Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Luminescence ; 39(8): e4840, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39109476

RESUMEN

The study presents Ag2CrO4/Fe2O3/CeO2 ternary nanocomposite, based on Fe2O3/CeO2 binary composites, which demonstrated excellent photocatalytic performance in the photodegradation of methylene blue under solar irradiation. The Ag2CrO4/Fe2O3/CeO2 nanocomposites was orthorhombic, ilmenite, and cubic-fluorite phases of Ag2CrO4, Fe2O3, and CeO2, respectively, according to the XRD examination. A strong bond between Ag2CrO4, Fe2O3, and CeO2 within the nanocomposite was demonstrated by the SEM and TEM investigations. Moreover, it was discovered that the coupling of Ag2CrO4 and Fe2O3 caused a red shift and moved CeO2 absorption edge from the UV to the visible spectrum. The reason behind this is that the band gap of CeO2 reduced 2.85 to 2.69 eV and the absorbance band intensity increased in visible region. Utilizing visible light, Ag2CrO4/Fe2O3/CeO2 ternary nanocomposites exhibit enhanced photocatalytic properties (98.90%) for the degradation of methylene blue (MB) within 100 min. The long-term reliability and recyclability of the photocatalyst were explored through 3 successive cycles. An active radical quenching test was conducted to elucidate the involvement of O2 - and OH which are the primary reactive species in the photocatalytic breakdown of MB. Ag2CrO4/Fe2O3/CeO2 ternary nanocomposites displayed notable improvements in photodegradation activity, making them well suited for the effective removal of hazardous dyes present in textile effluents.


Asunto(s)
Cerio , Compuestos Férricos , Azul de Metileno , Nanocompuestos , Fotólisis , Nanocompuestos/química , Cerio/química , Catálisis , Azul de Metileno/química , Compuestos Férricos/química , Procesos Fotoquímicos , Compuestos de Plata/química , Plata/química , Tamaño de la Partícula
2.
J Environ Manage ; 329: 117022, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36549062

RESUMEN

In this study, a ternary ZnO@spinel cobalt ferrite@carbon nanotube magnetic photocatalyst (ZSCF@CNT) was successfully synthesized and used to activate peroxymonosulfate (PMS) for Cefixime (CFX) antibiotic degradation under UVC irradiation. The morphology, optical, structural, and physicochemical properties of ZSCF@CNT were characterized and analyzed by XPS, XRD, FESEM-EDX, TEM, BET, VSM, UV-vis DRS and PL analysis. The results indicated that the ternary ZSCF@CNT photocatalyst exhibited superior catalytic activity on CFX elimination than that of individual components and binary composite catalysts, in which CFX with was rapidly removed under UVC irradiation and PMS. The effect of operational parameters including initial PMS, catalyst, and CFX concentrations and solution pH on the catalytic activity was investigated in detail; the optimal conditions were: pH: 7.0, catalyst: 0.3 g/L, PMS: 3.0 mM, leading to total CFX (10 mg/L) elimination in ∼20 min. Based on the radical scavenger tests, various radicals and non-radical species including sulfate, hydroxyl and superoxide radicals, singlet oxygen and electrons were involved in the ZSCF@CNT/PMS/UVC system. The high surface area, reduced agglomeration formation and excellent separation of photogenerated electron-hole pairs embodied in ZSCF@CNT photocatalyst conferred its superior catalytic activity and stability. The results from the tests in real water matrices revealed that ZSCF@CNT could be a promising photocatalyst to activate PMS for actual aqueous matrices' treatment.


Asunto(s)
Nanotubos de Carbono , Óxido de Zinc , Cefixima , Peróxidos/química
3.
Molecules ; 28(13)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37446754

RESUMEN

Electrochemical behavior of novel electrode materials based on polydiphenylamine-2-carboxylic acid (PDPAC) binary and ternary nanocomposite coatings was studied for the first time. Nanocomposite materials were obtained in acidic or alkaline media using oxidative polymerization of diphenylamine-2-carboxylic acid (DPAC) in the presence of activated IR-pyrolyzed polyacrylonitrile (IR-PAN-a) only or IR-PAN-a and single-walled carbon nanotubes (SWCNT). Hybrid electrodes are electroactive layers of stable suspensions of IR-PAN-a/PDPAC and IR-PAN-a/SWCNT/PDPAC nanocomposites in formic acid (FA) formed on the flexible strips of anodized graphite foil (AGF). Specific capacitances of electrodes depend on the method for the production of electroactive coatings. Electrodes specific surface capacitances Cs reach 0.129 and 0.161 F∙cm-2 for AGF/IR-PAN-a/PDPACac and AGF/IR-PAN-a/SWCNT/PDPACac, while for AGF/IR-PAN-a/PDPACalk and AGF/IR-PAN-a/SWCNT/PDPACalk Cs amount to 0.135 and 0.151 F∙cm-2. Specific weight capacitances Cw of electrodes with ternary coatings reach 394, 283, 180 F∙g-1 (AGF/IR-PAN-a/SWCNT/PDPACac) and 361, 239, 142 F∙g-1 (AGF/IR-PAN-a/SWCNT/PDPACalk) at 0.5, 1.5, 3.0 mA·cm-2 in an aprotic electrolyte. Such hybrid electrodes with electroactive nanocomposite coatings are promising as a cathode material for SCs.


Asunto(s)
Grafito , Nanocompuestos , Nanotubos de Carbono , Oxidación-Reducción , Electrodos , Proteínas Tirosina Quinasas Receptoras
4.
Polymers (Basel) ; 16(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38675065

RESUMEN

To address the dilemma of the stiffness and toughness properties of high-density polyethylene (HDPE) composites, titanate coupling agent-treated CaCO3 nanoparticles (nano-CaCO3) and ethylene-octene copolymer (POE) were utilized to blend with HDPE to prepare ternary nanocomposites via a two-sequence-step process. Meanwhile, a one-step process was also studied as a control. The obtained ternary nanocomposites were characterized by scanning electron microscopy (SEM), Advanced Rheometrics Expansion System (ARES), Dynamic Mechanical Analysis (DMA), wide-angle X-ray diffraction analysis (WXRD), and mechanical test. The SEM results showed one or two CaCO3 nanoparticles were well-encapsulated by POE and were uniformly dispersed into the HDPE matrix to form a core-shell structure of 100-200 nm in size by the two-step process, while CaCO3 nanoparticles were aggregated in the HDPE matrix by the one-step method. The result of the XRD showed that the nano-CaCO3 particle played a role in promoting crystallization in HDPE nanocomposites. Mechanical tests showed that the synergistic effect of both the POE elastomer and CaCO3 nanoparticles should account for the balanced performance of the ternary composites. In comparison with neat HDPE, the notched impact toughness of the ternary nanocomposites of HDPE/POE/nano-CaCO3 was significantly increased. In addition, the core-shell structure absorbed the fracture impact energy and prevent further propagation of micro-cracks, thus obtaining a higher notched Izod impact strength.

5.
J Colloid Interface Sci ; 652(Pt B): 1197-1207, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37657219

RESUMEN

To counter the negative effects of electromagnetic radiation on the immunity of precision instruments, the stealthiness of military equipment, and human health, the preparation of porous multi-component nano-composites is considered an effective strategy to obtain efficient microwave absorption. In this work, the spongy ternary nano-composites (STC) with large specific surface area (SSA) and pore volume obtained by adjusting the calcination temperature, the porous effectively improves the impedance matching. The ternary composition of FeCo/Fe0.45Ni0.55/C, large SSA and pore volume provide abundant specific surface/interface for polarization and magnetization, the continuous conductive network is established, the strong dielectric and magnetic loss achieve a synergistic effect, realizing strong absorption in the low-frequency, greatly reducing the minimum reflection loss (RLmin, -56.37 dB) and broadening the effective absorption bandwidth (EAB, 7.45 GHz). The microwave absorption mechanism has been analyzed in detail and its great potential for practical applications has been verified by RCS signal simulations. This research provides an effective method for fabricating high-performance ternary nano-composite microwave absorbers.

6.
Materials (Basel) ; 17(1)2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38203988

RESUMEN

Advanced oxidation processes stand as green alternatives for the decontamination of waste waters. Photocatalysis is an advanced oxidation process in which a semiconductor material absorbs photon energy and triggers redox reactions capable of degrading organic pollutants. Titanium dioxide (TiO2, titania) represents one of the most popular choices of photocatalytic materials, however the UV-activation of its anatase phase and its high charge recombination rate decrease its photocatalytic activity and weaken its potential. Graphene oxide is a 2D carbon nanomaterial consisting of exfoliated sheets of hexagonally arranged carbons decorated with oxygen- and hydrogen- functional groups. Composite nanomaterials consisting of titania nanoparticles and graphene oxide have proven to enhance the photocatalytic activity of pure TiO2. In this review, we present a thorough literature review of ternary nanocomposites based on synthesized or commercial titania nanoparticles and GO (or reduced GO) particularly used for the photodegradation of dyes. GO/TiO2 has been enriched primarily with metals, semiconductors and magnetic nanomaterials, proving a superior dye degradation performance and reusability compared to bare TiO2. Ongoing challenges and perspectives are outlined.

7.
Polymers (Basel) ; 15(13)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37447539

RESUMEN

Novel ternary hybrid polyphenoxazine (PPOA)-derived nanocomposites involving Co-Fe particles and single-walled (SWCNTs) or multi-walled (MWCNTs) carbon nanotubes were prepared and investigated. An efficient one-pot method employing infrared (IR) heating enabled the formation of Co-Fe/CNT/PPOA nanocomposites. During this, the dehydrogenation of phenoxazine (POA) units led to the simultaneous reduction of metals by released hydrogen, yielding bimetallic Co-Fe particles with a size range from the nanoscale (5-30 nm) to the microscale (400-1400 nm). The synthesized Co-Fe/CNT/PPOA nanomaterials exhibited impressive thermal stability, demonstrating a half-weight loss at 640 °C and 563 °C in air for Co-Fe/SWCNT/PPOA and Co-Fe/MWCNT/PPOA, respectively. Although a slightly broader range of saturation magnetization values was obtained using MWCNTs, it was found that the type of carbon nanotube, whether an SWCNT (22.14-41.82 emu/g) or an MWCNT (20.93-44.33 emu/g), did not considerably affect the magnetic characteristics of the resulting nanomaterial. By contrast, saturation magnetization escalated with an increasing concentration of both cobalt and iron. These nanocomposites demonstrated a weak dependence of electrical conductivity on frequency. It is shown that the conductivity value for hybrid nanocomposites is higher compared to single-polymer materials and becomes higher with increasing CNT content.

8.
Nanomaterials (Basel) ; 12(20)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36296763

RESUMEN

The use of parabens in personal care products can result in their leakage into water bodies, especially in public swimming pools with insufficient water treatment. We found that ferrite-based nanomaterials could catalytically enhance ozone efficiency through the production of reactive oxygen species. Our objective was to develop a catalytic ozonation system using ternary nanocomposites that could minimize the ozone supply while ensuring the treated water was acceptable for disposal into the environment. A ternary CuFe2O4/CuO/Fe2O3 nanocomposite (CF) delivered excellent degradation performance in catalytic ozonation systems for butylparaben (BP). By calcining with melamine, we obtained the CF/g-C3N4 (CFM) nanocomposite, which had excellent magnetic separation properties with slightly lower degradation efficiency than CF, due to possible self-agglomeration that reduced its electron capture ability. The presence of other constituent ions in synthetic wastewater and actual discharge water resulted in varying degradation rates due to the formation of secondary active radicals. 1O2 and •O2− were the main dominant reactive species for BP degradation, which originated from the O3 adsorption that occurs on the CF≡Cu(I)−OH and CF≡Fe(III)−OH surface, and from the reaction with •OH from indirect ozonation. Up to 50% of O3-treated water resulted in >80% ELT3 cell viability, the presence of well-adhered cells, and no effect on the young tip of Ceratophyllum demersum L. Overall, our results demonstrated that both materials could be potential catalysts for ozonation because of their excellent degrading performance and, consequently, their non-toxic by-products.

9.
Nanomaterials (Basel) ; 11(2)2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-33572985

RESUMEN

This paper presents the synthesis of Fe-Co-Ni nanocomposites by chemical precipitation, followed by a reduction process. It was found that the influence of the chemical composition and reduction temperature greatly alters the phase formation, its structures, particle size distribution, and magnetic properties of Fe-Co-Ni nanocomposites. The initial hydroxides of Fe-Co-Ni combinations were prepared by the co-precipitation method from nitrate precursors and precipitated using alkali. The reduction process was carried out by hydrogen in the temperature range of 300-500 °C under isothermal conditions. The nanocomposites had metallic and intermetallic phases with different lattice parameter values due to the increase in Fe content. In this paper, we showed that the values of the magnetic parameters of nanocomposites can be controlled in the ranges of MS = 7.6-192.5 Am2/kg, Mr = 0.4-39.7 Am2/kg, Mr/Ms = 0.02-0.32, and HcM = 4.72-60.68 kA/m by regulating the composition and reduction temperature of the Fe-Co-Ni composites. Due to the reduction process, drastic variations in the magnetic features result from the intermetallic and metallic face formation. The variation in magnetic characteristics is guided by the reduction degree, particle size growth, and crystallinity enhancement. Moreover, the reduction of the surface spins fraction of the nanocomposites under their growth induced an increase in the saturation magnetization. This is the first report where the influence of Fe content on the Fe-Co-Ni ternary system phase content and magnetic properties was evaluated. The Fe-Co-Ni ternary nanocomposites obtained by co-precipitation, followed by the hydrogen reduction led to the formation of better magnetic materials for various magnetically coupled device applications.

10.
J Hazard Mater ; 404(Pt B): 123868, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33038731

RESUMEN

Structural dimensionality and surface morphology are key properties that greatly affect the functionalities of materials. Herein, we report a synthesis of dimensionally coupled ternary nanocomposites from three-dimensional (3D) bismuth oxyiodide (BiOI), two-dimensional (2D) graphene oxide (GO), and one-dimensional (1D) bismuth sulfide (Bi2S3) nanomaterials for tetracycline degradation under visible-light irradiation. The 2%-Bi2S3@1%-GO/BiOI ternary nanocomposites show higher degradation efficiency than neat 3D-BiOI. The coupling of neat 1D-Bi2S3 with the 1%-GO/BiOI binary nanocomposite does not increase the specific surface area of the resulting 2%-Bi2S3@1%-GO/3D-BiOI ternary nanocomposite, but enhances notably its charge carrier separation and migration, according to the analysis of the higher photocurrent, smaller arc radius of the electrochemical impedance spectroscopy and lower photoluminescence intensity. The observed results suggest that the combination of dimensionally coupled composites provides a synergistic effect through an efficient charge transfer process. This work offers new insights into the design and construction of dimensionally coupled ternary nanocomposites for environmental remediation applications.

11.
Polymers (Basel) ; 13(12)2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34208419

RESUMEN

In the present study, silver (Ag) nanoparticles and maleic anhydride-grafted polyolefin elastomer (MAH-g-POE) were used as enhancement additives to improve the performance of the polyoxymethylene (POM) homopolymer. Specifically, the POM/Ag/MAH-g-POE ternary nanocomposites with varying Ag nanoparticles and MAH-g-POE contents were prepared by a melt mixing method. The effects of the additives on the microstructure, thermal stability, crystallization behavior, mechanical properties, and dynamic mechanical thermal properties of the ternary nanocomposites were studied. It was found that the MAH-g-POE played a role in the bridging of the Ag nanoparticles and POM matrix and improved the interfacial adhesion between the Ag nanoparticles and POM matrix, owing to the good compatibility between Ag/MAH-g-POE and the POM matrix. Moreover, it was found that the combined addition of Ag nanoparticles and MAH-g-POE significantly enhanced the thermal stability, crystallization properties, and mechanical properties of the POM/Ag/MAH-g-POE ternary nanocomposites. When the Ag/MAH-g-POE content was 1 wt.%, the tensile strength reached the maximum value of 54.78 MPa. In addition, when the Ag/MAH-g-POE content increased to 15wt.%, the elongation at break reached the maximum value of 64.02%. However, when the Ag/MAH-g-POE content further increased to 20 wt.%, the elongation at break decreased again, which could be attributed to the aggregation of excessive Ag nanoparticles forming local defects in the POM/Ag/MAH-g-POE ternary nanocomposites. Furthermore, when the Ag/MAH-g-POE content was 20 wt.%, the maximum decomposition temperature of POM/Ag/MAH-g-POE ternary nanocomposites was 398.22 °C, which was 71.39 °C higher than that of pure POM. However, compared with POM, the storage modulus of POM/Ag/MAH-g-POE ternary nanocomposites decreased with the Ag/MAH-g-POE content, because the MAH-g-POE elastomer could reduce the rigidity of POM.

12.
Environ Sci Pollut Res Int ; 27(11): 11683-11696, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31975003

RESUMEN

Ternary amino-functionalized magnetic illite-smectite (AMNI/S) nanocomposites were prepared via integrating two-dimensional illite-smectite nanoflakes (NI/S), magnetite nanoparticles (Fe3O4), and 3-aminopropyltriethoxysilane (APTES). The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and vibrating sample magnetometry (VSM). The results show that Fe3O4 nanoparticles can be well dispersed on NI/S flakes and the hydrolyzed APTES molecules can simultaneously bond to the hydroxyl groups of Fe3O4 and NI/S. Due to the synergetic effect, magnetic NI/S composite can graft more amount of APTES molecules rather than Fe3O4 nanoparticles or NI/S alone. When the mass ratio of NI/S:Fe3O4 is 1:1, the saturation magnetization of AMNI/S-1 is 17.4 emu/g, facilitating the efficient magnetic separation in aqueous solution. Also, AMNI/S-1 shows a maximal adsorption amount of Pb(II) ions of 227.8 mg/g calculated by the Langmuir model. The effects of initial concentration of Pb(II) ions, pH value, adsorption time, and temperature on the adsorption amount of Pb(II) ions were investigated. The adsorption kinetic models and isotherm models were applied to analyze the adsorption of Pb(II) ions, respectively. The thermodynamic analysis reveals that the adsorption of Pb(II) onto AMNI/S-1 is spontaneous and endothermic in nature. The mechanism for the adsorption of Pb(II) ions onto AMNI/S-1 is due to the surface complexation of Fe3O4 and NI/S, and the chelation of amine groups (-NH2). AMNI/S-1 can be efficiently reused and the regenerated AMNI/S-1 remains 82.91% of initial adsorption capacity after 6-cycle adsorption/desorption process. Thus, ternary AMNI/S-1 could be used as a prospective effective adsorbent.


Asunto(s)
Arcilla , Contaminantes Químicos del Agua/análisis , Adsorción , Iones , Cinética , Plomo , Fenómenos Magnéticos , Minerales , Estudios Prospectivos , Silicatos
13.
Environ Pollut ; 266(Pt 2): 115247, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32717637

RESUMEN

ZnO/Au/rGO ternary nanocomposites possessing a high photocatalytic response under solar irradiation were synthesized by a two-step process via a pulsed laser synthesis and a wet chemical process. The crystalline structure, surface morphology, size distribution, elemental composition, and optical properties of the prepared ZnO/Au/rGO ternary nanocomposites were characterized using X-ray diffraction, field-emission scanning electron microscope, high-resolution transmission electron microscope, energy-dispersive X-ray spectroscopy, UV-vis diffuse reflectance spectra, and photoluminescence analysis. The photocatalytic activity of the as synthesized nanocomposites was evaluated for the degradation of methylene blue (MB) under solar light irradiation (SLI). The density of the elemental and carbonaceous components, such as the Au nanoparticles (NPs) and the rGO nano-matrix on ZnO, could be altered by changing the concentration of HAuCl4.3H2O (5, 10, 15, and 20 wt%) or rGO (2.5, 5, and 7.5 wt%) using the same synthetic processes. The ZnO/Au15/rGO5 nanocomposite showed the highest photocatalytic degradation efficiency of 95% MB after 120 min under SLI, potentially due to the increased absorption of solar light or the efficient separation and migration of charge carriers by the anchored Au NPs and rGO onto the ZnO NPs. Further, the observed results and reusability of ZnO/Au15/rGO5 makes it an exceptionally promising material for diverse applications in the field of wastewater treatment and other types of environmental remediation.


Asunto(s)
Nanopartículas del Metal , Óxido de Zinc , Catálisis , Oro , Grafito , Rayos Láser
14.
Nanomaterials (Basel) ; 9(9)2019 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-31487818

RESUMEN

The ternary nanocomposites Fe3O4/Ag/polyoxometalates (Fe3O4/Ag/POMs) with core-shell-core nanostructure were synthesized by coating [Cu(C6H6N2O)2(H2O)]H2[Cu(C6H6N2O)2(P2Mo5O23)]·4H2O polyoxometalates on the surface of Fe3O4/Ag (core-shell) nanoparticles. The transmission electron microscopy/high resolution transmission electron microscopy (HR-TEM) and X-ray powder diffraction (XRD) analyses show that the Fe3O4/Ag/POMs ternary nanocomposites reveal a core-shell-core nanostructure, good dispersibility, and high crystallinity. The vibrating sample magnetometer (VSM) and physical property measurement system (PPMS) demonstrated the good magnetic properties and superparamagnetic behavior of the nanocomposites at 300 K. The UV-vis spectroscopy displayed the broadband absorption of the Fe3O4/Ag/POMs with the maximum surface plasmon resonance of Ag nanostructure around 420 nm. The dye removal capacity of Fe3O4/Ag/POMs was investigated using methylene blue (MB) as a probe. Through adsorption and photocatalysis, the nanocomposites could quickly remove MB with a removal efficiency of 98.7% under the irradiation of visible light at room temperature. The removal efficiency was still as high as 97.5% even after six runs by magnetic separation of photocatalytic adsorbents after processing, indicating the reusability and high stability of the nanocomposites. These Fe3O4/Ag/POMs photocatalytic adsorbents with magnetic properties will hopefully become a functional material for wastewater treatment in the future.

15.
Spectrochim Acta A Mol Biomol Spectrosc ; 199: 102-109, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29574311

RESUMEN

An efficient cadmium sulfide quantum-dots (CdS QDs) and carbon dots (CDs) modified TiO2 photocatalyst (CdS/CDs-TiO2) was successfully fabricated. The as-prepared ternary nano-composites simultaneously improved the photo-corrosion of CdS and amplified its photocatalytic activity. The introduction of CdS QDs and CDs could enhance more absorbance of light, prevent the undesirable electron/hole recombination, and promote charge separation, which was important for the continuous formation of OH and O2- radicals. When the optimal mass ratio of CdS QDs to CDs was 3:1, above 90% degradation efficiencies were achieved for benzene within 1h and toluene in 2h, while that of pure TiO2 (P25), CdS QDs-TiO2, CDs-TiO2 nano-composites was around 15%. Owing to the symmetric structure and conjugation of methyl with benzene ring, the degradation of toluene was more difficult than benzene to carry on. The new fabricated nano-composites showed good prospective application of cleaning up refractory pollutants and the resource utilization.

16.
J Colloid Interface Sci ; 491: 216-229, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28033518

RESUMEN

In this work, plasmonic ternary ZnO/Ag/Ag2WO4 nanocomposites as efficient visible-light-driven photocatalysts prepared by a facile ultrasonic-irradiation method. The as-prepared samples were characterized by XRD, SEM, TEM, EDX, XPS, UV-vis DRS, FT-IR, and PL techniques. The photocatalytic performance of the prepared ZnO/Ag/Ag2WO4 nanocomposites were evaluated by photodegradations of rhodamine B, methylene blue, methyl orange, and fuchsine under visible-light irradiation. The optimal nanocomposite with 15wt% of Ag/Ag2WO4 to ZnO showed the highest photocatalytic activity for RhB degradation, which is about 95 and 19 times higher than those of the Ag/Ag2WO4 and ZnO samples, respectively. The highly enhanced activity of the ZnO/Ag/Ag2WO4 (15%) nanocomposite was attributed to the surface plasmon resonance effect of metallic silver and the formation of heterojunctions between the counterparts, which effectively suppresses recombination of the photogenerated charge carriers. Lastly, the plasmon-enhanced photocatalytic mechanism associated with the ZnO/Ag/Ag2WO4 nanocomposites was discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA