activation, migration and proliferation by regulating membrane potential and Ca2+ signaling. METHODS AND RESULTS: KCa3.1 therefore constitutes an attractive therapeutic target for diseases involving excessive proliferation or activation of one more of these cell types and researchers both in academia and in the pharmaceutical industry have developed several potent and selective small molecule inhibitors of KCa3.1. This article will briefly review the available compounds (TRAM-34, senicapoc, NS6180), their binding sites and mechanisms of action, and then discuss the potential usefulness of these compounds for the treatment of brain tumors based on their brain penetration and their efficacy in reducing microglia activation in animal models of ischemic stroke and Alzheimer's disease. CONCLUSION: Senicapoc, which has previously been in Phase III clinical trials, would be available for repurposing, and could be used to quickly translate findings made with other KCa3.1 blocking tool compounds into clinical trials.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Moduladores del Transporte de Membrana/uso terapéutico , Acetamidas/química , Acetamidas/uso terapéutico , Animales , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Humanos , Pirazoles/química , Pirazoles/uso terapéutico , Compuestos de Tritilo/química , Compuestos de Tritilo/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA