Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Plant Microbe Interact ; 36(9): 554-557, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37014117

RESUMEN

Two genes (TaHRC and Tsn1) conferring susceptibility to Fusarium head blight and tan spot, Septoria nodorum blotch, and spot blotch in wheat were targeted through wide hybridization with maize expressing Cas9 and guide RNA (gRNA). For each gene, two target sites were selected and corresponding gRNA expression cassettes were synthesized and cloned into a binary vector carrying the CRISPR/Cas9-mediated genome editing machinery. The constructed binary vectors were used to transform the hybrid maize Hi-II through an Agrobacterium-mediated approach to generate T0 and T1 plants, which were used to cross with wheat variety Dayn for targeting Tsn1 or the susceptible allele (TaHRC-S) of TaHRC as well as with the near-isogenic line (Day-Fhb1) of Dayn for targeting the resistant allele (TaHRC-R) of TaHRC. Haploid embryos were rescued in vitro from the wide crosses to generate haploid plants. PCR amplification and sequencing indicated that 15 to 33% of the haploid plants contained the target gene with mutations at the target sites. This wheat × maize hybridization combined with genome editing approach provides a useful alternative tool, not only for targeting susceptibility genes to improve disease resistance without regulatory issues, but also for understanding gene function in wheat. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Sistemas CRISPR-Cas , Triticum , Sistemas CRISPR-Cas/genética , Triticum/genética , Zea mays/genética , Susceptibilidad a Enfermedades , ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA