Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Drug Chem Toxicol ; : 1-9, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38192027

RESUMEN

Tauroursodeoxycholic acid (TUDCA) can activate farnesoid X receptor (FXR) to involve in the formation of gallstones. Here, this study aimed to probe the potential mechanism of TUDCA-FXR network in the formation of bile duct stone. The levels of TUDCA, FXR and NCK1 were decreased, while the level of miR-107 was increased in the serum of bile duct stone patients. FXR expression was positively correlated with TUDCA or NCK1 expression in patients, moreover, TUDCA pretreatment in biliary epithelial cells increased the levels of FXR and NCK1, and rescued the decrease of NCK1 caused by FXR knockdown in cells. Then functional analysis showed FXR knockdown caused apoptosis and endoplasmic reticulum stress (ERS) as well as suppressed proliferation in biliary epithelial cells in vitro, which were attenuated by TUDCA pretreatment or NCK1 overexpression Mechanistically, NCK1 was a target of miR-107, which was up-regulated by FXR silencing, and FXR knockdown-induced decrease of NCK1 was rescued by miR-107 inhibition. Additionally, miR-107 expression was negatively correlated with TUDCA expression in bile duct stone patients, and TUDCA pretreatment in biliary epithelial cells decreased miR-107 expression by FXR. Functionally, the pretreatment of TUDCA or FXR agonist suppressed miR-107-evoked apoptosis and ERS in biliary epithelial cells. In conclusion, TUDCA up-regulates FXR expression to activate NCK1 through absorbing miR-107, thus suppressing the apoptosis and ERS in biliary epithelial cells, these results provided a theoretical basis for elucidating the mechanism of bile duct stone formation.

2.
Int J Mol Sci ; 25(13)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39000039

RESUMEN

Tauroursodeoxycholic acid (TUDCA) is approved for the treatment of liver diseases. However, the antihyperglycemic effects/mechanisms of TUDCA are still less clear. The present study aimed to evaluate the antidiabetic action of TUDCA in streptozotocin (STZ)-induced type 2 diabetes mellitus (T2DM) in rats. Fifteen adult Wistar albino male rats were randomly divided into three groups (n = five in each): control, diabetic (STZ), and STZ+TUDCA. The results showed that TUDCA treatment significantly reduced blood glucose, HbA1c%, and HOMA-IR as well as elevated the insulin levels in diabetic rats. TUDCA therapy increased the incretin GLP-1 concentrations, decreased serum ceramide synthase (CS), improved the serum lipid profile, and restored the glycogen content in the liver and skeletal muscles. Furthermore, serum inflammatory parameters (such as TNF-α, IL-6, IL-1ß, and PGE-2) were substantially reduced with TUDCA treatment. In the pancreas, STZ+TUDCA-treated rats underwent an obvious enhancement of enzymatic (CAT and SOD) and non-enzymatic (GSH) antioxidant defense systems and a marked decrease in markers of the lipid peroxidation rate (MDA) and nitrosative stress (NO) compared to STZ-alone. At the molecular level, TUDCA decreased the pancreatic mRNA levels of iNOS and apoptotic-related factors (p53 and caspase-3). In conclusion, TUDCA may be useful for diabetes management and could be able to counteract diabetic disorders via anti-hyperlipidemic, antioxidant, anti-inflammatory, and anti-apoptotic actions.


Asunto(s)
Apoptosis , Diabetes Mellitus Experimental , Inflamación , Estrés Oxidativo , Ratas Wistar , Ácido Tauroquenodesoxicólico , Animales , Ácido Tauroquenodesoxicólico/farmacología , Estrés Oxidativo/efectos de los fármacos , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Apoptosis/efectos de los fármacos , Ratas , Masculino , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Estreptozocina , Glucemia/metabolismo , Glucemia/efectos de los fármacos , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Hígado/metabolismo , Hígado/efectos de los fármacos , Hígado/patología
3.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39000220

RESUMEN

Tauroursodeoxycholic acid (TUDCA) increases the influx of primary bile acids into the gut. Results obtained on animal models suggested that Firmicutes and Proteobacteria phyla are more resistant to bile acids in rats. As part of a pilot study investigating the role of probiotics supplementation in elderly people with home enteral nutrition (HEN), a case of a 92-year-old woman with HEN is reported in the present study. She lives in a nursing home and suffers from Alzheimer's disease (AD); the patient had been prescribed TUDCA for lithiasis cholangitis. The aim of this case report is therefore to investigate whether long-term TUDCA administration may play a role in altering the patient's gut microbiota (GM) and the impact of an antibiotic therapy on the diversity of microbial species. Using next generation sequencing (NGS) analysis of the bacterial 16S ribosomal RNA (rRNA) gene a dominant shift toward Firmicutes and a remodeling in Proteobacteria abundance was observed in the woman's gut microbiota. Considering the patient's age, health status and type of diet, we would have expected to find a GM with a prevalence of Bacteroidetes phylum. This represents the first study investigating the possible TUDCA's effect on human GM.


Asunto(s)
Antibacterianos , Nutrición Enteral , Microbioma Gastrointestinal , Ácido Tauroquenodesoxicólico , Humanos , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Ácido Tauroquenodesoxicólico/farmacología , Ácido Tauroquenodesoxicólico/uso terapéutico , Anciano de 80 o más Años , Nutrición Enteral/métodos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , ARN Ribosómico 16S/genética , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/microbiología
4.
J Appl Microbiol ; 134(5)2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37118882

RESUMEN

AIMS: In this study, the effects of SCD Probiotics with tauroursodeoxycholic acid (TUDCA) application on the aged rat gut microbiota (GM) composition were investigated. METHODS AND RESULTS: Twenty-four-month-old Sprague-Dawley rats were given 300 mg/kg of TUDCA along with 3 mL (1 × 108 CFU) of SCD probiotics for 7 days. The bacterial profile was determined by the metagenome applied to the cecum content. TUDCA, SCD probiotics, and TUDCA with SCD probiotics designed GM differently. TUDCA and SCD probiotics have the most different dominant species profiles. CONCLUSIONS: SCD probiotics and TUDCA have their own unique effects on the species found in GM, and when they are evaluated together, the species found in GM are restructured differently.


Asunto(s)
Microbioma Gastrointestinal , Probióticos , Ratas , Animales , Ratas Sprague-Dawley , Ácido Tauroquenodesoxicólico/farmacología , Probióticos/farmacología
5.
Exp Cell Res ; 410(1): 112952, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34848206

RESUMEN

Septic arthritis induced by Staphylococcus aureus (S. aureus) causes irreversible cartilage degradation and subsequent permanent joint dysfunction. Recently, cartilage degradation in osteoarthritis is recognized to be associated with metabolic disorders. However, whether cholesterol metabolism is linked to septic arthritis pathology remains largely unknown. Here, we found that exposure to fermentation supernatant (FS) of S. aureus in chondrocytes resulted in a significant increase in expression of key modulators involved in cholesterol metabolism, including lectin-type oxidized low density lipoprotein receptor 1 (LOX1), cholesterol 25-hydroxylase (CH25H), 25- hydroxycholesterol 7α-hydroxylase (CYP7B1) as well as retinoic acid-related orphan receptor alpha (RORα), a binding receptor for cholesterol metabolites. We further demonstrated that enhancement of CH25H/CYP7B1/RORα axis resulted from FS exposure was mediated by activation of NF-κB signaling, along with upregulation in catabolic factors including matrix metallopeptidases (MMP3 and MMP13), aggrecanase-2 (ADAMTS5), and nitric oxide synthase-2 (NOS2) in chondrocytes. Exogenous cholesterol acts synergistically with FS in activating NF-κB pathway and increases cholesterol metabolism. While, the addition of tauroursodeoxycholic acid (TUDCA) which promotes cholesterol efflux, resulted in remarkable reduction of intracellular cholesterol level and restoration of balance between anabolism and catabolism in FS treated chondrocytes. Collectively, our data indicated that, in response to FS of S. aureus, NF-κB signaling activation coupled with increased cholesterol metabolism to stimulate catabolic factors in chondrocytes, highlighting cholesterol metabolism as a potential therapeutic target for treating septic arthritis.


Asunto(s)
Artritis Infecciosa/genética , Cartílago/crecimiento & desarrollo , Osteoartritis/genética , Staphylococcus aureus/patogenicidad , Proteína ADAMTS5/genética , Artritis Infecciosa/microbiología , Artritis Infecciosa/patología , Cartílago/metabolismo , Cartílago/microbiología , Cartílago/patología , Células Cultivadas , Colesterol/genética , Condrocitos/metabolismo , Condrocitos/microbiología , Condrocitos/patología , Familia 7 del Citocromo P450/genética , Regulación de la Expresión Génica/genética , Humanos , Metaloproteinasa 13 de la Matriz/genética , Metabolismo/genética , FN-kappa B/genética , Óxido Nítrico Sintasa de Tipo II/genética , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Osteoartritis/microbiología , Osteoartritis/patología , Receptores Depuradores de Clase E/genética , Transducción de Señal/genética , Esteroide Hidroxilasas/genética , Ácido Tauroquenodesoxicólico/genética , Factor de Transcripción ReIA/genética
6.
Int J Mol Sci ; 24(18)2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37762363

RESUMEN

During embryo development, the endoplasmic reticulum (ER) acts as an important site for protein biosynthesis; however, in vitro culture (IVC) can negatively affect ER homeostasis. Therefore, the aim of our study was to evaluate the effects of the supplementation of tauroursodeoxycholic acid (TUDCA), an ER stress inhibitor, in the IVC of bovine embryos. Two experiments were carried out: Exp. 1: an evaluation of blastocyst rate, hatching kinetics, and gene expression of hatched embryos after being treated with different concentrations of TUDCA (50, 200, or 1000 µM) in the IVC; Exp. 2: an evaluation of the re-expansion, hatching, and gene expression of hatched embryos previously treated with 200 µM of TUDCA at IVC and submitted to vitrification. There was no increase in the blastocyst and hatched blastocyst rates treated with TUDCA in the IVC. However, embryos submitted to vitrification after treatment with 200 µM of TUDCA underwent an increased hatching rate post-warming together with a down-regulation in the expression of ER stress-related genes and the accumulation of lipids. In conclusion, this work showed that the addition of TUDCA during in vitro culture can improve the cryotolerance of the bovine blastocyst through the putative modulation of ER and oxidative stress.


Asunto(s)
Retículo Endoplásmico , Ácido Tauroquenodesoxicólico , Bovinos , Animales , Ácido Tauroquenodesoxicólico/farmacología , Suplementos Dietéticos
7.
Int Heart J ; 64(2): 283-293, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-36927931

RESUMEN

Vascular endothelial insulin resistance (IR) is an important risk factor in the development of vascular complications in diabetes. Prolonged endoplasmic reticulum stress (ERS) contributes to the development and progression of endothelial IR. The current study assessed the effects and mechanism of nebivolol on vascular IR in Goto-Kakizaki (GK) rats and endothelial IR induced by high glucose (33.3 mmol/L) associated with high insulin (10-7 mol/L) in human aortic endothelial cells (HAECs). Rats were divided into Wistar, Wistar + Neb (Wistar rats treated with nebivolol, 10 mg/kg, ig), GK, and GK + Neb (GK rats treated with nebivolol, 10 mg/kg, ig). GK rats showed hyperglycemia, dyslipidemia, impaired glucose homeostasis, metabolic IR, reduced relaxation to insulin, and lower serum nitric oxide (NO) level. Treatment with nebivolol for 4 months ameliorated insulin's vasorelaxation and NO production, and relieved dyslipidemia in GK rats. Additionally, nebivolol increased glucose uptake and NO level in the endothelial IR group in vitro. Nebivolol increased aortic expressions of IRS-1/PI3K/Akt/eNOS relative proteins and GLUT4 and reduced expressions of ERS markers (ATF6, GRP78, and CHOP, p-JNK/JNK). Furthermore, both nebivolol and TUDCA (ERS inhibitor) alleviated the attenuated IRS-1PI3K/Akt/eNOS pathway and enhanced ERS in HAECs IR. Tunicamycin (ERS inducer) not only induced endothelial IR but also blocked nebivolol's alleviation on the IRS-1PI3K/Akt/eNOS pathway and ERS. Nebivolol ameliorated endothelial IR partially by inhibiting ERS and then regulating the IRS-1/PI3K/Akt/eNOS signal.


Asunto(s)
Resistencia a la Insulina , Ratas , Humanos , Animales , Nebivolol/farmacología , Nebivolol/uso terapéutico , Ratas Wistar , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Células Endoteliales/metabolismo , Insulina/farmacología , Estrés del Retículo Endoplásmico , Glucosa
8.
Molecules ; 28(17)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37687178

RESUMEN

Bear bile powder is an essential, traditional and valuable Chinese herbal medicine that clears heat, calms the liver, and improves eyesight. Early studies have shown that bear bile powder has lipid-lowering activity, but due to the scarcity of natural bear bile powder resources, it has yet to be used on a large scale. Researchers have found that tauroursodeoxycholic acid (TUDCA) is the primary characteristic bioactive substance of bear bile powder. This study aimed to investigate the therapeutic effect of TUDCA on high-fat diet (HFD)-induced hyperlipidemia. A hyperlipidemia model was established by feeding mice high-fat chow, following the intervention of different concentrations of TUDCA (25/50/100 mg/kg) orally, the hallmark biochemical indexes (total cholesterol (TC), total triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C)), histopathological examination (hematoxylin-eosin (HE) staining and oil red O (ORO) staining), and metabolomic analysis of serum and liver. The results showed that TUDCA could downregulate total TC, TG, LDL-C, upregulate HDL-C, reduce fat deposition in hepatocytes, reverse hepatocyte steatosis, and exhibit prominent lipid-lowering activity. In addition, it may play a therapeutic role by regulating glycerophospholipid metabolism.


Asunto(s)
Lipidómica , Ursidae , Animales , Ratones , LDL-Colesterol , Polvos , Metabolómica , HDL-Colesterol
9.
Cancer Immunol Immunother ; 71(7): 1655-1669, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34800147

RESUMEN

BACKGROUND: Calreticulin (CRT) is an endoplasmic reticulum (ER) chaperone, but can appear surface bound on cancers cells, including ovarian cancers (OC). We investigated at what stage of cell viability, CRT appeared associated with surface of human OC cells. CRT on pre-apoptotic tumour cells is thought to initiate their eradication via a process termed immunogenic cell death (ICD). METHODS: We treated OC cells with the chemotherapeutic-doxorubicin (DX) known to induce translocation of CRT to some tumour cell surfaces, with and without the ER stressor-thapsigargin (TG)-and/or an ER stress inhibitor-TUDCA. We monitored translocation/release of CRT in pre-apoptotic cells by flow cytometry, immunoblotting and ELISA. We investigated the difference in binding of FITC-CRT to pre-apoptotic, apoptotic and necrotic cells and the ability of extracellular CRT to generate immature dendritic cells from THP-1 monocytes. RESULTS: Dx-treatment increased endogenously released CRT and extracellular FITC_CRT binding to human pre-apoptotic OC cells. DX and TG also promoted cell death in OC cells which also increased CRT release. These cellular responses were significantly inhibited by TUDCA, suggesting that ER stress is partially responsible for the changes in CRT cellular distribution. Extracellular CRT induces maturation of THP-1 towards a imDC phenotype, an important component of ICD. CONCLUSION: Collectively, these cellular responses suggest that ER stress is partially responsible for the changes in CRT cellular distribution. ER-stress regulates in part the release and binding of CRT to human OC cells where it may play a role in ICD.


Asunto(s)
Calreticulina , Estrés del Retículo Endoplásmico , Neoplasias Ováricas , Apoptosis , Calreticulina/metabolismo , Carcinoma Epitelial de Ovario , Femenino , Fluoresceína-5-Isotiocianato , Humanos , Tapsigargina/farmacología
10.
Molecules ; 27(16)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36014347

RESUMEN

Endoplasmic reticulum (ER) stress contributes to insulin resistance and macro- and microvascular complications associated with diabetes. This study aimed to evaluate the effect of ER stress inhibition on endothelial function in the aorta of type-2 diabetic rats. Type-2 diabetes was developed in male Sprague-Dawley rats using a high-fat diet and low-dose streptozotocin. Rat aortic tissues were harvested to study endothelial-dependent relaxation. The mechanisms for acetylcholine-mediated relaxation were investigated using pharmacological blockers, Western blotting, oxidative stress, and inflammatory markers. Acetylcholine-mediated relaxation was diminished in the aorta of diabetic rats compared to control rats; supplementation with TUDCA improved relaxation. In the aortas of control and diabetic rats receiving TUDCA, the relaxation was mediated via eNOS/PI3K/Akt, NAD(P)H, and the KATP channel. In diabetic rats, acetylcholine-mediated relaxation involved eNOS/PI3K/Akt and NAD(P)H, but not the KATP channel. The expression of ER stress markers was upregulated in the aorta of diabetic rats and reduced with TUDCA supplementation. The expression of eNOS and Akt were lower in diabetic rats but were upregulated after supplementation with TUDCA. The levels of MDA, IL-6, and SOD activity were higher in the aorta of the diabetic rats compared to control rats. This study demonstrated that endothelial function was impaired in diabetes, however, supplementation with TUDCA improved the function via eNOS/Akt/PI3K, NAD(P)H, and the KATP channel. The improvement of endothelial function was associated with increased expressions of eNOS and Akt. Thus, ER stress plays a crucial role in the impairment of endothelial-dependent relaxation. Mitigating ER stress could be a potential strategy for improving endothelial dysfunction in type-2 diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Acetilcolina/metabolismo , Acetilcolina/farmacología , Adenosina Trifosfato/metabolismo , Animales , Aorta , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Estrés del Retículo Endoplásmico , Endotelio Vascular/metabolismo , Masculino , NAD/metabolismo , Óxido Nítrico/metabolismo , Estrés Oxidativo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Vasodilatación
11.
Biochem Biophys Res Commun ; 544: 44-51, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33516881

RESUMEN

Alcoholic liver disease (ALD) occurs as a result of chronic and excessive alcohol consumption. It encompasses a wide spectrum of chronic liver abnormalities that range from steatosis to alcoholic hepatitis, progressive fibrosis and cirrhosis. Endoplasmic reticulum (ER) stress induced by ethanol metabolism in hepatocytes has been established as an important contributor to the pathogenesis of ALD. However, whether SIRT6 exerts regulatory effects on ethanol-induced ER stress and contributes to the pathogenesis of ALD is unclear. In this study, we developed and characterized Sirt6 hepatocyte-specific knockout and transgenic mouse models that were treated with chronic-plus-binge ethanol feeding. We observed that hepatic Sirt6 deficiency led to exacerbated ethanol-induced liver injury and aggravated hepatic ER stress. Tauroursodeoxycholic acid (TUDCA) treatment remarkably attenuated ethanol-induced ER stress and ameliorated ALD pathologies caused by Sirt6 ablation. Reciprocally, SIRT6 hepatocyte-specific transgenic mice exhibited reduced ER stress and ameliorated liver injury caused by ethanol exposure. Consistently, knockdown of Sirt6 elevated the expression of ER stress related genes in primary hepatocytes treated with ethanol, whereas overexpression of SIRT6 reduced their expression, indicating SIRT6 regulates ethanol-induced hepatic ER stress in a cell autonomous manner. Collectively, our results suggest that SIRT6 is a positive regulator of ethanol-induced ER stress in the liver and protects against ALD by relieving ER stress.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/prevención & control , Estrés del Retículo Endoplásmico , Etanol/toxicidad , Hepatocitos/efectos de los fármacos , Sirtuinas/farmacología , Animales , Células Cultivadas , Depresores del Sistema Nervioso Central/toxicidad , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/patología , Colagogos y Coleréticos/farmacología , Modelos Animales de Enfermedad , Hepatocitos/metabolismo , Hepatocitos/patología , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Ácido Tauroquenodesoxicólico/farmacología
12.
Biol Reprod ; 105(1): 76-86, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-33889948

RESUMEN

Conditions of impaired energy and nutrient homeostasis, such as diabetes and obesity, are associated with infertility. Hyperglycemia increases endoplasmic reticulum stress as well as oxidative stress and reduces embryo development and quality. Oxidative stress also causes deoxyribonucleic acid damage, which impairs embryo quality and development. The natural bile acid tauroursodeoxycholic acid reduces endoplasmic reticulum stress and rescues developmentally incompetent late-cleaving embryos, as well as embryos subjected to nuclear stress, suggesting the endoplasmic reticulum stress response, or unfolded protein response, and the genome damage response are linked. Tauroursodeoxycholic acid acts via the Takeda-G-protein-receptor-5 to alleviate nuclear stress in embryos. To evaluate the role of tauroursodeoxycholic acid/Takeda-G-protein-receptor-5 signaling in embryo unfolded protein response, we used a model of glucose-induced endoplasmic reticulum stress. Embryo development was impaired by direct injection of tauroursodeoxycholic acid into parthenogenetically activated oocytes, whereas it was improved when tauroursodeoxycholic acid was added to the culture medium. Attenuation of the Takeda-G-protein-receptor-5 precluded the positive effect of tauroursodeoxycholic acid supplementation on development of parthenogenetically activated and fertilized embryos cultured under standard conditions and parthenogenetically activated embryos cultured with excess glucose. Moreover, attenuation of tauroursodeoxycholic acid/Takeda-G-protein-receptor-5 signaling induced endoplasmic reticulum stress, oxidative stress and cell survival genes, but decreased expression of pluripotency genes in parthenogenetically activated embryos cultured under excess glucose conditions. These data suggest that Takeda-G-protein-receptor-5 signaling pathways link the unfolded protein response and genome damage response. Furthermore, this study identifies Takeda-G-protein-receptor-5 signaling as a potential target for mitigating fertility issues caused by nutrient excess-associated blastomere stress and embryo death.


Asunto(s)
Colagogos y Coleréticos/farmacología , Estrés del Retículo Endoplásmico/fisiología , Estrés Oxidativo/fisiología , Receptores Acoplados a Proteínas G/genética , Sus scrofa/embriología , Ácido Tauroquenodesoxicólico/farmacología , Animales , Blastómeros/fisiología , Embrión de Mamíferos/efectos de los fármacos , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/fisiología , Glucosa/efectos adversos , Receptores Acoplados a Proteínas G/metabolismo , Respuesta de Proteína Desplegada/fisiología
13.
Acta Pharmacol Sin ; 42(5): 814-823, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32855532

RESUMEN

Diffuse large B-cell lymphoma (DLBCL) is the most widespread type of non-Hodgkin lymphoma (NHL). As the most aggressive form of the DLBCL, the activated B-cell-like (ABC) subtype is often resistant to standard chemotherapies. Bruton's tyrosine kinase (BTK) inhibitor ibrutinib provides a potential therapeutic approach for the DLBCL but fails to improve the outcome in the phase III trial. In the current study, we investigated the molecular mechanisms underlying ibrutinib resistance and explored new combination therapy with ibrutinib. We generated an ibrutinib-resistant ABC-DLBCL cell line (OCI-ly10-IR) through continuous exposure to ibrutinib. Transcriptome analysis of the parental and ibrutinib-resistant cell lines revealed that the ibrutinib-resistant cells had significantly lower expression of the unfolded protein response (UPR) marker genes. Overexpression of one UPR branch-XBP1s greatly potentiated ibrutinib-induced apoptosis in both sensitive and resistant cells. The UPR inhibitor tauroursodeoxycholic acid (TUDCA) partially reduced the apoptotic rate induced by the ibrutinib in sensitive cells. The UPR activator 2-deoxy-D-glucose (2-DG) in combination with the ibrutinib triggered even greater cell growth inhibition, apoptosis, and stronger calcium (Ca2+) flux inhibition than either of the agents alone. A combination treatment of ibrutinib (15 mg·kg-1·d-1, po.) and 2-DG (500 mg/kg, po, b.i.d.) synergistically retarded tumor growth in NOD/SCID mice bearing OCI-ly10-IR xenograft. In addition, ibrutinib induced the UPR in the sensitive cell lines but not in the resistant cell lines of the DLBCL. There was also a combined synergistic effect in the primary resistant DLBCL cell lines. Overall, our results suggest that targeting the UPR could be a potential combination strategy to overcome ibrutinib resistance in the DLBCL.


Asunto(s)
Adenina/análogos & derivados , Antineoplásicos/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Piperidinas/uso terapéutico , Respuesta de Proteína Desplegada/efectos de los fármacos , Adenina/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Desoxiglucosa/uso terapéutico , Resistencia a Antineoplásicos/fisiología , Sinergismo Farmacológico , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/fisiopatología , Ratones Endogámicos NOD , Ratones SCID , Respuesta de Proteína Desplegada/fisiología , Proteína 1 de Unión a la X-Box/genética , Proteína 1 de Unión a la X-Box/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Ann Hepatol ; 23: 100289, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33217585

RESUMEN

INTRODUCTION AND OBJECTIVES: The incidence of gallstone-related disease steadily increased in the last few years. Here, we aimed to investigate the effect of tauroursodeoxycholic acid1 (TUDCA) on preventing cholesterol gallstones formation in high-fat fed (HFD) mice. MATERIAL AND METHODS: Specific pathogen-free male C57Bl/6 mice were fed a lithogenic diet2 (LD group) alone or in combination with TUDCA (5g/kg diet) for 8 weeks. Upon sacrifice, serum, gallbladder, liver and small intestine were collected and the formation of gallstones or crystals in the gallbladder was analyzed. Additionally, the intestinal microbiota, and bile acid composition, serum lipids and hepatic lipids were studied. RESULTS: Cholesterol gallstones with cholesterol crystals formed in mice of the LD-fed group (15/15, 100%). However, only cholesterol crystals were found in three mice without the presence of any gallstone in the TUDCA-treated group. Both serum and hepatic total cholesterol levels in the TUDCA group were significantly decreased compared with the LD group. Concomitantly, mRNA expression of Abcg5 and Abcg8 was significantly lower in the liver of the TUDCA group whilst mRNA transcripts for Abcb11, Acat2, and Cyp27 were significantly increased compared with the LD group. Additionally, the gallbladder cholesterol saturation index (1.06±0.15) in the TUDCA group was significantly decreased compared with the LD group. Interestingly, the ratio of Firmicutes/Bacteroides in the TUDCA group was increased 3x fold. CONCLUSIONS: TUDCA can inhibit the absorption and synthesis of lipids in the small intestine by improving the intestinal microbiota in HFD-fed mice, thus reducing gallstone formation.


Asunto(s)
Colagogos y Coleréticos/uso terapéutico , Cálculos Biliares/prevención & control , Microbioma Gastrointestinal/efectos de los fármacos , Ácido Tauroquenodesoxicólico/uso terapéutico , Animales , Ácidos y Sales Biliares/metabolismo , Modelos Animales de Enfermedad , Cálculos Biliares/metabolismo , Cálculos Biliares/patología , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL
15.
Adv Exp Med Biol ; 1275: 229-258, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33539018

RESUMEN

If the bile acids reach to pathological concentrations due to cholestasis, accumulation of hydrophobic bile acids within the hepatocyte may result in cell death. Thus, hydrophobic bile acids induce apoptosis in hepatocytes, while hydrophilic bile acids increase intracellular adenosine 3',5'-monophosphate (cAMP) levels and activate mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) pathways to protect hepatocytes from apoptosis.Two apoptotic pathways have been described in bile acids-induced death. Both are controlled by multiple protein kinase signaling pathways. In mitochondria-controlled pathway, caspase-8 is activated with death domain-independent manner, whereas, Fas-dependent classical pathway involves ligand-independent oligomerization of Fas.Hydrophobic bile acids dose-dependently upregulate the inflammatory response by further stimulating production of inflammatory cytokines. Death receptor-mediated apoptosis is regulated at the cell surface by the receptor expression, at the death-inducing signaling complex (DISC) by expression of procaspase-8, the death receptors Fas-associated death domain (FADD), and cellular FADD-like interleukin 1-beta (IL-1ß)-converting enzyme (FLICE) inhibitory protein (cFLIP). Bile acids prevent cFLIP recruitment to the DISC and thereby enhance initiator caspase activation and lead to cholestatic apoptosis. At mitochondria, the expression of B-cell leukemia/lymphoma-2 (Bcl-2) family proteins contribute to apoptosis by regulating mitochondrial cytochrome c release via Bcl-2, Bcl-2 homology 3 (BH3) interacting domain death agonist (Bid), or Bcl-2 associated protein x (Bax). Fas receptor CD95 activation by hydrophobic bile acids is initiated by reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-dependent reactive oxygen species (ROS) signaling. However, activation of necroptosis by ligands of death receptors requires the kinase activity of receptor interacting protein1 (RIP1), which mediates the activation of RIP3 and mixed lineage kinase domain-like protein (MLKL). In this chapter, mainly the effect of protein kinases signal transduction on the mechanisms of hydrophobic bile acids-induced inflammation, apoptosis, necroptosis and necrosis are discussed.


Asunto(s)
Ácidos y Sales Biliares , Proteínas Quinasas , Apoptosis , Hepatocitos , Fosfatidilinositol 3-Quinasas , Receptor fas/genética
16.
Int J Mol Sci ; 22(19)2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34639105

RESUMEN

Keloids are a common form of pathologic wound healing and are characterized by an excessive production of extracellular matrix. This study examined the major contributing mechanism of human keloid pathogenesis using transcriptomic analysis. We identified the upregulation of mitochondrial oxidative stress response, protein processing in the endoplasmic reticulum, and TGF-ß signaling in human keloid tissue samples compared to controls, based on ingenuity pathway and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Electron microscopic examinations revealed an increased number of dysmorphic mitochondria and expanded endoplasmic reticulum (ER) in human keloid tissue samples than that in controls. Western blot analysis performed using human tissues suggested noticeably higher ER stress signaling in keloids than in normal tissues. Treatment with tauroursodeoxycholic acid (TUDCA), an ER stress inhibitor, significantly decreased scar formation in rabbit models, compared to normal saline and steroid injections. In summary, our findings demonstrate the contributions of mitochondrial dysfunction and dysregulated ER stress signaling in human keloid formation and the potential of TUDCA in the treatment of keloids.


Asunto(s)
Colagogos y Coleréticos/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Queloide/prevención & control , Ácido Tauroquenodesoxicólico/farmacología , Adulto , Animales , Apoptosis , Estudios de Casos y Controles , Femenino , Humanos , Queloide/etiología , Queloide/metabolismo , Queloide/patología , Masculino , Conejos , Transducción de Señal
17.
J Mol Cell Cardiol ; 143: 15-25, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32311415

RESUMEN

Metabolic (Met) syndrome is characterized by hypertension, insulin resistance and dyslipidaemia with high risk of cardiovascular disease. Endoplasmic reticulum (ER) stress is a key contributor in the pathogenesis of Met syndrome. The current study investigates the effect of Tauroursodeoxycholate (TUDCA), an ER stress inhibitor, on Met syndrome-induced cardiovascular complications and the possible underlying signalling mechanisms. Met syndrome was induced in rats, which were then treated with TUDCA. Body weight, blood pressure, glucose tolerance and insulin tolerance tests were performed. ER stress, survival and oxidative stress markers were measured in heart and aorta tissue. The results showed that TUDCA improved metabolic parameters in rats with Met syndrome. Treatment mitigated the Met syndrome-induced cardiovascular complications through upregulating survival markers and downregulating ER and oxidative stress markers. These results highlight the protective effect of ER stress inhibition as a potential target in the management of cardiovascular complications associated with Met syndrome.


Asunto(s)
Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Síndrome Metabólico/complicaciones , Síndrome Metabólico/metabolismo , Animales , Biomarcadores , Presión Sanguínea/efectos de los fármacos , Peso Corporal , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/patología , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Endotelio/metabolismo , Inmunohistoquímica , Síndrome Metabólico/etiología , Fenotipo , Ratas , Ácido Tauroquenodesoxicólico/farmacología
18.
J Med Virol ; 92(12): 3628-3637, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32356915

RESUMEN

Tauroursodeoxycholic acid (TUDCA), an endogenous bile acid, was used to protect liver function through antiapoptosis or reducing endoplasmic reticulum stress (ER stress). Previous studies showed that ER stress was modulated by herpes simplex virus types 1 (HSV-1) infection to facilitate viral replication. Here, we investigated the effect of TUDCA on HSV-1 infection of HEC-1-A cells and showed that both replication and multiplication of the virus were inhibited by TUDCA in a dose dependent manner. Unfolded protein response was induced to deliver stress signals from ER to nucleus. We found that TUDCA alleviated activating transcription factor 6 branch inhibition, partially enhanced protein kinase RNA-like ER kinase pathway activation, and repressed inositol-requiring protein 1α arm activation significantly in infected cells. The findings of this study suggest that TUDCA inhibits HSV-1 replication through ER stress pathway, which may provide a potential therapeutic strategy for HSV-1 infection.

19.
Mol Reprod Dev ; 87(1): 161-173, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31793725

RESUMEN

DNA damage associated with assisted reproductive technologies is an important factor affecting gamete fertility and embryo development. Activation of the TGR5 receptor by tauroursodeoxycholic acid (TUDCA) has been shown to reduce endoplasmic reticulum (ER) stress in embryos; however, its effect on genome damage responses (GDR) activation to facilitate DNA damage repair has not been examined. This study aimed to investigate the effect of TUDCA on DNA damage repair and embryo development. In a porcine model of ultraviolet light (UV)-induced nuclear stress, TUDCA reduced DNA damage and ER stress in developing embryos, as measured by γH2AX and glucose-regulated protein 78 immunofluorescence, respectively. TUDCA was equally able to rescue early embryo development. No difference in total cell number, DNA damage, or percentage of apoptotic cells, measured by cleaved caspase 3 immunofluorescence, was noted in embryos that reached the blastocyst stage. Interestingly, Dicer-substrate short interfering RNA-mediated disruption of TGR5 signaling abrogated the beneficial effects of TUDCA on UV-treated embryos. Quantitative PCR analysis revealed activation of the GDR, through increased messenger RNA abundance of DNAPK, 53BP1, and DNA ligase IV, as well as the ER stress response, through increased spliced XBP1 and X-linked inhibitor of apoptosis. Results from this study demonstrated that TUDCA activates TGR5-mediated signaling to reduce DNA damage and improve embryo development after UV exposure.


Asunto(s)
Daño del ADN/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Desarrollo Embrionario/efectos de los fármacos , Receptores Acoplados a Proteínas G/metabolismo , Porcinos/embriología , Ácido Tauroquenodesoxicólico/farmacología , Animales , Apoptosis/genética , Apoptosis/efectos de la radiación , Blastocisto/citología , Blastocisto/efectos de la radiación , Células Cultivadas , Daño del ADN/genética , Daño del ADN/efectos de la radiación , Reparación del ADN/genética , Reparación del ADN/efectos de la radiación , Desarrollo Embrionario/genética , Desarrollo Embrionario/efectos de la radiación , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/genética , Estrés del Retículo Endoplásmico/efectos de la radiación , Femenino , Fertilización In Vitro/métodos , Técnicas de Silenciamiento del Gen , Técnicas de Maduración In Vitro de los Oocitos/métodos , Recuperación del Oocito/métodos , Ovario/citología , Receptores Acoplados a Proteínas G/genética , Transducción de Señal/genética , Rayos Ultravioleta , Respuesta de Proteína Desplegada/genética , Respuesta de Proteína Desplegada/efectos de la radiación , Cigoto/efectos de la radiación
20.
Pharmacol Res ; 161: 105218, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33007418

RESUMEN

Endoplasmic reticulum (ER) stress is easily observed in chronic liver disease, which often causes accumulation of unfolded or misfolded proteins in the ER, leading to unfolded protein response (UPR). Regulating protein degradation is an integral part of UPR to relieve ER stress. The major protein degradation system includes the ubiquitin-proteasome system (UPS) and autophagy. All three arms of UPR triggered in response to ER stress can regulate UPS and autophagy. Accumulated misfolded proteins could activate these arms, and then generate various transcription factors to regulate the expression of UPS-related and autophagy-related genes. The protein degradation process regulated by UPR has great significance in many chronic liver diseases, including non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), viral hepatitis, liver fibrosis, and hepatocellular carcinoma(HCC). In most instances, the degradation of excessive proteins protects cells with ER stress survival from apoptosis. According to the specific functions of protein degradation in chronic liver disease, choosing to promote or inhibit this process is promising as a potential method for treating chronic liver disease.


Asunto(s)
Estrés del Retículo Endoplásmico , Hepatopatías/metabolismo , Hígado/metabolismo , Proteostasis , Animales , Autofagia , Enfermedad Crónica , Estrés del Retículo Endoplásmico/efectos de los fármacos , Humanos , Hígado/efectos de los fármacos , Hígado/patología , Hepatopatías/tratamiento farmacológico , Hepatopatías/patología , Proteolisis , Proteostasis/efectos de los fármacos , Respuesta de Proteína Desplegada
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA