Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 86: 799-823, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28426241

RESUMEN

Iron is essential for the survival of most bacteria but presents a significant challenge given its limited bioavailability. Furthermore, the toxicity of iron combined with the need to maintain physiological iron levels within a narrow concentration range requires sophisticated systems to sense, regulate, and transport iron. Most bacteria have evolved mechanisms to chelate and transport ferric iron (Fe3+) via siderophore receptor systems, and pathogenic bacteria have further lowered this barrier by employing mechanisms to utilize the host's hemoproteins. Once internalized, heme is cleaved by both oxidative and nonoxidative mechanisms to release iron. Heme, itself a lipophilic and toxic molecule, presents a significant challenge for transport into the cell. As such, pathogenic bacteria have evolved sophisticated cell surface signaling and transport systems to obtain heme from the host. In this review, we summarize the structure and function of the heme-sensing and transport systems of pathogenic bacteria and the potential of these systems as antimicrobial targets.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Membrana Celular/efectos de los fármacos , Hemo/antagonistas & inhibidores , Hierro/metabolismo , Pseudomonas aeruginosa/efectos de los fármacos , Receptores de Superficie Celular/antagonistas & inhibidores , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/síntesis química , Antibacterianos/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte Biológico/efectos de los fármacos , Membrana Celular/metabolismo , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Expresión Génica , Hemo/metabolismo , Metaloporfirinas/síntesis química , Metaloporfirinas/farmacología , Modelos Moleculares , Conformación Proteica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crecimiento & desarrollo , Pseudomonas aeruginosa/metabolismo , Receptores de Superficie Celular/química , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Sideróforos/antagonistas & inhibidores , Sideróforos/biosíntesis , Staphylococcus aureus/genética , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/metabolismo
2.
J Biol Chem ; 300(3): 105694, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38301890

RESUMEN

Bacteriocins, which have narrow-spectrum activity and limited adverse effects, are promising alternatives to antibiotics. In this study, we identified klebicin E (KlebE), a small bacteriocin derived from Klebsiella pneumoniae. KlebE exhibited strong efficacy against multidrug-resistant K. pneumoniae isolates and conferred a significant growth advantage to the producing strain during intraspecies competition. A giant unilamellar vesicle leakage assay demonstrated the unique membrane permeabilization effect of KlebE, suggesting that it is a pore-forming toxin. In addition to a C-terminal toxic domain, KlebE also has a disordered N-terminal domain and a globular central domain. Pulldown assays and soft agar overlay experiments revealed the essential role of the outer membrane porin OmpC and the Ton system in KlebE recognition and cytotoxicity. Strong binding between KlebE and both OmpC and TonB was observed. The TonB-box, a crucial component of the toxin-TonB interaction, was identified as the 7-amino acid sequence (E3ETLTVV9) located in the N-terminal region. Further studies showed that a region near the bottom of the central domain of KlebE plays a primary role in recognizing OmpC, with eight residues surrounding this region identified as essential for KlebE toxicity. Finally, based on the discrepancies in OmpC sequences between the KlebE-resistant and sensitive strains, it was found that the 91st residue of OmpC, an aspartic acid residue, is a key determinant of KlebE toxicity. The identification and characterization of this toxin will facilitate the development of bacteriocin-based therapies targeting multidrug-resistant K. pneumoniae infections.


Asunto(s)
Bacteriocinas , Klebsiella pneumoniae , Antibacterianos/metabolismo , Antibacterianos/farmacología , Bacteriocinas/genética , Bacteriocinas/metabolismo , Bacteriocinas/farmacología , Bacteriocinas/toxicidad , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Porinas/genética , Porinas/metabolismo , Permeabilidad de la Membrana Celular/efectos de los fármacos , Permeabilidad de la Membrana Celular/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominios Proteicos , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos
3.
J Biol Chem ; 300(3): 105723, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38311172

RESUMEN

Gram-negative bacteria use TonB-dependent transport to take up nutrients from the external environment, employing the Ton complex to import a variety of nutrients that are either scarce or too large to cross the outer membrane unaided. The Ton complex contains an inner-membrane motor (ExbBD) that generates force, as well as nutrient-specific transport proteins on the outer membrane. These two components are coupled by TonB, which transmits the force from the inner to the outer membrane. TonB contains an N-terminus anchored in the inner membrane, a C-terminal domain that binds the outer-membrane transporter, and a proline-rich linker connecting the two. While much is known about the interaction between TonB and outer-membrane transporters, the critical interface between TonB and ExbBD is less well understood. Here, we identify a conserved motif within TonB that we term the D-box, which serves as an attachment point for ExbD. We characterize the interaction between ExbD and the D-box both functionally and structurally, showing that a homodimer of ExbD captures one copy of the D-box peptide via beta-strand recruitment. We additionally show that both the D-box motif and ExbD are conserved in a range of Gram-negative bacteria, including members of the ESKAPE group of pathogens. The ExbD:D-box interaction is likely to represent an important aspect of force transduction between the inner and outer membranes. Given that TonB-dependent transport is an important contributor to virulence, this interaction is an intriguing potential target for novel antibacterial therapies.


Asunto(s)
Proteínas Bacterianas , Proteínas de la Membrana , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Transporte Biológico , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Unión Proteica
4.
J Biol Chem ; 300(9): 107625, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39122003

RESUMEN

Mixed-linkage ß(1,3)/ß(1,4)-glucan (MLG) is abundant in the human diet through the ingestion of cereal grains and is widely associated with healthful effects on metabolism and cholesterol levels. MLG is also a major source of fermentable glucose for the human gut microbiota (HGM). Bacteria from the family Prevotellaceae are highly represented in the HGM of individuals who eat plant-rich diets, including certain indigenous people and vegetarians in postindustrial societies. Here, we have defined and functionally characterized an exemplar Prevotellaceae MLG polysaccharide utilization locus (MLG-PUL) in the type-strain Segatella copri (syn. Prevotella copri) DSM 18205 through transcriptomic, biochemical, and structural biological approaches. In particular, structure-function analysis of the cell-surface glycan-binding proteins and glycoside hydrolases of the S. copri MLG-PUL revealed the molecular basis for glycan capture and saccharification. Notably, syntenic MLG-PULs from human gut, human oral, and ruminant gut Prevotellaceae are distinguished from their counterparts in Bacteroidaceae by the presence of a ß(1,3)-specific endo-glucanase from glycoside hydrolase family 5, subfamily 4 (GH5_4) that initiates MLG backbone cleavage. The definition of a family of homologous MLG-PULs in individual species enabled a survey of nearly 2000 human fecal microbiomes using these genes as molecular markers, which revealed global population-specific distributions of Bacteroidaceae- and Prevotellaceae-mediated MLG utilization. Altogether, the data presented here provide new insight into the molecular basis of ß-glucan metabolism in the HGM, as a basis for informing the development of approaches to improve the nutrition and health of humans and other animals.

5.
Proc Natl Acad Sci U S A ; 119(20): e2119436119, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35549554

RESUMEN

To import large metabolites across the outer membrane of gram-negative bacteria, TonB-dependent transporters (TBDTs) undergo significant conformational change. After substrate binding in BtuB, the Escherichia coli vitamin B12 TBDT, TonB binds and couples BtuB to the inner-membrane proton motive force that powers transport [N. Noinaj, M. Guillier, T. J. Barnard, S. K. Buchanan, Annu. Rev. Microbiol. 64, 43­60 (2010)]. However, the role of TonB in rearranging the plug domain of BtuB to form a putative pore remains enigmatic. Some studies focus on force-mediated unfolding [S. J. Hickman, R. E. M. Cooper, L. Bellucci, E. Paci, D. J. Brockwell, Nat. Commun. 8, 14804 (2017)], while others propose force-independent pore formation by TonB binding [T. D. Nilaweera, D. A. Nyenhuis, D. S. Cafiso, eLife 10, e68548 (2021)], leading to breakage of a salt bridge termed the "Ionic Lock." Our hydrogen­deuterium exchange/mass spectrometry (HDX-MS) measurements in E. coli outer membranes find that the region surrounding the Ionic Lock, far from the B12 site, is fully destabilized upon substrate binding. A comparison of the exchange between the B12-bound and the B12+TonB­bound complexes indicates that B12 binding is sufficient to unfold the Ionic Lock region, with the subsequent binding of a TonB fragment having much weaker effects. TonB binding accelerates exchange in the third substrate-binding loop, but pore formation does not obviously occur in this or any region. This study provides a detailed structural and energetic description of the early stages of B12 passage that provides support both for and against current models of the transport process.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa , Proteínas de Escherichia coli , Escherichia coli , Proteínas de la Membrana , Proteínas de Transporte de Membrana , Vitamina B 12 , Regulación Alostérica , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Transporte Biológico , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Unión Proteica , Dominios Proteicos , Pliegue de Proteína , Vitamina B 12/metabolismo
6.
Proc Natl Acad Sci U S A ; 119(42): e2211672119, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36215462

RESUMEN

A key but poorly understood stage of the bacteriophage life cycle is the binding of phage receptor-binding proteins (RBPs) to receptors on the host cell surface, leading to injection of the phage genome and, for lytic phages, host cell lysis. To prevent secondary infection by the same or a closely related phage and nonproductive phage adsorption to lysed cell fragments, superinfection exclusion (SE) proteins can prevent the binding of RBPs via modulation of the host receptor structure in ways that are also unclear. Here, we present the cryogenic electron microscopy (cryo-EM) structure of the phage T5 outer membrane (OM) receptor FhuA in complex with the T5 RBP pb5, and the crystal structure of FhuA complexed to the OM SE lipoprotein Llp. Pb5 inserts four loops deeply into the extracellular lumen of FhuA and contacts the plug but does not cause any conformational changes in the receptor, supporting the view that DNA translocation does not occur through the lumen of OM channels. The FhuA-Llp structure reveals that Llp is periplasmic and binds to a nonnative conformation of the plug of FhuA, causing the inward folding of two extracellular loops via "reverse" allostery. The inward-folded loops of FhuA overlap with the pb5 binding site, explaining how Llp binding to FhuA abolishes further infection of Escherichia coli by phage T5 and suggesting a mechanism for SE via the jamming of TonB-dependent transporters by small phage lipoproteins.


Asunto(s)
Bacteriófagos , Proteínas de Escherichia coli , Sobreinfección , Proteínas de la Membrana Bacteriana Externa/metabolismo , Receptores de Bacteriógrafos , Bacteriófagos/genética , Bacteriófagos/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Lipoproteínas/metabolismo , Receptores Virales/metabolismo , Fagos T/química , Fagos T/metabolismo
7.
J Bacteriol ; 206(5): e0002424, 2024 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-38591913

RESUMEN

Microbes synthesize and secrete siderophores, that bind and solubilize precipitated or otherwise unavailable iron in their microenvironments. Gram (-) bacterial TonB-dependent outer membrane receptors capture the resulting ferric siderophores to begin the uptake process. From their similarity to fepA, the structural gene for the Escherichia coli ferric enterobactin (FeEnt) receptor, we identified four homologous genes in the human and animal ESKAPE pathogen Klebsiella pneumoniae (strain Kp52.145). One locus encodes IroN (locus 0027 on plasmid pII), and three other loci encode other FepA orthologs/paralogs (chromosomal loci 1658, 2380, and 4984). Based on the crystal structure of E. coli FepA (1FEP), we modeled the tertiary structures of the K. pneumoniae FepA homologs and genetically engineered individual Cys substitutions in their predicted surface loops. We subjected bacteria expressing the Cys mutant proteins to modification with extrinsic fluorescein maleimide (FM) and used the resulting fluorescently labeled cells to spectroscopically monitor the binding and transport of catecholate ferric siderophores by the four different receptors. The FM-modified FepA homologs were nanosensors that defined the ferric catecholate uptake pathways in pathogenic strains of K. pneumoniae. In Kp52.145, loci 1658 and 4984 encoded receptors that primarily recognized and transported FeEnt; locus 0027 produced a receptor that principally bound and transported FeEnt and glucosylated FeEnt (FeGEnt); locus 2380 encoded a protein that bound ferric catecholate compounds but did not detectably transport them. The sensors also characterized the uptake of iron complexes, including FeGEnt, by the hypervirulent, hypermucoviscous K. pneumoniae strain hvKp1. IMPORTANCE: Both commensal and pathogenic bacteria produce small organic chelators, called siderophores, that avidly bind iron and increase its bioavailability. Klebsiella pneumoniae variably produces four siderophores that antagonize host iron sequestration: enterobactin, glucosylated enterobactin (also termed salmochelin), aerobactin, and yersiniabactin, which promote colonization of different host tissues. Abundant evidence links bacterial iron acquisition to virulence and infectious diseases. The data we report explain the recognition and transport of ferric catecholates and other siderophores, which are crucial to iron acquisition by K. pneumoniae.


Asunto(s)
Hierro , Klebsiella pneumoniae , Sideróforos , Klebsiella pneumoniae/metabolismo , Klebsiella pneumoniae/genética , Sideróforos/metabolismo , Hierro/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Receptores de Superficie Celular/metabolismo , Receptores de Superficie Celular/genética , Enterobactina/metabolismo , Transporte Biológico , Proteínas Portadoras
8.
Infect Immun ; 92(7): e0021124, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38864605

RESUMEN

Neisseria gonorrhoeae is the etiological agent of the sexually transmitted infection gonorrhea. The pathogen is a global health challenge since no protective immunity results from infection, and far fewer treatment options are available with increasing antimicrobial resistance. With no efficacious vaccines, researchers are exploring new targets for vaccine development and innovative therapeutics. The outer membrane TonB-dependent transporters (TdTs) produced by N. gonorrhoeae are considered promising vaccine antigens as they are highly conserved and play crucial roles in overcoming nutritional immunity. One of these TdTs is part of the hemoglobin transport system comprised of HpuA and HpuB. This system allows N. gonorrhoeae to acquire iron from hemoglobin (hHb). In the current study, mutations in the hpuB gene were generated to better understand the structure-function relationships in HpuB. This study is one of the first to demonstrate that N. gonorrhoeae can bind to and utilize hemoglobin produced by animals other than humans. This study also determined that when HpuA is absent, mutations targeting extracellular loop 7 of HpuB led to defective hHb binding and utilization. However, when the lipoprotein HpuA is present, these loop 7 mutants recovered their ability to bind hHb, although the growth phenotype remained significantly impaired. Interestingly, loop 7 contains putative heme-binding motifs and a hypothetical α-helical region, both of which may be important for the use of hHb. Taken together, these results highlight the importance of loop 7 in the functionality of HpuB in binding hHb and extracting and internalizing iron.


Asunto(s)
Proteínas Bacterianas , Hemoglobinas , Neisseria gonorrhoeae , Neisseria gonorrhoeae/metabolismo , Neisseria gonorrhoeae/genética , Hemoglobinas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Unión Proteica , Hierro/metabolismo , Mutación , Gonorrea/microbiología , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Animales , Humanos , Proteínas Portadoras
9.
Antimicrob Agents Chemother ; 68(8): e0012724, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38995033

RESUMEN

The siderophore-cephalosporin cefiderocol (FDC) presents a promising treatment option for carbapenem-resistant (CR) P. aeruginosa (PA). FDC circumvents traditional porin and efflux-mediated resistance by utilizing TonB-dependent receptors (TBDRs) to access the periplasmic space. Emerging FDC resistance has been associated with loss of function mutations within TBDR genes or the regulatory genes controlling TBDR expression. Further, difficulties with antimicrobial susceptibility testing (AST) and unexpected negative clinical treatment outcomes have prompted concerns for heteroresistance, where a single lineage isolate contains resistant subpopulations not detectable by standard AST. This study aimed to evaluate the prevalence of TBDR mutations among clinical isolates of P. aeruginosa and the phenotypic effect on FDC susceptibility and heteroresistance. We evaluated the sequence of pirR, pirS, pirA, piuA, or piuD from 498 unique isolates collected before the introduction of FDC from four clinical sites in Portland, OR (1), Houston, TX (2), and Santiago, Chile (1). At some clinical sites, TBDR mutations were seen in up to 25% of isolates, and insertion, deletion, or frameshift mutations were predicted to impair protein function were seen in 3% of all isolates (n = 15). Using population analysis profile testing, we found that P. aeruginosa with major TBDR mutations were enriched for a heteroresistant phenotype and undergo a shift in the susceptibility distribution of the population as compared to susceptible strains with wild-type TBDR genes. Our results indicate that mutations in TBDR genes predate the clinical introduction of FDC, and these mutations may predispose to the emergence of FDC resistance.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Cefiderocol , Pruebas de Sensibilidad Microbiana , Mutación , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/efectos de los fármacos , Antibacterianos/farmacología , Humanos , Proteínas Bacterianas/genética , Cefalosporinas/farmacología , Proteínas de la Membrana/genética , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/tratamiento farmacológico , Farmacorresistencia Bacteriana/genética
10.
Microbiology (Reading) ; 170(1)2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38189440

RESUMEN

One of the mechanisms employed by the opportunistic pathogen Burkholderia cenocepacia to acquire the essential element iron is the production and release of two ferric iron chelating compounds (siderophores), ornibactin and pyochelin. Here we show that B. cenocepacia is also able to take advantage of a range of siderophores produced by other bacteria and fungi ('xenosiderophores') that chelate iron exclusively by means of hydroxamate groups. These include the tris-hydroxamate siderophores ferrioxamine B, ferrichrome, ferricrocin and triacetylfusarinine C, the bis-hydroxamates alcaligin and rhodotorulic acid, and the monohydroxamate siderophore cepabactin. We also show that of the 24 TonB-dependent transporters encoded by the B. cenocepacia genome, two (FhuA and FeuA) are involved in the uptake of hydroxamate xenosiderophores, with FhuA serving as the exclusive transporter of iron-loaded ferrioxamine B, triacetylfusarinine C, alcaligin and rhodotorulic acid, while both FhuA and FeuA are able to translocate ferrichrome-type siderophores across the outer membrane. Finally, we identified FhuB, a putative cytoplasmic membrane-anchored ferric-siderophore reductase, as being obligatory for utilization of all of the tested bis- and tris-hydroxamate xenosiderophores apart from alcaligin.


Asunto(s)
Burkholderia cenocepacia , Ferricromo , Burkholderia cenocepacia/genética , Sideróforos , Hierro
11.
Protein Expr Purif ; 215: 106412, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38104792

RESUMEN

Aeromonas veronii is an emerging bacterial pathogen that causes serious systemic infections in cultured Nile tilapia (Oreochromis niloticus), leading to massive deaths. Therefore, there is an urgent need to identify effective vaccine candidates to control the spread of this emerging disease. TonB-dependent receptor (Tdr) of A. veronii, which plays a role in the virulence factor of the organism, could be useful in terms of protective antigens for vaccine development. This study aims to evaluate the potential use of Tdr protein as a novel subunit vaccine against A. veronii infection in Nile tilapia. The Tdr gene from A. veronii was cloned into the pET28b expression vector, and the recombinant protein was subsequently produced in Escherichia coli strain BL21 (DE3). Tdr was expressed as an insoluble protein and purified by affinity chromatography. Antigenicity test indicated that this protein was recognized by serum from A. veronii infected fish. When Nile tilapia were immunized with the Tdr protein, specific antibody levels increased significantly (p-value <0.05) at 7 days post-immunization (dpi), and peaked at 21 dpi compared to antibody levels at 0 dpi. Furthermore, bacterial agglutination activity was observed in the fish serum immunized with the Tdr protein, indicating that specific antibodies in the serum can detect Tdr on the bacterial cell surface. These results suggest that Tdr protein has potential as a vaccine candidate. However, challenging tests with A.veronii in Nile tilapia needs to be investigated to thoroughly evaluate its protective efficacy for future applications.


Asunto(s)
Cíclidos , Enfermedades de los Peces , Animales , Aeromonas veronii/genética , Inmunización , Proteínas Recombinantes/genética , Vacunas de Subunidad/genética , Enfermedades de los Peces/prevención & control
12.
World J Microbiol Biotechnol ; 40(4): 131, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38470539

RESUMEN

Multiple TonB dependent transporters (TBDTs) contribute to bacterial virulence due to the importance roles that their substrates play in bacterial growth, and possess vaccine potential. A putative TBDT, YncD, had been identified as one of in vivo induced antigens during human infection of typhoid fever, and is required for the pathogenicity of Salmonella enterica Serovar Typhi. The present study was aimed to determine the function and immunogenicity of YncD. Homologous recombination method was used to construct an yncD-deletion mutant and cirA-iroN-fepA-deletion mutant from the wild-type S. Typhi Ty2. The growth of mutants and the wild-type strain were assessed in iron-deficient medium, as well as in human macrophage cells. Recombinant YncD protein was expressed and purified using Ni-NTA affinity chromatography and anion exchange. A mouse model was then used to evaluate the immunogenicity and protection efficacy of the recombinant YncD. Antibody levels, serum bactericidal efficiency, passive immune protection, opsonophagocysis were assayed to analyse the immunoprotection mechanism of the recombinant YncD. Our results showed that YncD is associated with the iron-uptake of S. Typhi. The yncD-deletion mutant displayed impaired growth in iron-deficient medium, comparable to that the cirA-iroN-fepA-deletion mutant did. The mutation of yncD markedly decreased bacterial growth within human macrophage cells. Moreover, subcutaneous immunization of mice with recombinant YncD elicited high levels of specific anti-YncD IgG, IgG1 and IgG2a, which protected the immunized mice against the intraperitoneal challenge of S. Typhi, and decreased bacterial burdens in the livers and spleens of the infected mice. Passive immunization using the immunized sera also efficiently protected the mice from the challenge of S. Typhi. Moreover, the immunized sera enhanced in vitro bactericidal activity of complement, and opsonophagocytosis. Our results showed that YncD displays a role in the iron-uptake of S. Typhi and possesses immunogenicity.


Asunto(s)
Fiebre Tifoidea , Vacunas , Animales , Ratones , Humanos , Salmonella typhi , Fiebre Tifoidea/prevención & control , Proteínas de Transporte de Membrana , Proteínas Recombinantes , Hierro , Ratones Endogámicos BALB C
13.
Rev Argent Microbiol ; 56(2): 165-174, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38403533

RESUMEN

Infectious bovine keratoconjunctivitis (IBK) is an ocular disease that affects bovines and has significant economic and health effects worldwide. Gram negative bacteria Moraxella bovis and Moraxella bovoculi are its main etiological agents. Antimicrobial therapy against IBK is often difficult in beef and dairy herds and, although vaccines are commercially available, their efficacy is variable and dependent on local strains. The aim of this study was to analyze for the first time the genomes of Uruguayan clinical isolates of M. bovis and M. bovoculi. The genomes were de novo assembled and annotated; the genetic basis of fimbrial synthesis was analyzed and virulence factors were identified. A 94% coverage in the reference genomes of both species, and more than 80% similarity to the reference genomes were observed. The mechanism of fimbrial phase variation in M. bovis was detected, and the tfpQ orientation of these genes confirmed, in an inversion region of approximately 2.18kb. No phase variation was determined in the fimbrial gene of M. bovoculi. When virulence factors were compared between strains, it was observed that fimbrial genes have 36.2% sequence similarity. In contrast, the TonB-dependent lactoferrin/transferrin receptor exhibited the highest percentage of amino acid similarity (97.7%) between strains, followed by cytotoxins MbxA/MbvA and the ferric uptake regulator. The role of these virulence factors in the pathogenesis of IBK and their potential as vaccine components should be explored.


Asunto(s)
Enfermedades de los Bovinos , Genoma Bacteriano , Queratoconjuntivitis Infecciosa , Moraxella bovis , Moraxella , Animales , Moraxella/genética , Moraxella/aislamiento & purificación , Bovinos , Moraxella bovis/genética , Queratoconjuntivitis Infecciosa/microbiología , Enfermedades de los Bovinos/microbiología , Infecciones por Moraxellaceae/microbiología , Infecciones por Moraxellaceae/veterinaria , Uruguay , Factores de Virulencia/genética
14.
J Bacteriol ; 205(11): e0021823, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37874167

RESUMEN

IMPORTANCE: The human gut microbiota, including Bacteroides, is required for the degradation of otherwise undigestible polysaccharides. The gut microbiota uses polysaccharides as an energy source, and fermentation products such as short-chain fatty acids are beneficial to the human host. This use of polysaccharides is dependent on the proper pairing of a TonB protein with polysaccharide-specific TonB-dependent transporters; however, the formation of these protein complexes is poorly understood. In this study, we examine the role of 11 predicted TonB homologs in polysaccharide uptake. We show that two proteins, TonB4 and TonB6, may be functionally redundant. This may allow for the development of drugs targeting Bacteroides species containing only a TonB4 homolog with limited impact on species encoding the redundant TonB6.


Asunto(s)
Bacteroides thetaiotaomicron , Humanos , Bacteroides thetaiotaomicron/metabolismo , Polisacáridos/metabolismo , Bacteroides/genética
15.
J Bacteriol ; 205(6): e0003523, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37219427

RESUMEN

The outer membranes (OM) of Gram-negative bacteria contain a class of proteins (TBDTs) that require energy for the import of nutrients and to serve as receptors for phages and protein toxins. Energy is derived from the proton motif force (pmf) of the cytoplasmic membrane (CM) through the action of three proteins, namely, TonB, ExbB, and ExbD, which are located in the CM and extend into the periplasm. The leaky phenotype of exbB exbD mutants is caused by partial complementation by homologous tolQ tolR. TonB, ExbB, and ExbD are genuine components of an energy transmission system from the CM into the OM. Mutant analyses, cross-linking experiments, and most recently X-ray and cryo-EM determinations were undertaken to arrive at a model that describes the energy transfer from the CM into the OM. These results are discussed in this paper. ExbB forms a pentamer with a pore inside, in which an ExbD dimer resides. This complex harvests the energy of the pmf and transmits it to TonB. TonB interacts with the TBDT at the TonB box, which triggers a conformational change in the TBDT that releases bound nutrients and opens the pore, through which nutrients pass into the periplasm. The structurally altered TBDT also changes the interactions of its periplasmic signaling domain with anti-sigma factors, with the consequence being that the sigma factors initiate transcription.


Asunto(s)
Proteínas de Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Membrana Celular/metabolismo , Transporte Biológico , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
16.
Appl Environ Microbiol ; 89(1): e0141322, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36645275

RESUMEN

Two methanol dehydrogenases (MDHs), MxaFI and XoxF, have been characterized in methylotrophic and methanotrophic bacteria. MxaFI contains a calcium ion in its active site, whereas XoxF contains a lanthanide ion. Importantly, the expression of MxaFI and XoxF is inversely regulated by lanthanide bioavailability, i.e., the "lanthanide switch." To reveal the genetic and environmental factors affecting the lanthanide switch, we focused on two Methylosinus trichosporium OB3b mutants isolated during routine cultivation. In these mutants, MxaF was constitutively expressed, but lanthanide-dependent XoxF1 was not, even in the presence of 25 µM cerium ions, which is sufficient for XoxF expression in the wild type. Genotyping showed that both mutants harbored a loss-of-function mutation in the CQW49_RS02145 gene, which encodes a TonB-dependent receptor. Gene disruption and complementation experiments demonstrated that CQW49_RS02145 was required for XoxF1 expression in the presence of 25 µM cerium ions. Phylogenetic analysis indicated that CQW49_RS02145 was homologous to the Methylorubrum extorquens AM1 lanthanide transporter gene (lutH). These findings suggest that CQW49_RS02145 is involved in lanthanide uptake across the outer membrane. Furthermore, we demonstrated that supplementation with cerium and glycerol caused severe growth arrest in the wild type. CQW49_RS02145 underwent adaptive laboratory evolution in the presence of cerium and glycerol ions, resulting in a mutation that partially mitigated the growth arrest. This finding implies that loss-of-function mutations in CQW49_RS02145 can be attributed to residual glycerol from the frozen stock. IMPORTANCE Lanthanides are widely used in many industrial applications, including catalysts, magnets, and polishing. Recently, lanthanide-dependent metabolism was characterized in methane-utilizing bacteria. Despite the global demand for lanthanides, few studies have investigated the mechanism of lanthanide uptake by these bacteria. In this study, we identify a lanthanide transporter in Methylosinus trichosporium OB3b and indicate the potential interaction between intracellular lanthanide and glycerol. Understanding the genetic and environmental factors affecting lanthanide uptake should not only help improve the use of lanthanides for the bioconversion of methane into valuable products like methanol but also be of value for developing biomining to extract lanthanides under neutral conditions.


Asunto(s)
Oxidorreductasas de Alcohol , Elementos de la Serie de los Lantanoides , Methylosinus trichosporium , Oxidorreductasas de Alcohol/metabolismo , Cerio/metabolismo , Glicerol , Elementos de la Serie de los Lantanoides/metabolismo , Proteínas de Transporte de Membrana/genética , Metano/metabolismo , Metanol/metabolismo , Methylosinus trichosporium/genética , Methylosinus trichosporium/metabolismo , Filogenia
17.
Infect Immun ; 90(1): e0046921, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34662212

RESUMEN

The opportunistic, anaerobic pathogen and commensal of the human large intestinal tract, Bacteroides fragilis strain 638R, contains six predicted TonB proteins, termed TonB1-6, four ExbBs orthologs, ExbB1-4, and five ExbDs orthologs, ExbD1-5. The inner membrane TonB/ExbB/ExbD complex harvests energy from the proton motive force (Δp), and the TonB C-terminal domain interacts with and transduces energy to outer membrane TonB-dependent transporters (TBDTs). However, TonB's role in activating nearly one hundred TBDTs for nutrient acquisition in B. fragilis during intestinal colonization and extraintestinal infection has not been established. In this study, we show that growth was abolished in the ΔtonB3 mutant when heme, vitamin B12, Fe(III)-ferrichrome, starch, mucin-glycans, or N-linked glycans were used as a substrate for growth in vitro. Genetic complementation of the ΔtonB3 mutant with the tonB3 gene restored growth on these substrates. The ΔtonB1, ΔtonB2, ΔtonB4, ΔtonB5, and ΔtonB6 single mutants did not show a growth defect. This indicates that there was no functional compensation for the lack of TonB3, and it demonstrates that TonB3, alone, drives the TBDTs involved in the transport of essential nutrients. The ΔtonB3 mutant had a severe growth defect in a mouse model of intestinal colonization compared to the parent strain. This intestinal growth defect was enhanced in the ΔtonB3 ΔtonB6 double mutant strain, which completely lost its ability to colonize the mouse intestinal tract compared to the parent strain. The ΔtonB1, ΔtonB2, ΔtonB4, and ΔtonB5 mutants did not significantly affect intestinal colonization. Moreover, the survival of the ΔtonB3 mutant strain was completely eradicated in a rat model of intra-abdominal infection. Taken together, these findings show that TonB3 was essential for survival in vivo. The genetic organization of tonB1, tonB2, tonB4, tonB5, and tonB6 gene orthologs indicates that they may interact with periplasmic and nonreceptor outer membrane proteins, but the physiological relevance of this has not been defined. Because anaerobic fermentation metabolism yields a lower Δp than aerobic respiration and B. fragilis has a reduced redox state in its periplasmic space-in contrast to an oxidative environment in aerobes-it remains to be determined if the diverse system of TonB/ExbB/ExbD orthologs encoded by B. fragilis have an increased sensitivity to PMF (relative to aerobic bacteria) to allow for the harvesting of energy under anaerobic conditions.


Asunto(s)
Proteínas Bacterianas/genética , Infecciones por Bacteroides/microbiología , Infecciones por Bacteroides/mortalidad , Bacteroides fragilis/fisiología , Infecciones Intraabdominales/microbiología , Infecciones Intraabdominales/mortalidad , Proteínas de la Membrana/genética , Familia de Multigenes , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/química , Mapeo Cromosómico , Modelos Animales de Enfermedad , Orden Génico , Interacciones Huésped-Patógeno , Proteínas de la Membrana/química , Ratones , Mutación
18.
Infect Immun ; 90(11): e0041422, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36321833

RESUMEN

TonB-dependent transporters (TDTs) are essential proteins for metal acquisition, an important step in the growth and pathogenesis of many pathogens, including Neisseria gonorrhoeae, the causative agent of gonorrhea. There is currently no available vaccine for gonorrhea; TDTs are being investigated as vaccine candidates because they are highly conserved and expressed in vivo. Transferrin binding protein A (TbpA) is an essential virulence factor in the initiation of experimental infection in human males and functions by acquiring iron upon binding to host transferrin (human transferrin [hTf]). The loop 3 helix (L3H) is a helix finger that inserts into the hTf C-lobe and is required for hTf binding and subsequent iron acquisition. This study identified and characterized the first TbpA single-point substitutions resulting in significantly decreased hTf binding and iron acquisition, suggesting that the helix structure is more important than charge for hTf binding and utilization. The tbpA D355P ΔtbpB and tbpA A356P ΔtbpB mutants demonstrated significantly reduced hTf binding and impaired iron uptake from Fe-loaded hTf; however, only the tbpA A356P ΔtbpB mutant was able to grow when hTf was the sole source of iron. The expression of tbpB was able to restore function in all tbpA mutants. These results implicate both D355 and A356 in the key binding, extraction, and uptake functions of gonococcal TbpA.


Asunto(s)
Gonorrea , Neisseria meningitidis , Proteína A de Unión a Transferrina , Masculino , Humanos , Proteína A de Unión a Transferrina/genética , Proteína A de Unión a Transferrina/química , Proteína A de Unión a Transferrina/metabolismo , Neisseria gonorrhoeae/metabolismo , Transferrina/genética , Transferrina/metabolismo , Mutación Puntual , Receptores de Transferrina/genética , Hierro/metabolismo , Neisseria meningitidis/metabolismo
19.
Mol Microbiol ; 116(2): 366-380, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33735458

RESUMEN

Chitin utilization by microbes plays a significant role in biosphere carbon and nitrogen cycling, and studying the microbial approaches used to degrade chitin will facilitate our understanding of bacterial strategies to degrade a broad range of recalcitrant polysaccharides. The early stages of chitin depolymerization by the bacterium Cellvibrio japonicus have been characterized and are dependent on one chitin-specific lytic polysaccharide monooxygenase and nonredundant glycoside hydrolases from the family GH18 to generate chito-oligosaccharides for entry into metabolism. Here, we describe the mechanisms for the latter stages of chitin utilization by C. japonicus with an emphasis on the fate of chito-oligosaccharides. Our systems biology approach combined transcriptomics and bacterial genetics using ecologically relevant substrates to determine the essential mechanisms for chito-oligosaccharide transport and catabolism in C. japonicus. Using RNAseq analysis we found a coordinated expression of genes that encode polysaccharide-degrading enzymes. Mutational analysis determined that the hex20B gene product, predicted to encode a hexosaminidase, was required for efficient utilization of chito-oligosaccharides. Furthermore, two gene loci (CJA_0353 and CJA_1157), which encode putative TonB-dependent transporters, were also essential for chito-oligosaccharides utilization. This study further develops our model of C. japonicus chitin metabolism and may be predictive for other environmentally or industrially important bacteria.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cellvibrio/metabolismo , Quitina/metabolismo , Glicósido Hidrolasas/metabolismo , Hexosaminidasas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Bacterianas/genética , Cellvibrio/genética , Perfilación de la Expresión Génica , Glicósido Hidrolasas/genética , Hexosaminidasas/genética , Proteínas de la Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Oligosacáridos/metabolismo , RNA-Seq , Transcriptoma/genética
20.
Mol Microbiol ; 115(3): 490-501, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33448497

RESUMEN

The human gut microbiota endows the host with a wealth of metabolic functions central to health, one of which is the degradation and fermentation of complex carbohydrates. The Bacteroidetes are one of the dominant bacterial phyla of this community and possess an expanded capacity for glycan utilization. This is mediated via the coordinated expression of discrete polysaccharide utilization loci (PUL) that invariantly encode a TonB-dependent transporter (SusC) that works with a glycan-capturing lipoprotein (SusD). More broadly within Gram-negative bacteria, TonB-dependent transporters (TBDTs) are deployed for the uptake of not only sugars, but also more often for essential nutrients such as iron and vitamins. Here, we provide a comprehensive look at the repertoire of TBDTs found in the model gut symbiont Bacteroides thetaiotaomicron and the range of predicted functional domains associated with these transporters and SusD proteins for the uptake of both glycans and other nutrients. This atlas of the B. thetaiotaomicron TBDTs reveals that there are at least three distinct subtypes of these transporters encoded within its genome that are presumably regulated in different ways to tune nutrient uptake.


Asunto(s)
Proteínas Bacterianas/fisiología , Bacteroides thetaiotaomicron/fisiología , Lipoproteínas/fisiología , Proteínas de la Membrana/fisiología , Proteínas de Transporte de Membrana/fisiología , Proteínas Bacterianas/química , Bacteroides thetaiotaomicron/química , Microbioma Gastrointestinal , Humanos , Hierro/metabolismo , Lipoproteínas/química , Proteínas de la Membrana/química , Proteínas de Transporte de Membrana/química , Conformación Proteica , Dominios Proteicos , Azúcares/metabolismo , Vitaminas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA