Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Cell Sci ; 133(4)2020 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-31974116

RESUMEN

Elevated replication stress is evident at telomeres of about 10-15% of cancer cells, which maintain their telomeres via a homologous recombination (HR)-based mechanism, referred to as alternative lengthening of telomeres (ALT). How ALT cells resolve replication stress to support their growth remains incompletely characterized. Here, we report that CSB (also known as ERCC6) promotes recruitment of HR repair proteins (MRN, BRCA1, BLM and RPA32) and POLD3 to ALT telomeres, a process that requires the ATPase activity of CSB and is controlled by ATM- and CDK2-dependent phosphorylation. Loss of CSB stimulates telomeric recruitment of MUS81 and SLX4, components of the structure-specific MUS81-EME1-SLX1-SLX4 (MUS-SLX) endonuclease complex, suggesting that CSB restricts MUS-SLX-mediated processing of stalled forks at ALT telomeres. Loss of CSB coupled with depletion of SMARCAL1, a chromatin remodeler implicated in catalyzing regression of stalled forks, synergistically promotes not only telomeric recruitment of MUS81 but also the formation of fragile telomeres, the latter of which is reported to arise from fork stalling. These results altogether suggest that CSB-mediated HR repair and SMARCAL1-mediated fork regression cooperate to prevent stalled forks from being processed into fragile telomeres in ALT cells.


Asunto(s)
Homeostasis del Telómero , Telómero , Reparación del ADN , Endonucleasas/metabolismo , Recombinación Homóloga , Telómero/genética , Telómero/metabolismo , Homeostasis del Telómero/genética
2.
Mutat Res Rev Mutat Res ; 794: 108507, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38802042

RESUMEN

Given that telomeres play a fundamental role in maintaining genomic stability, the study of the chromosomal aberrations involving telomeric sequences is a topic of considerable research interest. In recent years, the scoring of these types of aberrations has been used in vertebrate cells, particularly human cells, to evaluate the effects of genotoxic agents on telomeres and the involvement of telomeric sequences on chromosomal aberrations. Currently, chromosomal aberrations involving telomeric sequences are evaluated in peripheral blood lymphocytes or immortalized cell lines, using telomere or telomere plus centromere fluorescence in situ hybridization (FISH) with Peptide Nucleic Acid (PNA) probes (PNA-FISH). The telomere PNA probe is more efficient in the detection of telomeric sequences than conventional FISH with a telomere DNA probe. In addition, the intensity of the telomeric PNA-FISH probe signal is directly correlated with the number of telomeric repeats. Therefore, use of this type of probe can identify chromosomal aberrations involving telomeres as well as determine the telomere length of the sample. There are several mistakes and inconsistencies in the literature regarding the identification of telomere aberrations, which prevent accurate scoring and data comparison between different publications concerning these types of aberrations. The aim of this review is to clarify these issues, and provide proper terminology and criteria for the identification, scoring, and analysis of telomere aberrations.

3.
Geroscience ; 45(2): 965-982, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36482259

RESUMEN

Hutchinson-Gilford progeria syndrome is a premature aging disease caused by LMNA gene mutation and the production of a truncated prelamin A protein "progerin" that elicits cellular and organismal toxicity. Progerin accumulates in the vasculature, being especially detrimental for vascular smooth muscle cells (VSMC). Vessel stiffening and aortic atherosclerosis in HGPS patients are accompanied by VSMC depletion in the medial layer, altered extracellular matrix (ECM), and thickening of the adventitial layer. Mechanisms whereby progerin causes massive VSMC loss and vessel alterations remain poorly understood. Mature VSMC retain phenotypic plasticity and can switch to a synthetic/proliferative phenotype. Here, we show that progerin expression in human and mouse VSMC causes a switch towards the synthetic phenotype. This switch elicits some level of replication stress in normal cells, which is exacerbated in the presence of progerin, leading to telomere fragility, genomic instability, and ultimately VSMC death. Calcitriol prevents replication stress, telomere fragility, and genomic instability, reducing VSMC death. In addition, RNA-seq analysis shows induction of a profibrotic and pro-inflammatory aging-associated secretory phenotype upon progerin expression in human primary VSMC. Our data suggest that phenotypic switch-induced replication stress might be an underlying cause of VSMC loss in progeria, which together with loss of contractile features and gain of profibrotic and pro-inflammatory signatures contribute to vascular stiffness in HGPS.


Asunto(s)
Músculo Liso Vascular , Progeria , Humanos , Ratones , Animales , Envejecimiento , Progeria/genética , Fenotipo , Inestabilidad Genómica
4.
Genes (Basel) ; 14(2)2023 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-36833275

RESUMEN

Telomeres present inherent difficulties to the DNA replication machinery due to their repetitive sequence content, formation of non-B DNA secondary structures, and the presence of the nucleo-protein t-loop. Especially in cancer cells, telomeres are hot spots for replication stress, which can result in a visible phenotype in metaphase cells termed "telomere fragility". A mechanism cells employ to mitigate replication stress, including at telomeres, is DNA synthesis in mitosis (MiDAS). While these phenomena are both observed in mitotic cells, the relationship between them is poorly understood; however, a common link is DNA replication stress. In this review, we will summarize what is known to regulate telomere fragility and telomere MiDAS, paying special attention to the proteins which play a role in these telomere phenotypes.


Asunto(s)
Replicación del ADN , ADN , ADN/metabolismo , Mitosis , Fenotipo , Telómero/metabolismo
5.
Arh Hig Rada Toksikol ; 73(1): 23-30, 2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35390241

RESUMEN

Ionising radiation damages DNA directly and indirectly through increased production of reactive oxygen species. Although telomeres have been reported as indicators of radiosensitivity, their maintenance in response to occupational exposure to low radiation doses is still a matter of debate. In this work we aimed to investigate telomere length and structure in hospital workers occupationally exposed to X-rays and to relate these findings to oxidation of biomolecules and chromosome aberrations. Blood samples of exposed participants and matching controls were taken during periodical check-ups. Chromosome aberrations and telomere length and structure were analysed in peripheral blood lymphocytes using Q-FISH, whereas oxidative stress parameters [pro/antioxidant balance (PAB), lipid peroxidation, and 8-oxo-dG] were measured in plasma samples. Based on the CA findings we divided the exposed group into two subgroups, of which one had chromosome aberrations in the first division metaphases and the other did not. There was no significant difference in telomere length between any of the groups. However, both subgroups showed significantly higher rate of fragile telomeres and higher lipid peroxidation product and 8-oxo-dG levels than controls. The rate of fragile telomeres significantly correlated with plasma levels of 8-oxo-dG, which suggests that continuous exposure to low radiation doses induces oxidative base damage of guanine resulting in telomere fragility.


Asunto(s)
Exposición Profesional , Radiología , 8-Hidroxi-2'-Desoxicoguanosina , Aberraciones Cromosómicas , Humanos , Exposición Profesional/efectos adversos , Radiación Ionizante , Telómero
6.
Methods Mol Biol ; 1672: 471-482, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29043642

RESUMEN

A fragile site is a chromosomal locus that is prone to form a gap or constriction visible within a condensed metaphase chromosome, particularly following exposure of cells to DNA replication stress. Based on their frequency, fragile sites are classified as either common (CFSs; present in all individuals) or rare (RFSs; present in only a few individuals). Interest in fragile sites has remained high since their discovery in 1965, because of their association with human disease. CFSs are recognized as drivers of oncogene activation and genome instability in cancer cells, while some RFSs are associated with neurodegenerative diseases. This review summaries our current understanding of the nature and causes of fragile site "expression", including the recently characterized phenomenon of telomere fragility. In particular, we focus on a description of the methodologies and technologies for detection and analysis of chromosome fragile sites.


Asunto(s)
Sitios Frágiles del Cromosoma , Inestabilidad Genómica , Hibridación Fluorescente in Situ , Animales , Replicación del ADN , Expresión Génica , Sitios Genéticos , Humanos , Hibridación Fluorescente in Situ/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA