Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
EMBO J ; 42(15): e112684, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37303233

RESUMEN

Upon DNA damage, cells activate the DNA damage response (DDR) to coordinate proliferation and DNA repair. Dietary, metabolic, and environmental inputs are emerging as modulators of how DNA surveillance and repair take place. Lipids hold potential to convey these cues, although little is known about how. We observed that lipid droplet (LD) number specifically increased in response to DNA breaks. Using Saccharomyces cerevisiae and cultured human cells, we show that the selective storage of sterols into these LD concomitantly stabilizes phosphatidylinositol-4-phosphate (PI(4)P) at the Golgi, where it binds the DDR kinase ATM. In turn, this titration attenuates the initial nuclear ATM-driven response to DNA breaks, thus allowing processive repair. Furthermore, manipulating this loop impacts the kinetics of DNA damage signaling and repair in a predictable manner. Thus, our findings have major implications for tackling genetic instability pathologies through dietary and pharmacological interventions.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Proteínas de Saccharomyces cerevisiae , Humanos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Esteroles/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Daño del ADN , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo
2.
Crit Rev Biochem Mol Biol ; 56(5): 441-454, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34151669

RESUMEN

DNA replication is a highly precise process which usually functions in a perfect rhythm with cell cycle progression. However, cells are constantly faced with various kinds of obstacles such as blocks in DNA replication, lack of availability of precursors and improper chromosome alignment. When these problems are not addressed, they may lead to chromosome instability and the accumulation of mutations, and even cell death. Therefore, the cell has developed response mechanisms to keep most of these situations under control. Of the many factors that participate in this DNA damage response, members of the family of phosphatidylinositol 3-kinase-related protein kinases (PIKKs) orchestrate the response landscape. Our understanding of two members of the PIKK family, human ATR (yeast Mec1) and ATM (yeast Tel1), and their associated partner proteins, has shown substantial progress through recent biochemical and structural studies. Emerging structural information of these unique kinases show common features that reveal the mechanism of kinase activity.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Proteínas Serina-Treonina Quinasas , Proteínas de Saccharomyces cerevisiae , Proteínas de la Ataxia Telangiectasia Mutada/genética , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Daño del ADN , Humanos , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Int J Mol Sci ; 24(15)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37569756

RESUMEN

DNA double-strand breaks (DSBs) are a significant threat to cell viability due to the induction of genome instability and the potential loss of genetic information. One of the key players for early DNA damage response is the conserved Mre11/Rad50 Nbs1/Xrs2 (MRN/X) complex, which is quickly recruited to the DNA's ruptured ends and is required for their tethering and their subsequent repair via different pathways. The MRN/X complex associates with several other proteins to exert its functions, but it also exploits sophisticated internal dynamic properties to orchestrate the several steps required to address the damage. In this review, we summarize the intrinsic molecular features of the MRN/X complex through biophysical, structural, and computational analyses in order to describe the conformational transitions that allow for this complex to accomplish its multiple functions.


Asunto(s)
Núcleo Celular , Roturas del ADN de Doble Cadena , Conformación Molecular , Núcleo Celular/metabolismo , Ácido Anhídrido Hidrolasas/genética , ADN/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Reparación del ADN , Enzimas Reparadoras del ADN/genética , Daño del ADN
4.
Curr Genet ; 67(3): 389-396, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33433732

RESUMEN

The RecA-family recombinase Rad51 is the central player in homologous recombination (HR), the faithful pathway for repairing DNA double-strand breaks (DSBs) during both mitosis and meiosis. The behavior of Rad51 protein in vivo is fine-tuned via posttranslational modifications conducted by multiple protein kinases in response to cell cycle cues and DNA lesions. Unrepaired DSBs and ssDNA also activate Mec1ATR and Tel1ATM family kinases to initiate the DNA damage response (DDR) that safeguards genomic integrity. Defects in HR and DDR trigger genome instability and result in cancer predisposition, infertility, developmental defects, neurological diseases or premature aging. Intriguingly, yeast Mec1ATR- and Tel1ATM-dependent phosphorylation promotes Rad51 protein stability during DDR, revealing how Mec1ATR can alleviate proteotoxic stress. Moreover, Mec1ATR- and Tel1ATM-dependent phosphorylation also occurs on DDR-unrelated proteins, suggesting that Mec1ATR and Tel1ATM have a DDR-independent function in protein homeostasis. In this minireview, we first describe how human and budding yeast Rad51 are phosphorylated by multiple protein kinases at different positions to promote homology-directed DNA repair and recombination (HDRR). Then, we discuss recent findings showing that intrinsic structural disorder and Mec1ATR/Tel1ATM-dependent phosphorylation are coordinated in yeast Rad51 to regulate both HR and protein homeostasis.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Serina-Treonina Quinasas/genética , Recombinasa Rad51/genética , Proteínas de Saccharomyces cerevisiae/genética , Daño del ADN/genética , Homeostasis/genética , Recombinación Homóloga/genética , Humanos , Meiosis/genética , Mitosis/genética , Saccharomyces cerevisiae/genética
5.
Biochem Soc Trans ; 49(2): 933-943, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33769480

RESUMEN

The natural ends of linear chromosomes resemble those of accidental double-strand breaks (DSBs). DSBs induce a multifaceted cellular response that promotes the repair of lesions and slows down cell cycle progression. This response is not elicited at chromosome ends, which are organized in nucleoprotein structures called telomeres. Besides counteracting DSB response through specialized telomere-binding proteins, telomeres also prevent chromosome shortening. Despite of the different fate of telomeres and DSBs, many proteins involved in the DSB response also localize at telomeres and participate in telomere homeostasis. In particular, the DSB master regulators Tel1/ATM and Mec1/ATR contribute to telomere length maintenance and arrest cell cycle progression when chromosome ends shorten, thus promoting a tumor-suppressive process known as replicative senescence. During senescence, the actions of both these apical kinases and telomere-binding proteins allow checkpoint activation while bulk DNA repair activities at telomeres are still inhibited. Checkpoint-mediated cell cycle arrest also prevents further telomere erosion and deprotection that would favor chromosome rearrangements, which are known to increase cancer-associated genome instability. This review summarizes recent insights into functions and regulation of Tel1/ATM and Mec1/ATR at telomeres both in the presence and in the absence of telomerase, focusing mainly on discoveries in budding yeast.


Asunto(s)
Daño del ADN , Reparación del ADN/genética , Proteínas Quinasas/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Telómero/genética , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , ADN/genética , ADN/metabolismo , Roturas del ADN de Doble Cadena , Humanos , Modelos Genéticos , Proteínas Proto-Oncogénicas c-ets/metabolismo , Proteínas Represoras/metabolismo , Telomerasa/metabolismo , Telómero/metabolismo , Proteína ETS de Variante de Translocación 6
6.
J Biol Chem ; 294(49): 18846-18852, 2019 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-31640985

RESUMEN

Saccharomyces cerevisiae Tel1 is the ortholog of human ATM kinase and initiates a cell cycle checkpoint in response to dsDNA breaks (DSBs). Tel1ATM kinase is activated synergistically by naked dsDNA and the Mre11-Rad50-Xrs2NBS1 complex (MRX). A multisubunit protein complex, which is related to human shelterin, protects telomeres from being recognized as DSBs, thereby preventing a Tel1ATM checkpoint response. However, at very short telomeres, Tel1ATM can be recruited and activated by the MRX complex, resulting in telomere elongation. Conversely, at long telomeres, Rap1-interacting-factor 2 (Rif2) is instrumental in suppressing Tel1 activity. Here, using an in vitro reconstituted Tel1 kinase activation assay, we show that Rif2 inhibits MRX-dependent Tel1 kinase activity. Rif2 discharges the ATP-bound form of Rad50, which is essential for all MRX-dependent activities. This conclusion is further strengthened by experiments with a Rad50 allosteric ATPase mutant that maps outside the conserved ATP binding pocket. We propose a model in which Rif2 attenuates Tel1 activity at telomeres by acting directly on Rad50 and discharging its activated ATP-bound state, thereby rendering the MRX complex incompetent for Tel1 activation. These findings expand our understanding of the mechanism by which Rif2 controls telomere length.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Telómero/metabolismo
7.
EMBO Rep ; 19(7)2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29739811

RESUMEN

In both yeast and mammals, the topoisomerase poison camptothecin (CPT) induces fork reversal, which has been proposed to stabilize replication forks, thus providing time for the repair of CPT-induced lesions and supporting replication restart. We show that Tel1, the Saccharomyces cerevisiae orthologue of human ATM kinase, stabilizes CPT-induced reversed forks by counteracting their nucleolytic degradation by the MRX complex. Tel1-lacking cells are hypersensitive to CPT specifically and show less reversed forks in the presence of CPT The lack of Mre11 nuclease activity restores wild-type levels of reversed forks in CPT-treated tel1Δ cells without affecting fork reversal in wild-type cells. Moreover, Mrc1 inactivation prevents fork reversal in wild-type, tel1Δ, and mre11 nuclease-deficient cells and relieves the hypersensitivity of tel1Δ cells to CPT Altogether, our data indicate that Tel1 counteracts Mre11 nucleolytic activity at replication forks that undergo Mrc1-mediated reversal in the presence of CPT.


Asunto(s)
Proteínas de Ciclo Celular/genética , Replicación del ADN/genética , Endodesoxirribonucleasas/genética , Exodesoxirribonucleasas/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Camptotecina/farmacología , Reparación del ADN/genética , Replicación del ADN/efectos de los fármacos , ADN-Topoisomerasas/genética , Humanos , Mutación , Saccharomyces cerevisiae/genética
8.
Curr Genet ; 65(1): 11-16, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29922906

RESUMEN

The evolutionarily conserved Mre11-Rad50-Xrs2 (MRX) complex cooperates with the Sae2 protein in initiating resection of DNA double-strand breaks (DSBs) and in maintaining the DSB ends tethered to each other for their accurate repair. How these MRX-Sae2 functions contribute to DNA damage resistance is not understood. By taking advantage of mre11 alleles that suppress the hypersensitivity of sae2∆ cells to genotoxic agents, we have recently found that Mre11 can be divided in two structurally distinct domains that support resistance to genotoxic agents by mediating different processes. While the Mre11 N-terminal domain impacts on the resection activity of long-range resection nucleases by mediating MRX and Tel1/ATM association to DNA DSBs, the C-terminus influences the MRX-tethering activity by its virtue to interact with Rad50. Given the evolutionary conservation of the MRX complex, our results have implications for understanding the consequences of its dysfunctions in human diseases.


Asunto(s)
Daño del ADN , ADN de Hongos/metabolismo , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , ADN de Hongos/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/genética , Endonucleasas/genética , Endonucleasas/metabolismo , Exodesoxirribonucleasas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
9.
Curr Genet ; 64(5): 965-970, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29470645

RESUMEN

Phosphatidylinositol 3-kinase-related kinases (PIKKs), are structurally related to phosphatidylinositol 3-kinase (lipid kinase), but possess protein kinase activities. PIKKs include ATM, ATR, DNA-PK, mTOR and SMG1, key regulators of cell proliferation and genome maintenance. TRRAP, which is devoid of protein kinase activity, is the sixth member of the PIKK family. PIKK family members are gigantic proteins in the range of 300-500 kDa. It has become apparent in the last decade that the stability or maturation of the PIKK family members depends on a molecular chaperone called the Tel2-Tti1-Tti2 (TTT) complex. Several lines of evidence have established a model in which TTT connects to the Hsp90 chaperone through the Rvb1-Rvb2-Tah1-Pih1 (R2TP) complex in mammalian and yeast cells. However, recent studies of yeast cells indicate that TTT is able to form different complexes. These observations raise a possibility that several different mechanisms regulate TTT-mediated protein stability of PIKKs.


Asunto(s)
Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Quinasa de la Caseína II/metabolismo , Estabilidad de Enzimas , Proteínas HSP90 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo
10.
J Food Sci Technol ; 55(4): 1455-1466, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29606760

RESUMEN

The Saccharomyces cerevisiae TEL1 gene is an ortholog of the human ATM (Ataxia telangiectasia mutated) gene. S. cerevisiae tel1 mutant (tel1∆) lacking Tel1p, share some of the cellular defects with ATM mutation that includes prevention of oxidative damage repair, premature aging and apoptosis. In the present study, we investigated the protective effects of quercetin on the sensitivity of yeast S. cerevisiae tel1∆ cells exposed to oxidative, apoptotic and DNA damaging stress and viability of tel1∆ cells during chronological aging. Quercetin improved the stress resistance of tel1∆ cells when challenged with oxidants such as hydrogen peroxide (H2O2), menadine bisulphite (MBS) and tertiary butyl hydroperoxide (t-BHP) by scavenging reactive oxygen species (ROS). Quercetin protected the tel1∆ cells from acetic acid-induced apoptotic cell death and sensitivity against hydroxyurea. We found that quercetin attenuated ROS accumulation and apoptotic markers in tel1∆ cells and therefore an increase in cell viability during chronological aging. Our results from the S. cerevisiae model, suggest that use of quercetin as a food supplement might alleviate oxidative stress mediated DNA damage, apoptosis and age related damaging effects in AT patients and also improve health beneficial effects in humans.

11.
Cell Mol Life Sci ; 73(19): 3655-63, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27141941

RESUMEN

DNA double-strand breaks (DSBs) are a nasty form of damage that needs to be repaired to ensure genome stability. The DSB ends can undergo a strand-biased nucleolytic processing (resection) to generate 3'-ended single-stranded DNA (ssDNA) that channels DSB repair into homologous recombination. Generation of ssDNA also triggers the activation of the DNA damage checkpoint, which couples cell cycle progression with DSB repair. The checkpoint response is intimately linked to DSB resection, as some checkpoint proteins regulate the resection process. The present review will highlight recent works on the mechanism and regulation of DSB resection and its interplays with checkpoint activation/inactivation in budding yeast.


Asunto(s)
Puntos de Control del Ciclo Celular , Roturas del ADN de Doble Cadena , Saccharomyces cerevisiae/metabolismo , Endonucleasas/metabolismo , Modelos Biológicos , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
EMBO Rep ; 15(10): 1093-101, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25122631

RESUMEN

Telomerase action is temporally linked to DNA replication. Although yeast telomeres are normally late replicating, telomere shortening leads to early firing of subtelomeric DNA replication origins. We show that double-strand breaks flanked by short telomeric arrays cause origin firing early in S phase at late-replicating loci and that this effect on origin firing time is dependent on the Tel1(ATM) checkpoint kinase. The effect of Tel1(ATM) on telomere replication timing extends to endogenous telomeres and is stronger than that elicited by Rif1 loss. These results establish that Tel1(ATM) specifies not only the extent but also the timing of telomerase recruitment.


Asunto(s)
Replicación del ADN/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Acortamiento del Telómero/genética , Telómero/genética , Roturas del ADN de Doble Cadena , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Origen de Réplica/genética , Proteínas Represoras/genética , Fase S/genética , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Telomerasa/genética , Proteínas de Unión a Telómeros/genética
13.
Exp Cell Res ; 329(1): 124-31, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25116420

RESUMEN

Ataxia-telangiectasia mutated (ATM) and RAD3-related (ATR) are widely known as being central players in the mitotic DNA damage response (DDR), mounting responses to DNA double-strand breaks (DSBs) and single-stranded DNA (ssDNA) respectively. The DDR signalling cascade couples cell cycle control to damage-sensing and repair processes in order to prevent untimely cell cycle progression while damage still persists [1]. Both ATM/ATR are, however, also emerging as essential factors in the process of meiosis; a specialised cell cycle programme responsible for the formation of haploid gametes via two sequential nuclear divisions. Central to achieving accurate meiotic chromosome segregation is the introduction of numerous DSBs spread across the genome by the evolutionarily conserved enzyme, Spo11. This review seeks to explore and address how cells utilise ATM/ATR pathways to regulate Spo11-DSB formation, establish DSB homeostasis and ensure meiosis is completed unperturbed.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Roturas del ADN de Doble Cadena , Homeostasis/fisiología , Meiosis/fisiología , Animales , Ciclo Celular/fisiología , Humanos
14.
J Fungi (Basel) ; 7(10)2021 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-34682295

RESUMEN

The cell wall integrity (CWI) signaling pathway is best known for its roles in cell wall biogenesis. However, it is also thought to participate in the response to genotoxic stress. The stress-activated protein kinase Mpk1 (Slt2, is activated by DNA damaging agents through an intracellular mechanism that does not involve the activation of upstream components of the CWI pathway. Additional observations suggest that protein kinase C (Pkc1), the top kinase in the CWI signaling cascade, also has a role in the response to genotoxic stress that is independent of its recognized function in the activation of Mpk1. Pkc1 undergoes hyper-phosphorylation specifically in response to genotoxic stress; we have found that this requires the DNA damage checkpoint kinases Mec1 (Mitosis Entry Checkpoint) and Tel1 (TELomere maintenance), but not their effector kinases. We demonstrate that the casein kinase 1 (CK1) ortholog, Hrr25 (HO and Radiation Repair), previously implicated in the DNA damage transcriptional response, associates with Pkc1 under conditions of genotoxic stress. We also found that the induced association of Hrr25 with Pkc1 requires Mec1 and Tel1, and that Hrr25 catalytic activity is required for Pkc1-hyperphosphorylation, thereby delineating a pathway from the checkpoint kinases to Pkc1. We used SILAC mass spectrometry to identify three residues within Pkc1 the phosphorylation of which was stimulated by genotoxic stress. We mutated these residues as well as a collection of 13 phosphorylation sites within the regulatory domain of Pkc1 that fit the consensus for CK1 sites. Mutation of the 13 Pkc1 phosphorylation sites blocked hyper-phosphorylation and diminished RNR3 (RiboNucleotide Reductase) basal expression and induction by genotoxic stress, suggesting that Pkc1 plays a role in the DNA damage transcriptional response.

15.
Cell Rep ; 34(13): 108906, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33789097

RESUMEN

The Mre11-Rad50-Xrs2 (MRX) complex detects and processes DNA double-strand breaks (DSBs). Its DNA binding and processing activities are regulated by transitions between an ATP-bound state and a post-hydrolysis cutting state that is nucleolytically active. Mre11 endonuclease activity is stimulated by Sae2, whose lack increases MRX persistence at DSBs and checkpoint activation. Here we show that the Rif2 protein inhibits Mre11 endonuclease activity and is responsible for the increased MRX retention at DSBs in sae2Δ cells. We identify a Rad50 residue that is important for Rad50-Rif2 interaction and Rif2 inhibition of Mre11 nuclease. This residue is located near a Rad50 surface that binds Sae2 and is important in stabilizing the Mre11-Rad50 (MR) interaction in the cutting state. We propose that Sae2 stimulates Mre11 endonuclease activity by stabilizing a post-hydrolysis MR conformation that is competent for DNA cleavage, whereas Rif2 antagonizes this Sae2 function and stabilizes an endonuclease inactive MR conformation.


Asunto(s)
Roturas del ADN de Doble Cadena , Endonucleasas/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Puntos de Control del Ciclo Celular , Daño del ADN , Endonucleasas/genética , Eliminación de Gen , Modelos Biológicos , Mutación/genética , Unión Proteica , Proteínas de Saccharomyces cerevisiae/genética
16.
J Microbiol Biotechnol ; 30(3): 469-475, 2020 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-31847509

RESUMEN

During meiosis I, programmed DNA double-strand breaks (DSBs) occur to promote chromosome pairing and recombination between homologs. In Saccharomyces cerevisiae, Mec1 and Tel1, the orthologs of human ATR and ATM, respectively, regulate events upstream of the cell cycle checkpoint to initiate DNA repair. Tel1ATM and Mec1ATR are required for phosphorylating various meiotic proteins during recombination. This study aimed to investigate the role of Tel1ATM and Mec1ATR in meiotic prophase via physical analysis of recombination. Tel1ATM cooperated with Mec1ATR to mediate DSB-to-single end invasion transition, but negatively regulated DSB formation. Furthermore, Mec1ATR was required for the formation of interhomolog joint molecules from early prophase, thus establishing a recombination partner choice. Moreover, Mec1ATR specifically promoted crossover-fated DSB repair. Together, these results suggest that Tel1ATM and Mec1ATR function redundantly or independently in all post-DSB stages.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Roturas del ADN de Doble Cadena , Péptidos y Proteínas de Señalización Intracelular/genética , Meiosis , Proteínas Serina-Treonina Quinasas/genética , Recombinación Genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Cohesinas
17.
Genetics ; 213(2): 411-429, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31391264

RESUMEN

Telomeres progressively shorten at every round of DNA replication in the absence of telomerase. When they become critically short, telomeres trigger replicative senescence by activating a DNA damage response that is governed by the Mec1/ATR and Tel1/ATM protein kinases. While Mec1/ATR is known to block cell division when extended single-stranded DNA (ssDNA) accumulates at eroded telomeres, the molecular mechanism by which Tel1/ATM promotes senescence is still unclear. By characterizing a Tel1-hy184 mutant variant that compensates for the lack of Mec1 functions, we provide evidence that Tel1 promotes senescence by signaling to a Rad9-dependent checkpoint. Tel1-hy184 anticipates senescence onset in telomerase-negative cells, while the lack of Tel1 or the expression of a kinase-defective (kd) Tel1 variant delays it. Both Tel1-hy184 and Tel1-kd do not alter ssDNA generation at telomeric DNA ends. Furthermore, Rad9 and (only partially) Mec1 are responsible for the precocious senescence promoted by Tel1-hy184. This precocious senescence is mainly caused by the F1751I, D1985N, and E2133K amino acid substitutions, which are located in the FRAP-ATM-TRAPP domain of Tel1 and also increase Tel1 binding to DNA ends. Altogether, these results indicate that Tel1 induces replicative senescence by directly signaling dysfunctional telomeres to the checkpoint machinery.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Acortamiento del Telómero/genética , Telómero/genética , Sustitución de Aminoácidos/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Puntos de Control del Ciclo Celular/genética , División Celular/genética , Senescencia Celular/genética , Daño del ADN/genética , Replicación del ADN/genética , ADN de Cadena Simple/genética , Proteínas de Unión al ADN/genética , Proteínas Mutantes/genética , Saccharomyces cerevisiae/genética , Telomerasa/genética
18.
Genetics ; 213(4): 1271-1288, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31645360

RESUMEN

Previous models suggested that regulation of telomere length in Saccharomyces cerevisiae by Tel1(ATM) and Mec1(ATR) would parallel the established pathways regulating the DNA damage response. Here, we provide evidence that telomere length regulation differs from the DNA damage response in both the Tel1 and Mec1 pathways. We found that Rad53 mediates a Mec1 telomere length regulation pathway but is dispensable for Tel1 telomere length regulation, whereas in the DNA damage response, Rad53 is regulated by both Mec1 and Tel1 Using epistasis analysis with a Tel1 hypermorphic allele, Tel1-hy909, we found that the MRX complex is not required downstream of Tel1 for telomere elongation but is required downstream of Tel1 for the DNA damage response. Our data suggest that nucleolytic telomere end processing is not a required step for telomerase to elongate telomeres.


Asunto(s)
Daño del ADN , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Telómero/metabolismo , Secuencias de Aminoácidos , Fosforilación , Proteínas de Saccharomyces cerevisiae/química , Transducción de Señal , Homeostasis del Telómero
19.
Genetics ; 211(2): 515-530, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30538107

RESUMEN

The Mre11-Rad50-Xrs2 (MRX) complex acts together with the Sae2 protein to initiate resection of DNA double-strand breaks (DSBs) and to regulate a checkpoint response that couples cell cycle progression with DSB repair. Sae2 supports resistance to DNA damage and downregulates the signaling activities of MRX, Tel1, and Rad53 checkpoint proteins at the sites of damage. How these functions are connected to each other is not known. Here, we describe the separation-of-function sae2-ms mutant that, similar to SAE2 deletion, upregulates MRX and Tel1 signaling activities at DSBs by reducing Mre11 endonuclease activity. However, unlike SAE2 deletion, Sae2-ms causes neither DNA damage sensitivity nor enhanced Rad53 activation, indicating that DNA damage resistance depends mainly on Sae2-mediated Rad53 inhibition. The lack of Sae2, but not the presence of Sae2-ms, impairs long-range resection and increases both Rad9 accumulation at DSBs and Rad53-Rad9 interaction independently of Mre11 nuclease activity. Altogether, these data lead to a model whereby Sae2 plays distinct functions in limiting MRX-Tel1 and Rad9 abundance at DSBs, with the control on Rad9 association playing the major role in supporting DNA damage resistance and in regulating long-range resection and checkpoint activation.


Asunto(s)
Reparación del ADN , Endonucleasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinasa de Punto de Control 2/genética , Quinasa de Punto de Control 2/metabolismo , Roturas del ADN de Doble Cadena , Regulación hacia Abajo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Endonucleasas/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mutación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
Cell Signal ; 62: 109344, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31201849

RESUMEN

Target of rapamycin complex 1 (TORC1) protein kinase responds to various stresses including genotoxic stress. However, its molecular mechanism is poorly understood. Here, we show that DNA damage induces nonselective and selective autophagy in budding yeast. DNA damage caused the attenuation of TORC1 activity, dephosphorylation of Atg13, and autophagy induction. The TORC1-upstream Rag GTPase Gtr1 was not required for TORC1 inactivation and autophagy induction after DNA damage. Furthermore, DNA damage responsive protein kinases Mec1/ATM and Tel1/ATR, and stress-responsive mitogen-activated protein kinase Mpk1/Slt2 were required for the full induction of autophagy. Autophagic proteolysis was required for DNA damage tolerance in TORC1 inactive conditions. This study revealed that multiple protein kinases regulate DNA damage-induced autophagy.


Asunto(s)
Autofagia/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Relacionadas con la Autofagia/genética , Daño del ADN/genética , Regulación del Desarrollo de la Expresión Génica , Regulación Fúngica de la Expresión Génica/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Proteínas de Unión al GTP Monoméricas/genética , Saccharomyces cerevisiae/genética , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA