Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 498
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(16): e2216183120, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37036986

RESUMEN

Plants respond to severe temperature changes by inducing the expression of numerous genes whose products enhance stress tolerance and responses. Dehydration-responsive element (DRE)-binding protein 1/C-repeat binding factor (DREB1/CBF) transcription factors act as master switches in cold-inducible gene expression. Since DREB1 genes are rapidly and strongly induced by cold stress, the elucidation of the molecular mechanisms of DREB1 expression is vital for the recognition of the initial responses to cold stress in plants. A previous study indicated that the circadian clock-related MYB-like transcription factors REVEILLE4/LHY-CCA1-Like1 (RVE4/LCL1) and RVE8/LCL5 directly activate DREB1 expression under cold stress conditions. These RVEs function in the regulation of circadian clock-related gene expression under normal temperature conditions. They also activate the expression of HSF-independent heat-inducible genes under high-temperature conditions. Thus, there are thought to be specific regulatory mechanisms whereby the target genes of these transcription factors are switched when temperature changes are sensed. We revealed that NIGHT LIGHT-INDUCIBLE AND CLOCK-REGULATED (LNK) proteins act as coactivators of RVEs in cold and heat stress responses in addition to regulating circadian-regulated genes at normal temperatures. We found that among the four Arabidopsis LNKs, LNK1 and LNK2 function under normal and high-temperature conditions, and LNK3 and LNK4 function under cold conditions. Thus, these LNK proteins play important roles in inducing specific genes under different temperature conditions. Furthermore, LNK3 and LNK4 are specifically phosphorylated under cold conditions, suggesting that phosphorylation is involved in their activation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción , Arabidopsis/fisiología , Temperatura , Respuesta al Choque Térmico , Respuesta al Choque por Frío , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/metabolismo , Transactivadores/metabolismo , Relojes Circadianos
2.
BMC Genomics ; 25(1): 696, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014336

RESUMEN

BACKGROUND: The marbling trait of cattle muscles, being a key indicator, played an important role in evaluating beef quality. Two breeds of cattle, namely a high-marbling (Angus) and a low-marbling (Nanyang) one, with their cattle muscles selected as our samples for transcriptome sequencing, were aimed to identify differentially expressed long non-coding RNAs (lncRNAs) and their targets associated with the marbling trait. RESULTS: Transcriptome sequencing identified 487 and 283 differentially expressed mRNAs and lncRNAs respectively between the high-marbling (Angus) and low-marbling (Nanyang) cattle muscles. Twenty-seven pairs of differentially expressed lncRNAs-mRNAs, including eighteen lncRNAs and eleven target genes, were found to be involved in fat deposition and lipid metabolism. We established a positive correlation between fourteen up-regulated (NONBTAT000849.2, MSTRG.9591.1, NONBTAT031089.1, MSTRG.3720.1, NONBTAT029718.1, NONBTAT004228.2, NONBTAT007494.2, NONBTAT011094.2, NONBTAT015080.2, NONBTAT030943.1, NONBTAT021005.2, NONBTAT021004.2, NONBTAT025985.2, and NONBTAT023845.2) and four down-regulated (NONBTAT000850.2, MSTRG.22188.3, MSTRG.22188.4, and MSTRG.22188.5) lncRNAs and eleven genes related to adiponectin family protein (ADIPOQ), cytochrome P450 family (CYP4V2), 3-hydroxyacyl-CoA dehydratase family (HACD4), kinesin family (KIF5C), lipin family (LPIN2), perilipin family (PLIN1), prostaglandin family (PTGIS), solute carrier family (SLC16A7, SLC2213, and SLCO4C1), and containing a transmembrane domain protein family (VSTM1). CONCLUSIONS: These candidate genes and lncRNAs can be regarded as being responsible for regulating the marbling trait of cattle. lncRNAs along with the variations in intramuscular fat marbling established a foundation for elucidating the genetic basis of high marbling in cattle.


Asunto(s)
ARN Largo no Codificante , ARN Mensajero , Animales , Bovinos/genética , ARN Largo no Codificante/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Perfilación de la Expresión Génica , Transcriptoma , Músculo Esquelético/metabolismo
3.
J Gene Med ; 26(1): e3575, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37548130

RESUMEN

BACKGROUND: The present study was designed to screen key microRNA (miRNA)-target gene networks for ovarian cancer (OC) and to classify and construct a risk assessment system for OC based on the target genes. METHODS: OC sample data of The Cancer Genome Atlas dataset and GSE26193, GSE30161, GSE63885 and GSE9891 datasets were retrospectively collected. Pearson correlation analysis and targeted analysis of miRNA and target gene were performed to screen key miRNA-target gene networks. Target genes associated with the prognosis of OC were screened from key miRNA-target gene networks for consensus clustering and least absolute shrinkage and selection operator-based regression machine learning analysis of OC samples. RESULTS: Twenty target genes of 2651 key miRNA-target gene pairs had significant prognostic correlation in each OC cohort, and OC was divided into three clusters. There were differences in prognostic outcome, biological pathways, immune cell abundance and susceptibility to immune checkpoint blockade (ICB) therapy and anti-tumor drugs among the three molecular clusters. S2 exhibited the least advantage in prognosis and immunotherapy response rate in the three molecular clusters, and the pathways regulating immunity, hypoxia, metabolism and promoting malignant progression of cancer, as well as infiltrating immune and stromal cell population abundance, were the highest in this cluster. An eight-target gene prognostic model was created, and the risk index obtained by using this model not only significantly distinguished the immune characteristics of the sample, but also predicted the response of the sample to ICB treatment, and helped to screen 36 potential anti-OC drugs. CONCLUSIONS: The present study provides a classification strategy for OC based on prognostic target genes in key miRNA-target gene networks, and creates a risk assessment system for predicting prognosis and response to ICB therapy in OC patients, providing molecular basis for prognosis and precise treatment of OC.


Asunto(s)
MicroARNs , Neoplasias Ováricas , Humanos , Femenino , MicroARNs/genética , Pronóstico , Redes Reguladoras de Genes , Estudios Retrospectivos , Neoplasias Ováricas/genética
4.
Planta ; 259(6): 128, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38639776

RESUMEN

MAIN CONCLUSION: Differential expression of 128 known and 111 novel miRNAs in the panicle of Nagina 22 under terminal drought stress targeting transcription factors, stress-associated genes, etc., enhances drought tolerance and helps sustain agronomic performance under terminal drought stress. Drought tolerance is a complex multigenic trait, wherein the genes are fine-tuned by coding and non-coding components in mitigating deleterious effects. MicroRNA (miRNA) controls gene expression at post-transcriptional level either by cleaving mRNA (transcript) or by suppressing its translation. miRNAs are known to control developmental processes and abiotic stress tolerance in plants. To identify terminal drought-responsive novel miRNA in contrasting rice cultivars, we constructed small RNA (sRNA) libraries from immature panicles of drought-tolerant rice [Nagina 22 (N 22)] and drought-sensitive (IR 64) cultivars grown under control and terminal drought stress. Our analysis of sRNA-seq data resulted in the identification of 169 known and 148 novel miRNAs in the rice cultivars. Among the novel miRNAs, 68 were up-regulated while 43 were down-regulated in the panicle of N 22 under stress. Interestingly, 31 novel miRNAs up-regulated in N 22 were down-regulated in IR 64, whereas 4 miRNAs down-regulated in N 22 were up-regulated in IR 64 under stress. To detect the effects of miRNA on mRNA expression level, transcriptome analysis was performed, while differential expression of miRNAs and their target genes was validated by RT-qPCR. Targets of the differentially expressed miRNAs include transcription factors and stress-associated genes involved in cellular/metabolic/developmental processes, response to abiotic stress, programmed cell death, photosynthesis, panicle/seed development, and grain yield. Differential expression of the miRNAs could be validated in an independent set of the samples. The findings might be useful in genetic improvement of drought-tolerant rice.


Asunto(s)
MicroARNs , Oryza , MicroARNs/genética , MicroARNs/metabolismo , Oryza/fisiología , Sequías , Perfilación de la Expresión Génica , Estrés Fisiológico/genética , Factores de Transcripción/genética , ARN Mensajero/metabolismo , Regulación de la Expresión Génica de las Plantas , Transcriptoma/genética
5.
Mol Cell Biochem ; 479(3): 653-664, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37155089

RESUMEN

Pleckstrin homeolike domain, family A, member 1 (PHLDA1) is a multifunctional protein that plays diverse roles in A variety of biological processes, including cell death, and hence its altered expression has been found in different types of cancer. Although studies have shown a regulatory relationship between p53 and PHLDA1, the molecular mechanism is still unclear. Especially, the role of PHLDA1 in the process of apoptosis is still controversial. In this study, we found that the expression of PHLDA1 in human cervical cancer cell lines was correlated with the up-expression of p53 after treatment with apoptosis-inducing factors. Subsequently, the binding site and the binding effect of p53 on the promoter region of PHLDA1 were verified by our bioinformatics data analysis and luciferase reporter assay. Indeed, we used CRISPR-Cas9 to knockout the p53 gene in HeLa cells and further confirmed that p53 can bind to the promoter region of PHLDA1 gene, and then directly regulate the expression of PHLDA1 by recruiting P300 and CBP to change the acetylation and methylation levels in the promoter region. Finally, a series of gain-of-function experiments further confirmed that p53 re-expression in HeLap53-/- cell can up-regulate the reduction of PHLDA1 caused by p53 knockout, and affect cell apoptosis and proliferation. Our study is the first to explore the regulatory mechanism of p53 on PHLDA1 by using the p53 gene knockout cell model, which further proves that PHLDA1 is a target-gene in p53-mediated apoptosis, and reveals the important role of PHLDA1 in cell fate determination.


Asunto(s)
Factores de Transcripción , Proteína p53 Supresora de Tumor , Humanos , Apoptosis , Células HeLa , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/genética
6.
Reprod Biomed Online ; 49(1): 103856, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38657291

RESUMEN

RESEARCH QUESTION: Does the observed correlation between dyslipidaemia and endometriosis indicate a bidirectional causal association? DESIGN: Bidirectional Mendelian randomization was used to investigate the causal association between lipid traits and endometriosis. Drug-target Mendelian randomization was used to explore potential drug-target genes for managing endometriosis. In cases where lipid-mediated effects via specific drug targets were significant, aggregate analyses, such as summary-data-based Mendelian randomization and colocalization methods, were introduced to validate the outcomes. Mediation analyses supplemented these evaluations. RESULTS: The bidirectional Mendelian randomization results suggested that genetically predicted triglyceride (OR 1.15, 95% CI 1.08-1.23), high-density lipoprotein cholesterol (OR 0.87, 95% CI 0.81-0.94), low-density lipoprotein cholesterol (OR 1.20, 95% CI 1.06-1.34) and apolipoprotein A (OR 0.90, 95% CI 0.83-0.96) concentrations were causally associated with endometriosis. Reverse Mendelian randomization results revealed that genetically proxied endometriosis was causally associated with triglyceride concentration (OR 1.02, 95% CI 1.01-1.02). In drug-target Mendelian randomization, genetic mimicry in proprotein convertase subtilisin/kexin type 9 (PCSK9) (OR 1.40, 95% CI 1.13-1.72), apolipoprotein B (APOB) (OR 1.49, 95% CI 1.21-1.86) and angiopoietin-related protein 3 (ANGPTL3) (OR 1.57, 95% CI 1.14-2.16) was significantly associated with the risk of endometriosis stages 1-2. CONCLUSION: There is a potential bidirectional causal association between endometriosis and dyslipidaemia. Genetic mimicry of PCSK9, APOB and ANGPTL3 is associated with the risk of early-stage endometriosis. The development of lipid-lowering drugs to treat endometriosis is of potential clinical interest.


Asunto(s)
Endometriosis , Análisis de la Aleatorización Mendeliana , Humanos , Femenino , Endometriosis/genética , Endometriosis/tratamiento farmacológico , Dislipidemias/genética , Dislipidemias/tratamiento farmacológico , Dislipidemias/epidemiología , Hipolipemiantes/uso terapéutico , Proproteína Convertasa 9/genética , Lípidos/sangre , Triglicéridos/sangre , Predisposición Genética a la Enfermedad
7.
Anim Biotechnol ; 35(1): 2259967, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37750325

RESUMEN

In goats, most follicles in the ovaries will be atresia and only a few dominant follicles (DFs) may eventually mature and ovulate at a follicular wave. To investigate the potential microRNAs (miRNAs) that regulate the expression of genes associated with follicular dominance or atresia, small RNA sequencing was performed on granulosa cells of DF and subordinate follicle at the first follicular wave in goats. A total of 108 differentially expressed miRNAs were detected in the two types of follicle granulosa cells: 16 upregulated miRNAs and 92 downregulated miRNAs. Kyoto Encyclopedia of Genes and Genomes analysis of the target genes showed that TKTL1, LOC102187810, LOC102184409 and ALDOA are closely associated with follicle dominance and are involved in the pentose phosphate pathway. Furthermore, a coexpression network of miRNAs and follicular dominance-related genes was constructed. The qPCR results well correlated with the small RNA sequencing data. Our findings provide new insight for exploring the molecular mechanism of miRNAs in regulating follicular development in goats.


Asunto(s)
MicroARNs , Transcriptoma , Femenino , Animales , Transcriptoma/genética , MicroARNs/genética , MicroARNs/metabolismo , Cabras/genética , Células de la Granulosa/metabolismo , Folículo Ovárico
8.
Pestic Biochem Physiol ; 198: 105711, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38225069

RESUMEN

Severe infestations of American sloughgrass (Beckmannia syzigachne (Steud.) Fernald) in wheat fields throughout Anhui Province, China, pose a significant threat to local agricultural production. This study aims to evaluate the susceptibility of 37 B. syzigachne populations collected from diverse wheat fields in Anhui Province to three commonly used herbicides: fenoxaprop-P-ethyl, mesosulfuron-ethyl, and isoproturon. Single-dose testing revealed that out of the 37 populations, 31, 26, and 11 populations had either evolved or were evolving resistance to fenoxaprop-P-ethyl, mesosulfuron-ethyl, and isoproturon, respectively. Among them, 25 populations displayed concurrent resistance to both fenoxaprop-P-ethyl and mesosulfuron-ethyl, while eight exhibited resistance to all three tested herbicides. Whole-plant bioassays confirmed that approximately 84% of the fenoxaprop-P-ethyl-resistant populations manifested high-level resistance (resistance index (RI) ≥10); 62% of the mesosulfuron-ethyl-resistant populations and 82% of the isoproturon-resistant populations exhibited low- to moderate-level resistance (2 ≤ RI <10). Three distinct target-site mutations were identified in 27% of fenoxaprop-P-ethyl-resistant populations, with no known resistance mutations detected in the remaining herbicide-resistant populations. The inhibition of cytochrome P450s (P450s) and/or glutathione S-transferases (GSTs) substantially increased susceptibility in the majority of resistant populations lacking mutations at the herbicide target site. In conclusion, resistance to fenoxaprop-P-ethyl and mesosulfuron-ethyl was widespread in B. syzigachne within Anhui Province's wheat fields, while resistance to isoproturon was rapidly evolving due to its escalating usage. Target-site mutations were present in approximately one-third of fenoxaprop-P-ethyl-resistant populations, and alternative mechanisms involving P450s and/or GSTs could explain the resistance observed in most of the remaining populations.


Asunto(s)
Herbicidas , Oxazoles , Compuestos de Fenilurea , Propionatos , Triticum , Triticum/genética , Poaceae , China , Herbicidas/farmacología , Resistencia a los Herbicidas/genética , Acetil-CoA Carboxilasa/genética
9.
Genomics ; 115(2): 110594, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36863417

RESUMEN

Astrocytes activate and crosstalk with neurons influencing inflammatory responses following ischemic stroke. The distribution, abundance, and activity of microRNAs in astrocytes-derived exosomes after ischemic stroke remains largely unknown. In this study, exosomes were extracted from primary cultured mouse astrocytes via ultracentrifugation, and exposed to oxygen glucose deprivation/re­oxygenation injury to mimic experimental ischemic stroke. SmallRNAs from astrocyte-derived exosomes were sequenced, and differentially expressed microRNAs were randomly selected and verified by stem-loop real time quantitative polymerase chain reaction. We found that 176 microRNAs, including 148 known and 28 novel microRNAs, were differentially expressed in astrocyte-derived exosomes following oxygen glucose deprivation/re­oxygenation injury. In gene ontology enrichment, Kyoto encyclopedia of genes and genomes pathway analyses, and microRNA target gene prediction analyses, these alteration in microRNAs were associated to a broad spectrum of physiological functions including signaling transduction, neuroprotection and stress responses. Our findings warrant further investigating of these differentially expressed microRNAs in human diseases particularly ischemic stroke.


Asunto(s)
Exosomas , Accidente Cerebrovascular Isquémico , MicroARNs , Ratones , Animales , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Astrocitos/metabolismo , Exosomas/genética , Exosomas/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Glucosa/metabolismo , Oxígeno/metabolismo
10.
Arch Pharm (Weinheim) ; 357(7): e2300756, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38501877

RESUMEN

The nuclear receptors hepatocyte nuclear factor 4α (HNF4α) and retinoic acid receptor-related orphan receptor-ß (RORß) are ligand-regulated transcription factors and potential drug targets for metabolic disorders. However, there is a lack of small molecular, selective ligands to explore the therapeutic potential in further detail. Here, we report the discovery of greater celandine (Chelidonium majus) isoquinoline alkaloids as nuclear receptor modulators: Berberine is a selective RORß inverse agonist and modulated target genes involved in the circadian clock, photoreceptor cell development, and neuronal function. The structurally related chelidonine was identified as a ligand for the constitutively active HNF4α receptor, with nanomolar potency in a cellular reporter gene assay. In human liver cancer cells naturally expressing high levels of HNF4α, chelidonine acted as an inverse agonist and downregulated genes associated with gluconeogenesis and drug metabolism. Both berberine and chelidonine are promising tool compounds to further investigate their target nuclear receptors and for drug discovery.


Asunto(s)
Berberina , Chelidonium , Factor Nuclear 4 del Hepatocito , Isoquinolinas , Humanos , Berberina/farmacología , Berberina/química , Berberina/síntesis química , Ligandos , Factor Nuclear 4 del Hepatocito/metabolismo , Factor Nuclear 4 del Hepatocito/genética , Chelidonium/química , Isoquinolinas/farmacología , Isoquinolinas/química , Isoquinolinas/síntesis química , Benzofenantridinas/farmacología , Benzofenantridinas/química , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/antagonistas & inhibidores , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/agonistas , Relación Estructura-Actividad , Células Hep G2 , Relación Dosis-Respuesta a Droga , Estructura Molecular , Línea Celular Tumoral , Chelidonium majus
11.
Int J Phytoremediation ; 26(8): 1221-1230, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38279665

RESUMEN

Cadmium is one of the most harmful heavy metals that harm agricultural products. Evaluating microRNAs expression is a new and accurate method to study plant response in various environmental conditions. So this study aimed to evaluate the contribution of two symbiotic fungi in improving flax tolerance in a Cd-polluted soil using microRNAs and their target gene expression. A factorial pot experiment in a completely randomized design was conducted with different levels of Cd (0, 20, and 40 mg kg-1) on non-inoculated and inoculated flax with Claroideoglomus etunicatum and Serendipita indica. The results presented that increasing Cd levels caused a constant decline of alkaline phosphatase of soil (from 243 to 210 and 153 µg PNP g-1 h-1), respectively, from control (Cd0) to 20 and 40 mg Cd kg-1. However, the inoculation of flax with fungi significantly enhanced these properties. A negative correlation was observed between the expression level of microRNA 167 and microRNA 398 with their corresponding target genes, auxin response factor 8 and superoxide dismutase zinc/copper 1, respectively. The expression level of both microRNAs and their targets indicated that the inoculation with symbiont fungi could diminish Cd stress and enhance the growth of flax.


Soil contamination with Cd affects plant growth.Root symbiotic fungi can improve plant growth in Cd-polluted soils.Examining microRNA expression is a new and accurate method to evaluate plant response to Cd pollution and symbiotic fungi.


Asunto(s)
Biodegradación Ambiental , Cadmio , Lino , MicroARNs , Raíces de Plantas , Contaminantes del Suelo , Simbiosis , Cadmio/metabolismo , Lino/metabolismo , Lino/microbiología , Lino/genética , Contaminantes del Suelo/metabolismo , MicroARNs/metabolismo , MicroARNs/genética , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Basidiomycota/fisiología , Micorrizas/fisiología
12.
Int J Mol Sci ; 25(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39201568

RESUMEN

Multiple sclerosis (MS) is associated with alterations in neuroendocrine function, primarily the hypothalamic-pituitary-adrenal axis, including lower expression of the glucocorticoid receptor (GR) and its target genes in peripheral blood mononuclear cells (PBMC) or full blood. We previously found reduced mineralocorticoid receptor (MR) expression in MS patients' peripheral blood. MS is being treated with a widening variety of disease-modifying treatments (DMT), some of which have similar efficacy but different mechanisms of action; body-fluid biomarkers to support the choice of the optimal initial DMT and/or to indicate an unsatisfactory response before clinical activity are unavailable. Using cell culture of volunteers' PBMCs and subsequent gene expression analysis (microarray and qPCR validation), we identified the mRNA expression of OTUD1 to represent MR signaling. The MR and MR target gene expression levels were then measured in full blood samples. In 119 MS (or CIS) patients, the expression of both MR and OTUD1 was lower than in 42 controls. The expression pattern was related to treatment, with the MR expression being particularly low in patients treated with fingolimod. While MR signaling may be involved in the therapeutic effects of some disease-modifying treatments, MR and OTUD1 expression can complement the neuroendocrine assessment of MS disease course. If confirmed, such assessment may support clinical decision-making.


Asunto(s)
Leucocitos Mononucleares , Esclerosis Múltiple , Receptores de Mineralocorticoides , Transducción de Señal , Humanos , Receptores de Mineralocorticoides/metabolismo , Receptores de Mineralocorticoides/genética , Esclerosis Múltiple/sangre , Esclerosis Múltiple/genética , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/patología , Femenino , Masculino , Adulto , Leucocitos Mononucleares/metabolismo , Persona de Mediana Edad
13.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38255967

RESUMEN

Abiotic stress is an adverse environmental factor that severely affects plant growth and development, and plants have developed complex regulatory mechanisms to adapt to these unfavourable conditions through long-term evolution. In recent years, many transcription factor families of genes have been identified to regulate the ability of plants to respond to abiotic stresses. Among them, the AP2/ERF (APETALA2/ethylene responsive factor) family is a large class of plant-specific proteins that regulate plant response to abiotic stresses and can also play a role in regulating plant growth and development. This paper reviews the structural features and classification of AP2/ERF transcription factors that are involved in transcriptional regulation, reciprocal proteins, downstream genes, and hormone-dependent signalling and hormone-independent signalling pathways in response to abiotic stress. The AP2/ERF transcription factors can synergise with hormone signalling to form cross-regulatory networks in response to and tolerance of abiotic stresses. Many of the AP2/ERF transcription factors activate the expression of abiotic stress-responsive genes that are dependent or independent of abscisic acid and ethylene in response to abscisic acid and ethylene. In addition, the AP2/ERF transcription factors are involved in gibberellin, auxin, brassinosteroid, and cytokinin-mediated abiotic stress responses. The study of AP2/ERF transcription factors and interacting proteins, as well as the identification of their downstream target genes, can provide us with a more comprehensive understanding of the mechanism of plant action in response to abiotic stress, which can improve plants' ability to tolerate abiotic stress and provide a more theoretical basis for increasing plant yield under abiotic stress.


Asunto(s)
Ácido Abscísico , Proteínas de Plantas , Estrés Fisiológico , Etilenos/farmacología , Hormonas , Proteínas de Plantas/genética , Factores de Transcripción/genética
14.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38999954

RESUMEN

Plants are subjected to abiotic stresses throughout their developmental period. Abiotic stresses include drought, salt, heat, cold, heavy metals, nutritional elements, and oxidative stresses. Improving plant responses to various environmental stresses is critical for plant survival and perpetuation. WRKY transcription factors have special structures (WRKY structural domains), which enable the WRKY transcription factors to have different transcriptional regulatory functions. WRKY transcription factors can not only regulate abiotic stress responses and plant growth and development by regulating phytohormone signalling pathways but also promote or suppress the expression of downstream genes by binding to the W-box [TGACCA/TGACCT] in the promoters of their target genes. In addition, WRKY transcription factors not only interact with other families of transcription factors to regulate plant defence responses to abiotic stresses but also self-regulate by recognising and binding to W-boxes in their own target genes to regulate their defence responses to abiotic stresses. However, in recent years, research reviews on the regulatory roles of WRKY transcription factors in higher plants have been scarce and shallow. In this review, we focus on the structure and classification of WRKY transcription factors, as well as the identification of their downstream target genes and molecular mechanisms involved in the response to abiotic stresses, which can improve the tolerance ability of plants under abiotic stress, and we also look forward to their future research directions, with a view of providing theoretical support for the genetic improvement of crop abiotic stress tolerance.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Estrés Fisiológico , Factores de Transcripción , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética , Plantas/metabolismo
15.
Int J Mol Sci ; 25(14)2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39062941

RESUMEN

Wheat is one of the most important food crops globally, and understanding the regulation of grain size is crucial for wheat breeding to achieve a higher grain yield. MicroRNAs (miRNAs) play vital roles in plant growth and development. However, the miRNA-mediated mechanism underlying grain size regulation remains largely elusive in wheat. Here, we report the characterization and functional validation of a miRNA, TamiR397a, associated with grain size regulation in wheat. The function of three TaMIR397 homoeologs was determined through histochemical ß-glucuronidase-dependent assay. MiRNA expression was detected using quantitative reverse transcription polymerase chain reaction (qRT-PCR), and the function of TamiR397a was validated through its transgenic overexpression and repression in wheat. It was found that TaMIR397-6A and TaMIR397-6B encode active TamiR397a. The expression profiling indicated that TamiR397a was differentially expressed in various tissues and gradually up-regulated during grain filling. The inhibition of TamiR397a perturbed grain development, leading to a decrease in grain size and weight. Conversely, the overexpression of TamiR397a resulted in increased grain size and weight by accelerating the grain filling process. Transcriptome analysis revealed that TamiR397a regulates a set of genes involved in hormone response, desiccation tolerance, regulation of cellular senescence, seed dormancy, and seed maturation biological processes, which are important for grain development. Among the down-regulated genes in the grains of the TamiR397a-overexpressing transgenic plants, 11 putative targets of the miRNA were identified. Taken together, our results demonstrate that TamiR397a is a positive regulator of grain size and weight, offering potential targets for breeding wheat with an increased grain yield.


Asunto(s)
Grano Comestible , Regulación de la Expresión Génica de las Plantas , MicroARNs , Triticum , Triticum/genética , Triticum/crecimiento & desarrollo , Triticum/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Grano Comestible/metabolismo , Poliploidía , Plantas Modificadas Genéticamente/genética , Perfilación de la Expresión Génica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
16.
Br Poult Sci ; 65(4): 394-402, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38738875

RESUMEN

1. Skeletal muscle is an important component of chicken carcass. In chickens, the number of muscle fibres is fixed during the embryonic period, and muscle development during the embryonic period determines the muscle development potential after hatching.2. Beijing-You (BY) and Cornish (CN) chickens show completely different growth rates and body types, and two breeds were used in this study to explore the role of lncRNAs in muscle development during different chicken embryonic periods. A systematic analysis of lncRNAs and mRNAs were conducted in the pectoral muscle tissues of BY and CN chickens at embryonic days 11 (ED11), 13 (ED13), 15 (ED15), 17 (ED17), and 1-day-old (D1) using RNA-seq. A total of 4,104 differentially expressed transcripts (DETs) were identified among the five stages, including 2,359 lncRNAs and 1,745 mRNAs.3. The number of DETs between the two breeds at ED17 (1,658 lncRNAs and 1,016 mRNAs) was much higher than the total number of DET at all the other stages (692 lncRNAs and 729 mRNAs), indicating that the two breeds show the largest difference in gene regulation at ED17.4. Correlation analysis was performed for all differentially expressed lncRNAs and mRNAs during the five periods. Forty-three, cis interaction pairs of lncRNA-mRNA related to chicken muscle development were predicted. The expression of four pairs was verified, and the results showed MSTRG.12395.2-FGFBP2 and MSTRG.18590.6-FMOD were significantly up-regulated in CN at ED11 compared to BY and might be important candidate genes for embryonic muscle development.


Asunto(s)
Pollos , Perfilación de la Expresión Génica , Desarrollo de Músculos , ARN Largo no Codificante , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Pollos/genética , Pollos/crecimiento & desarrollo , Desarrollo de Músculos/genética , Perfilación de la Expresión Génica/veterinaria , Embrión de Pollo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Transcriptoma , Músculos Pectorales
17.
Plant J ; 111(6): 1660-1675, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35861696

RESUMEN

Maize (Zea mays) is an important cereal crop worldwide. However, its yield and quality are adversely affected by salt stress resulting from soil hypersalinity. Exploring the regulatory mechanisms of stress responses is of vital importance to increase maize seed production. In the present study, we screened ethyl methanesulfonate-induced maize mutants and identified a salt-tolerant mutant. A single base was mutated in ZmWRKY20, leading to the formation of a truncated protein variant. A detailed phenotypic analysis revealed that this mutant had significantly higher resistance to wilting and lower reactive oxygen species levels than the inbred line B73. ZmWRKY20 showed transcriptional activity in yeast and specifically bound W-boxes according to the results of our yeast one-hybrid, electrophoretic mobility shift, and dual-luciferase assays. Overexpression of ZmWRKY20 decreased salt tolerance in maize. Transcriptome profiling revealed that ZmWRKY20 overexpression extensively reprogrammed genes involved in regulating defense and oxidation-reduction responses. The results substantiate that ZmWRKY20 is directly targeted to the basic leucine zipper (bZIP) motif in the transcription factor ZmbZIP111. It was also verified that ZmWRKY20 interacts with ZmWRKY115 and both proteins act jointly to enhance ZmbZIP111 repression. The results indicate that the ZmWRKY20 and ZmWRKY115 transcription factors interact in the nucleus, leading to repression of ZmbZIP111 expression by directly binding its promoter, and increase the sensitivity of maize seedlings to salt stress. The current study improves our understanding of the complicated responses of maize to salt stress.


Asunto(s)
Tolerancia a la Sal , Zea mays , Metanosulfonato de Etilo/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/genética , Tolerancia a la Sal/genética , Suelo , Estrés Fisiológico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Zea mays/metabolismo
18.
Plant J ; 112(2): 399-413, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36004545

RESUMEN

Ripening is the last, irreversible developmental stage during which fruit become palatable, thus promoting seed dispersal by frugivory. In Alisa Craig fruit, mRNAs with increasing m5C levels, such as STPK and WRKY 40, were identified as being involved in response to biotic and abiotic stresses. Furthermore, two mRNAs involved in cell wall metabolism, PG and EXP-B1, also presented increased m5C levels. In the Nr mutant, several m5C-modified mRNAs involved in fruit ripening, including those encoding WRKY and MADS-box proteins, were found. Targets of long non-coding RNAs and circular RNAs with different m5C sites were also found; these targets included 2-alkenal reductase, soluble starch synthase 1, WRKY, MADS-box, and F-box/ketch-repeat protein SKIP11. A combined analysis of changes in 5mC methylation and mRNA revealed many differentially expressed genes with differentially methylated regions encoding transcription factors and key enzymes related to ethylene biosynthesis and signal transduction; these included ERF084, EIN3, AP2/ERF, ACO5, ACS7, EIN3/4, EBF1, MADS-box, AP2/ERF, and ETR1. Taken together, our findings contribute to the global understanding of the mechanisms underlying fruit ripening, thereby providing new information for both fruit and post-harvest behavior.


Asunto(s)
Proteínas F-Box , Solanum lycopersicum , Almidón Sintasa , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Metilación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN Circular , Almidón Sintasa/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas F-Box/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Etilenos/metabolismo , ADN/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo , Oxidorreductasas/metabolismo
19.
BMC Genomics ; 24(1): 16, 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36635624

RESUMEN

BACKGROUND: As an important regulator of autoimmune responses and inflammation, S100A9 may serve as a therapeutic target in inflammatory diseases. However, the role of S100A9 in Clostridium perfringens type C infectious diarrhea is poorly studied. The aim of our study was to screen downstream target genes regulated by S100A9 in Clostridium perfringens beta2 (CPB2) toxin-induced IPEC-J2 cell injury. We constructed IPEC-J2 cells with S100A9 knockdown and a CPB2-induced cell injury model, screened downstream genes regulated by S100A9 using RNA-Seq technique, and performed functional enrichment analysis. The function of S100A9 was verified using molecular biology techniques. RESULTS: We identified 316 differentially expressed genes (DEGs), of which 221 were upregulated and 95 were downregulated. Functional enrichment analysis revealed that the DEGs were significantly enriched in cilium movement, negative regulation of cell differentiation, immune response, protein digestion and absorption, and complement and coagulation cascades. The key genes of immune response were TNF, CCL1, CCR7, CSF2, and CXCL9. When CPB2 toxin-induced IPEC-J2 cells overexpressed S100A9, Bax expression increased, Bcl-2 expression and mitochondrial membrane potential decreased, and SOD activity was inhibited. CONCLUSION: In conclusion, S100A9 was involved in CPB2-induced inflammatory response in IPEC-J2 cells by regulating the expression of downstream target genes, namely, TNF, CCL1, CCR7, CSF2, and CXCL9; promoting apoptosis; and aggravating oxidative cell damage. This study laid the foundation for further study on the regulatory mechanism underlying piglet diarrhea.


Asunto(s)
Toxinas Bacterianas , Calgranulina B , Intestinos , Animales , Clostridium perfringens , Diarrea , Células Epiteliales/metabolismo , Receptores CCR7/metabolismo , Porcinos , Calgranulina B/metabolismo , Toxinas Bacterianas/efectos adversos , Inflamación
20.
Pharmacol Res ; 190: 106713, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36863427

RESUMEN

In the retina, hypoxic condition leads to overgrowing leaky vessels resulting in altered metabolic supply that may cause impaired visual function. Hypoxia-inducible factor-1 (HIF-1) is a central regulator of the retinal response to hypoxia by activating the transcription of numerous target genes, including vascular endothelium growth factor, which acts as a major player in retinal angiogenesis. In the present review, oxygen urge by the retina and its oxygen sensing systems including HIF-1 are discussed in respect to the role of the beta-adrenergic receptors (ß-ARs) and their pharmacologic manipulation in the vascular response to hypoxia. In the ß-AR family, ß1- and ß2-AR have long been attracting attention because their pharmacology is intensely used for human health, while ß3-AR, the third and last cloned receptor is no longer increasingly emerging as an attractive target for drug discovery. Here, ß3-AR, a main character in several organs including the heart, the adipose tissue and the urinary bladder, but so far a supporting actor in the retina, has been thoroughly examined in respect to its function in retinal response to hypoxia. In particular, its oxygen dependence has been taken as a key indicator of ß3-AR involvement in HIF-1-mediated responses to oxygen. Hence, the possibility of ß3-AR transcription by HIF-1 has been discussed from early circumstantial evidence to the recent demonstration that ß3-AR acts as a novel HIF-1 target gene by playing like a putative intermediary between oxygen levels and retinal vessel proliferation. Thus, targeting ß3-AR may implement the therapeutic armamentarium against neovascular pathologies of the eye.


Asunto(s)
Receptores Adrenérgicos beta , Neovascularización Retiniana , Humanos , Receptores Adrenérgicos beta/metabolismo , Neovascularización Retiniana/metabolismo , Retina/metabolismo , Oxígeno/metabolismo , Hipoxia/metabolismo , Receptores Adrenérgicos beta 3/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA