Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
IUBMB Life ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963319

RESUMEN

tRNAs are not only essential for decoding the genetic code, but their abundance also has a strong impact on the rate of protein production, folding, and on the stability of the translated messenger RNAs. Plasmodium expresses a unique surface protein called tRip, involved in the import of exogenous tRNAs into the parasite. Comparative proteomic analysis of the blood stage of wild-type and tRip-KO variant of P. berghei parasites revealed that downregulated proteins in the mutant parasite are distinguished by a bias in their asparagine content. Furthermore, the demonstration of the possibility of charging host tRNAs with Plasmodium aminoacyl-tRNA synthetases led us to propose that imported host tRNAs participate in parasite protein synthesis. These results also suggest a novel mechanism of translational control in which import of host tRNAs emerge as regulators of gene expression in the Plasmodium developmental cycle and pathogenesis, by enabling the synthesis of asparagine-rich regulatory proteins that efficiently and selectively control the parasite infectivity.

2.
Adv Exp Med Biol ; 1441: 313-339, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884719

RESUMEN

Posttranscriptional regulation comprises those mechanisms occurring after the initial copy of the DNA sequence is transcribed into an intermediate RNA molecule (i.e., messenger RNA) until such a molecule is used as a template to generate a protein. A subset of these posttranscriptional regulatory mechanisms essentially are destined to process the immature mRNA toward its mature form, conferring the adequate mRNA stability, providing the means for pertinent introns excision, and controlling mRNA turnover rate and quality control check. An additional layer of complexity is added in certain cases, since discrete nucleotide modifications in the mature RNA molecule are added by RNA editing, a process that provides large mature mRNA diversity. Moreover, a number of posttranscriptional regulatory mechanisms occur in a cell- and tissue-specific manner, such as alternative splicing and noncoding RNA-mediated regulation. In this chapter, we will briefly summarize current state-of-the-art knowledge of general posttranscriptional mechanisms, while major emphases will be devoted to those tissue-specific posttranscriptional modifications that impact on cardiac development and congenital heart disease.


Asunto(s)
Procesamiento Postranscripcional del ARN , ARN no Traducido , Animales , Humanos , Empalme Alternativo/genética , Regulación de la Expresión Génica , Edición de ARN , Estabilidad del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo
3.
Mol Cancer ; 22(1): 32, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36797764

RESUMEN

Transfer RNAs (tRNAs) are a class of non-coding RNAs responsible for amino acid translocation during protein synthesis and are ubiquitously found in organisms. With certain modifications and under specific conditions, tRNAs can be sheared and fragmented into small non-coding RNAs, also known as tRNA-derived small RNAs (tDRs). With the development of high-throughput sequencing technologies and bioinformatic strategies, more and more tDRs have been identified and their functions in organisms have been characterized. tRNA and it derived tDRs, have been shown to be essential not only for transcription and translation, but also for regulating cell proliferation, apoptosis, metastasis, and immunity. Aberrant expression of tDRs is associated with a wide range of human diseases, especially with tumorigenesis and tumor progression. The tumor microenvironment (TME) is a complex ecosystem consisting of various cellular and cell-free components that are mutually compatible with the tumor. It has been shown that tDRs regulate the TME by regulating cancer stem cells, immunity, energy metabolism, epithelial mesenchymal transition, and extracellular matrix remodeling, playing a pro-tumor or tumor suppressor role. In this review, the biogenesis, classification, and function of tDRs, as well as their effects on the TME and the clinical application prospects will be summarized and discussed based on up to date available knowledge.


Asunto(s)
Neoplasias , Microambiente Tumoral , Humanos , Microambiente Tumoral/genética , Ecosistema , ARN de Transferencia/química , Neoplasias/metabolismo
4.
Genetica ; 149(5-6): 267-281, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34609625

RESUMEN

The Zygothrica genus group of Drosophilidae encompasses more than 437 species and five genera. Although knowledge regarding its diversity has increased, uncertainties about its monophyly and position within Drosophilidae remain. Genomic approaches have been widely used to address different phylogenetic questions and analyses involving the mitogenome have revealed a cost-efficient tool to these studies. Thus, this work aims to characterize mitogenomes of three species of the Zygothrica genus group (from the Hirtodrosophila, Paraliodrosophila and Zygothrica genera), while comparing them with orthologous sequences from other 23 Drosophilidae species and addressing their phylogenetic position. General content concerning gene order and overlap, nucleotide composition, start and stop codon, codon usage and tRNA structures were compared, and phylogenetic trees were constructed under different datasets. The complete mitogenomes characterized for H. subflavohalterata affinis H002 and P. antennta present the PanCrustacea gene order with 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes, 13 protein coding genes and an A+T rich region with two T-stretched elements. Some peculiarities such as the almost complete overlap of genes tRNAH/ND4, tRNAF/ND5 and tRNAS2/ND1 are reported for different Drosophilidae species. Non-canonical secondary structures were encountered for tRNAS1 and tRNAY, revealing patterns that apply at different phylogenetic scales. According to the best depiction of the mitogenomes evolutionary history, the three Neotropical species of the Zygothrica genus group encompass a monophyletic lineage sister to Zaprionus, composing with this genus a clade that is sister to the Drosophila subgenus.


Asunto(s)
Drosophilidae/clasificación , Drosophilidae/genética , Evolución Molecular , Genoma Mitocondrial/genética , Genómica , Animales , Uso de Codones , Drosophilidae/citología , Orden Génico , Filogenia
5.
IUBMB Life ; 71(8): 1150-1157, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31135095

RESUMEN

Translation is the most error-prone process in protein synthesis; however, it is important that accuracy is maintained because erroneous translation has been shown to affect all domains of life. Translational quality control is maintained by both proteins and RNA through intricate processes. The aminoacyl-tRNA synthetases help maintain high levels of translational accuracy through the esterification of tRNA and proofreading mechanisms. tRNA is often recognized by an aminoacyl-tRNA synthetase in a sequence and structurally dependent manner, sometimes involving modified nucleotides. Additionally, some proofreading mechanisms of aminoacyl-tRNA synthetases require tRNA elements for hydrolysis of a noncognate aminoacyl-tRNA. Finally, tRNA is also important for proper decoding of the mRNA message by codon and anticodon pairing. Here, recent developments regarding the importance of tRNA in maintenance of translational accuracy are reviewed. © 2019 IUBMB Life, 2019 © 2019 IUBMB Life, 71(8):1150-1157, 2019.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Regulación de la Expresión Génica , Biosíntesis de Proteínas , ARN de Transferencia/genética , Animales , Anticodón , Codón , Escherichia coli/enzimología , Ésteres , Humanos , Ratones , Nucleótidos/genética , Orgánulos/metabolismo , Estrés Oxidativo , Fenotipo , ARN Mensajero/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/enzimología
6.
IUBMB Life ; 71(8): 1099-1108, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31241827

RESUMEN

Transfer RNAs are among the most ancient molecules of life on earth. Beyond their crucial role in protein synthesis as carriers of amino acids, they are also important players in a plethora of other biological processes. Many debates in term of biogenesis, regulation and function persist around these fascinating non-coding RNAs. Our review focuses on the first step of their biogenesis in eukaryotes, i.e. their transcription from nuclear genes. Numerous and complementary ways have emerged during evolution to regulate transfer RNA gene transcription. Here, we will summarize the different actors implicated in this process: cis-elements, trans-factors, genomic contexts, epigenetic environments and finally three-dimensional organization of nuclear genomes. © 2019 IUBMB Life, 2019 © 2019 IUBMB Life, 71(8):1099-1108, 2019.


Asunto(s)
Núcleo Celular/metabolismo , Regulación de la Expresión Génica , ARN de Transferencia/metabolismo , Transcripción Genética , Animales , Arabidopsis/enzimología , Caenorhabditis elegans/enzimología , Chlamydomonas reinhardtii/enzimología , Codón , Drosophila melanogaster , Endonucleasas/metabolismo , Epigénesis Genética , Células Eucariotas/enzimología , Genoma , Células HEK293 , Humanos , Conformación Proteica , ARN Polimerasa II/metabolismo , ARN Polimerasa III/metabolismo , Saccharomyces cerevisiae/enzimología , Análisis de Secuencia de ARN
7.
IUBMB Life ; 71(8): 1167-1180, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31206978

RESUMEN

T-box riboswitches are a widespread class of structured noncoding RNAs in Gram-positive bacteria that regulate the expression of amino acid-related genes. They form negative feedback loops to maintain steady supplies of aminoacyl-transfer RNAs (tRNAs) to the translating ribosomes. T-box riboswitches are located in the 5' leader regions of mRNAs that they regulate and directly bind to their cognate tRNA ligands. T-boxes further sense the aminoacylation state of the bound tRNAs and, based on this readout, regulate gene expression at the level of transcription or translation. T-box riboswitches consist of two conserved domains-a 5' Stem I domain that is involved in specific tRNA recognition and a 3' antiterminator/antisequestrator (or discriminator) domain that senses the amino acid on the 3' end of the bound tRNA. Interaction of the 3' end of an uncharged but not charged tRNA with a thermodynamically weak discriminator domain stabilizes it to promote transcription readthrough or translation initiation. Recent biochemical, biophysical, and structural studies have provided high-resolution insights into the mechanism of tRNA recognition by Stem I, several structural models of full-length T-box-tRNA complexes, mechanism of amino acid sensing by the antiterminator domain, as well as kinetic details of tRNA binding to the T-box riboswitches. In addition, translation-regulating T-box riboswitches have been recently characterized, which presented key differences from the canonical transcriptional T-boxes. Here, we review the recent developments in understanding the T-box riboswitch mechanism that have employed various complementary approaches. Further, the regulation of multiple essential genes by T-boxes makes them very attractive drug targets to combat drug resistance. The recent progress in understanding the biochemical, structural, and dynamic aspects of the T-box riboswitch mechanism will enable more precise and effective targeting with small molecules. © 2019 IUBMB Life, 2019 © 2019 IUBMB Life, 71(8):1167-1180, 2019.


Asunto(s)
Conformación de Ácido Nucleico , ARN/química , Riboswitch , Antibacterianos , Bacillus subtilis/metabolismo , Sitios de Unión , Codón , Ligandos , Biosíntesis de Proteínas , Dominios Proteicos , Pliegue de Proteína , ARN Bacteriano/química , ARN de Transferencia/química , ARN de Transferencia de Tirosina/química , Termodinámica , Transcripción Genética , Tirosina-ARNt Ligasa/genética
8.
IUBMB Life ; 70(3): 192-196, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29417736

RESUMEN

The question of what governs the translation elongation rate in eukaryotes has not yet been completely answered. Earlier, different availability of different tRNAs was considered as a main factor involved, however, recent data revealed that the elongation rate does not always depend on tRNA availability. Here, we offer another, codon-independent approach to explain specific tRNA-dependence of the elongation rate in eukaryotes. We hypothesize that the exit rate of eukaryotic translation elongation factor 1A (eEF1A)*GDP from the 80S ribosome depends on the protein affinity to specific aminoacyl-tRNA remaining on the ribosome after GTP hydrolysis. Subsequently, a slower dissociation of eEF1A*GDP from certain aminoacyl-tRNAs in the ribosome can negatively influence the ribosomal elongation rate in a tRNA-dependent and mRNA-independent way. The specific tRNA-dependent departure rate of eEF1A*GDP from the ribosome is suggested to be a novel factor contributing to the overall translation elongation control in eukaryotic cells. © 2018 IUBMB Life, 70(3):192-196, 2018.


Asunto(s)
Extensión de la Cadena Peptídica de Translación , Biosíntesis de Proteínas/genética , ARN de Transferencia/genética , Ribosomas/genética , Codón , Células Eucariotas/metabolismo , Guanosina Difosfato/genética , Factor 1 de Elongación Peptídica/genética , ARN Mensajero/genética
9.
IUBMB Life ; 68(6): 419-22, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27029281

RESUMEN

Codon-anticodon recognition between triplets of an mRNA and a specific tRNA is the key element in the translation of the genetic code. In general, the precision of this process is dominated by a strict Watson-Crick base-pairing scheme. However, the degeneracy of the genetic code led Crick to propose the Wobble Hypothesis, permitting a less restraining interaction with the third base of the codon and involving the participation of inosine for decoding C-ending codons. The concept that the anticodon base A34 of tRNAACGArg in all eukaryotes, eubacteria, and plant chloroplasts is converted to I34 is firmly anchored in the literature despite conflicting evidence for its existence in higher eukaryote cytoplasmic tRNAACGArg. Here, we provide additional data and summarize the arguments favoring and contradicting post-transcriptional deamination of this position. A hypothesis that resolves the apparent conflict is proposed. © 2016 IUBMB Life, 68(6):419-422, 2016.


Asunto(s)
Anticodón , Codón , Inosina/genética , Edición de ARN , ARN de Transferencia de Arginina/metabolismo , Adenosina/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Células Eucariotas , Código Genético , Humanos , Inosina/metabolismo , ARN de Transferencia de Arginina/genética
10.
Exp Neurol ; 382: 114971, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39326819

RESUMEN

This article explores the important functions of transfer RNA and - transfer RNA derived small RNAs (tsRNAs) in cellular processes and disease pathogenesis, with a particular emphasis on their involvement in cerebrovascular disorders. It discusses the biogenesis and structure of tsRNAs, including types such as tRNA halves and tRNA-derived fragments, and their functional significance in gene regulation, stress response, and cell signaling pathways. The importance of tsRNAs in neurodegenerative diseases, cancer, and cardiovascular diseases has already been highlighted, while their role in cerebrovascular diseases is in early phase of exploration. This paper presents the latest advancements in the field of tsRNAs in cerebrovascular conditions, such as ischemic stroke, intracerebral hemorrhage, and moyamoya disease. Furthermore, revealing the aptitude of tsRNAs as biomarkers for the prediction of cerebrovascular diseases and as targets for therapeutic intervention. It provides insights into the role of tsRNAs in these conditions and proposes directions for future research.

11.
Genes (Basel) ; 15(3)2024 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-38540433

RESUMEN

Transfer RNAs (tRNAs) are heavily decorated with post-transcriptional chemical modifications. Approximately 100 different modifications have been identified in tRNAs, and each tRNA typically contains 5-15 modifications that are incorporated at specific sites along the tRNA sequence. These modifications may be classified into two groups according to their position in the three-dimensional tRNA structure, i.e., modifications in the tRNA core and modifications in the anticodon-loop (ACL) region. Since many modified nucleotides in the tRNA core are involved in the formation of tertiary interactions implicated in tRNA folding, these modifications are key to tRNA stability and resistance to RNA decay pathways. In comparison to the extensively studied ACL modifications, tRNA core modifications have generally received less attention, although they have been shown to play important roles beyond tRNA stability. Here, we review and place in perspective selected data on tRNA core modifications. We present their impact on tRNA structure and stability and report how these changes manifest themselves at the functional level in translation, fitness and stress adaptation.


Asunto(s)
Anticodón , ARN de Transferencia , Anticodón/genética , ARN de Transferencia/metabolismo , Nucleótidos , Procesamiento Postranscripcional del ARN
12.
Neural Regen Res ; 17(2): 386-394, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34269214

RESUMEN

Transfer RNA (tRNA)-derived small RNAs (tsRNAs) are a recently established family of regulatory small non-coding RNAs that modulate diverse biological processes. Growing evidence indicates that tsRNAs are involved in neurological disorders and play a role in the pathogenesis of neurodegenerative disease. However, whether tsRNAs are involved in traumatic brain injury-induced secondary injury remains poorly understood. In this study, a mouse controlled cortical impact model of traumatic brain injury was established, and integrated tsRNA and messenger RNA (mRNA) transcriptome sequencing were used. The results revealed that 103 tsRNAs were differentially expressed in the mouse model of traumatic brain injury at 72 hours, of which 56 tsRNAs were upregulated and 47 tsRNAs were downregulated. Based on microRNA-like seed matching and Pearson correlation analysis, 57 differentially expressed tsRNA-mRNA interaction pairs were identified, including 29 tsRNAs and 26 mRNAs. Moreover, Gene Ontology annotation of target genes revealed that the significantly enriched terms were primarily associated with inflammation and synaptic function. Collectively, our findings suggest that tsRNAs may be associated with traumatic brain injury-induced secondary brain injury, and are thus a potential therapeutic target for traumatic brain injury. The study was approved by the Beijing Neurosurgical Institute Animal Care and Use Committee (approval No. 20190411) on April 11, 2019.

13.
Genes Dis ; 8(5): 581-589, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34291130

RESUMEN

The microbiota plays essential roles in health and disease, in both the intestine and the extra-intestine. Dysbiosis of the gut microbiota causes dysfunction in the intestine, which leads to inflammatory, immune, and infectious diseases. Dysbiosis is also associated with diseases beyond the intestine via microbial translocation or metabolisms. The in situ breast microbiome, which may be sourced from the gut through lactation and sexual contact, could be altered and cause breast diseases. In this review, we summarize the recent progress in understanding the interactions among the gut microbiome, breast microbiome, and breast diseases. We discuss the intestinal microbiota, microbial metabolites, and roles of microbiota in immune system. We emphasize the novel roles and mechanisms of the microbiome (both in situ and gastrointestinal sourced) and bacterial products in the development and progression of breast cancer. The intestinal microbial translocation suggests that the gut microbiome is translocated to the skin and subsequently to the breast tissue. The gut bacterial translocation is also due to the increased intestinal permeability. The breast and intestinal microbiota are important factors in maintaining healthy breasts. Micronutrition queuine (Q) is derived from a de novo synthesized metabolite in bacteria. All human cells use queuine and incorporate it into the wobble anticodon position of specific transfer RNAs. We have demonstrated that Q modification regulates genes critical in tight junctions and migration in human breast cancer cells and a breast tumor model. We further discuss the challenges and future perspectives that can move the field forward for prevention, diagnosis, and treatment of breast diseases.

14.
Front Microbiol ; 12: 671852, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34539595

RESUMEN

Respiratory syncytial virus (RSV) or measles virus (MeV) infection modifies host responses through small non-coding RNA (sncRNA) expression. We show that RSV or MeV infection of neuronal cells induces sncRNAs including various microRNAs and transfer RNA fragments (tRFs). We show that these tRFs originate from select tRNAs (GCC and CAC for glycine, CTT and AAC for Valine, and CCC and TTT for Lysine). Some of the tRNAs are rarely used by RSV or MeV as indicated by relative synonymous codon usage indices suggesting selective cleavage of the tRNAs occurs in infected neuronal cells. The data implies that differentially expressed sncRNAs may regulate host gene expression via multiple mechanisms in neuronal cells.

15.
Methods Enzymol ; 656: 375-428, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34325793

RESUMEN

Over the past decade, harnessing the cellular protein synthesis machinery to incorporate non-canonical amino acids (ncAAs) into tailor-made peptides has significantly advanced many aspects of molecular science. More recently, groundbreaking progress in our ability to engineer this machinery for improved ncAA incorporation has led to significant enhancements of this powerful tool for biology and chemistry. By revealing the molecular basis for the poor or improved incorporation of ncAAs, mechanistic studies of ncAA incorporation by the protein synthesis machinery have tremendous potential for informing and directing such engineering efforts. In this chapter, we describe a set of complementary biochemical and single-molecule fluorescence assays that we have adapted for mechanistic studies of ncAA incorporation. Collectively, these assays provide data that can guide engineering of the protein synthesis machinery to expand the range of ncAAs that can be incorporated into peptides and increase the efficiency with which they can be incorporated, thereby enabling the full potential of ncAA mutagenesis technology to be realized.


Asunto(s)
Aminoácidos , Aminoacil-ARNt Sintetasas , Aminoácidos/genética , Aminoacil-ARNt Sintetasas/genética , Mutagénesis , Biosíntesis de Proteínas , Ingeniería de Proteínas
16.
Noncoding RNA ; 7(2)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071416

RESUMEN

Dictyostelium discoideum is a social amoeba, which on starvation develops from a single-cell state to a multicellular fruiting body. This developmental process is accompanied by massive changes in gene expression, which also affect non-coding RNAs. Here, we investigate how tRNAs as key regulators of the translation process are affected by this transition. To this end, we used LOTTE-seq to sequence the tRNA pool of D. discoideum at different developmental time points and analyzed both tRNA composition and tRNA modification patterns. We developed a workflow for the specific detection of modifications from reverse transcriptase signatures in chemically untreated RNA-seq data at single-nucleotide resolution. It avoids the comparison of treated and untreated RNA-seq data using reverse transcription arrest patterns at nucleotides in the neighborhood of a putative modification site as internal control. We find that nucleotide modification sites in D. discoideum tRNAs largely conform to the modification patterns observed throughout the eukaroytes. However, there are also previously undescribed modification sites. We observe substantial dynamic changes of both expression levels and modification patterns of certain tRNA types during fruiting body development. Beyond the specific application to D. discoideum our results demonstrate that the developmental variability of tRNA expression and modification can be traced efficiently with LOTTE-seq.

17.
Cancers (Basel) ; 14(1)2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-35008188

RESUMEN

Epithelial ovarian cancer (EOC) remains a highly-lethal gynecological malignancy, characterized by frequent recurrence, chemotherapy resistance and poor 5-year survival. Identifying novel predictive molecular markers remains an overdue challenge in the disease's clinical management. Herein, in silico analysis of TCGA-OV highlighted the tRNA-derived internal fragment (i-tRF-GlyGCC) among the most abundant tRFs in ovarian tumors, while target prediction and gene ontology (GO) enrichment analysis predicted its implication in key biological processes. Thereafter, i-tRF-GlyGCC levels were quantified in a screening EOC (n = 98) and an institutionally-independent serous ovarian cancer (SOC) validation cohort (n = 100, OVCAD multicenter study). Disease progression and patient death were used as clinical endpoints for the survival analysis. Internal validation was performed by bootstrap analysis and the clinical net benefit was estimated by decision curve analysis. The analysis highlighted the significant association of i-tRF-GlyGCC with advanced FIGO stages, suboptimal debulking and most importantly, with early progression and poor overall survival of EOC patients. The OVCAD validation cohort corroborated the unfavorable predictive value of i-tRF-GlyGCC in EOC. Ultimately, evaluation of i-tRF-GlyGCC with the established/clinically used prognostic markers offered superior patient risk-stratification and enhanced clinical benefit in EOC prognosis. In conclusion, i-tRF-GlyGCC assessment could aid towards personalized prognosis and support precision medicine decisions in EOC.

18.
Mol Brain ; 10(1): 13, 2017 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-28407788

RESUMEN

Recessive mutations in the ubiquitously expressed POLR3A gene cause one of the most frequent forms of childhood-onset hypomyelinating leukodystrophy (HLD): POLR3-HLD. POLR3A encodes the largest subunit of RNA Polymerase III (Pol III), which is responsible for the transcription of transfer RNAs (tRNAs) and a large array of other small non-coding RNAs. In order to study the central nervous system pathophysiology of the disease, we introduced the French Canadian founder Polr3a mutation c.2015G > A (p.G672E) in mice, generating homozygous knock-in (KI/KI) as well as compound heterozygous mice for one Polr3a KI and one null allele (KI/KO). Both KI/KI and KI/KO mice are viable and are able to reproduce. To establish if they manifest a motor phenotype, WT, KI/KI and KI/KO mice were submitted to a battery of behavioral tests over one year. The KI/KI and KI/KO mice have overall normal balance, muscle strength and general locomotion. Cerebral and cerebellar Luxol Fast Blue staining and measurement of levels of myelin proteins showed no significant differences between the three groups, suggesting that myelination is not overtly impaired in Polr3a KI/KI and KI/KO mice. Finally, expression levels of several Pol III transcripts in the brain showed no statistically significant differences. We conclude that the first transgenic mice with a leukodystrophy-causing Polr3a mutation do not recapitulate the childhood-onset HLD observed in the majority of human patients with POLR3A mutations, and provide essential information to guide selection of Polr3a mutations for developing future mouse models of the disease.


Asunto(s)
Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Mutación/genética , Vaina de Mielina/metabolismo , ARN Polimerasa III/genética , Animales , Cerebelo/patología , Cerebelo/fisiopatología , Técnicas de Sustitución del Gen , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/fisiopatología , Homocigoto , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora , Células de Purkinje/metabolismo , Células de Purkinje/patología , ARN Polimerasa III/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA