Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 820
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 182(1): 50-58.e8, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32516571

RESUMEN

COVID-19 has spread worldwide since 2019 and is now a severe threat to public health. We previously identified the causative agent as a novel SARS-related coronavirus (SARS-CoV-2) that uses human angiotensin-converting enzyme 2 (hACE2) as the entry receptor. Here, we successfully developed a SARS-CoV-2 hACE2 transgenic mouse (HFH4-hACE2 in C3B6 mice) infection model. The infected mice generated typical interstitial pneumonia and pathology that were similar to those of COVID-19 patients. Viral quantification revealed the lungs as the major site of infection, although viral RNA could also be found in the eye, heart, and brain in some mice. Virus identical to SARS-CoV-2 in full-genome sequences was isolated from the infected lung and brain tissues. Last, we showed that pre-exposure to SARS-CoV-2 could protect mice from severe pneumonia. Our results show that the hACE2 mouse would be a valuable tool for testing potential vaccines and therapeutics.


Asunto(s)
Betacoronavirus/fisiología , Infecciones por Coronavirus/patología , Modelos Animales de Enfermedad , Ratones Transgénicos , Neumonía Viral/patología , Enzima Convertidora de Angiotensina 2 , Animales , COVID-19 , Femenino , Humanos , Enfermedades Pulmonares Intersticiales/patología , Enfermedades Pulmonares Intersticiales/virología , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Transgénicos/genética , Pandemias , Peptidil-Dipeptidasa A/genética , SARS-CoV-2 , Tropismo Viral , Pérdida de Peso
2.
Immunity ; 49(2): 301-311.e5, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30076101

RESUMEN

An important class of HIV-1 broadly neutralizing antibodies, termed the VRC01 class, targets the conserved CD4-binding site (CD4bs) of the envelope glycoprotein (Env). An engineered Env outer domain (OD) eOD-GT8 60-mer nanoparticle has been developed as a priming immunogen for eliciting VRC01-class precursors and is planned for clinical trials. However, a substantial portion of eOD-GT8-elicited antibodies target non-CD4bs epitopes, potentially limiting its efficacy. We introduced N-linked glycans into non-CD4bs surfaces of eOD-GT8 to mask irrelevant epitopes and evaluated these mutants in a mouse model that expressed diverse immunoglobulin heavy chains containing human IGHV1-2∗02, the germline VRC01 VH segment. Compared to the parental eOD-GT8, a mutant with five added glycans stimulated significantly higher proportions of CD4bs-specific serum responses and CD4bs-specific immunoglobulin G+ B cells including VRC01-class precursors. These results demonstrate that glycan masking can limit elicitation of off-target antibodies and focus immune responses to the CD4bs, a major target of HIV-1 vaccine design.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Sitios de Unión de Anticuerpos/inmunología , Antígenos CD4/inmunología , Anticuerpos Anti-VIH/inmunología , VIH-1/inmunología , Vacunas contra el SIDA/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos ampliamente neutralizantes , Línea Celular , Femenino , Técnicas de Sustitución del Gen , Proteína gp120 de Envoltorio del VIH/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/prevención & control , Humanos , Cadenas Pesadas de Inmunoglobulina/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Polisacáridos/química
3.
Immunol Rev ; 306(1): 108-122, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34866192

RESUMEN

Fibroblastic reticular cells (FRCs) are specialized stromal cells of lymphoid organs that generate the structural foundation of the tissue and actively interact with immune cells. Distinct FRC subsets position lymphocytes and myeloid cells in specialized niches where they present processed or native antigen and provide essential growth factors and cytokines for immune cell activation and differentiation. Niche-specific functions of FRC subpopulations have been defined using genetic targeting, high-dimensional transcriptomic analyses, and advanced imaging methods. Here, we review recent findings on FRC-immune cell interaction and the elaboration of FRC development and differentiation. We discuss how imaging approaches have not only shaped our understanding of FRC biology, but have critically advanced the niche concept of immune cell maintenance and control of immune reactivity.


Asunto(s)
Fibroblastos , Células del Estroma , Comunicación Celular , Diferenciación Celular , Perfilación de la Expresión Génica , Humanos , Ganglios Linfáticos
4.
Proc Natl Acad Sci U S A ; 119(40): e2206515119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161923

RESUMEN

Antimicrobial peptides (AMPs) are critical to the protection of the urinary tract of humans and other animals from pathogenic microbial invasion. AMPs rapidly destroy pathogens by disrupting microbial membranes and/or augmenting or inhibiting the host immune system through a variety of signaling pathways. We have previously demonstrated that alpha-defensins 1-3 (DEFA1A3) are AMPs expressed in the epithelial cells of the human kidney collecting duct in response to uropathogens. We also demonstrated that DNA copy number variations in the DEFA1A3 locus are associated with UTI and pyelonephritis risk. Because DEFA1A3 is not expressed in mice, we utilized human DEFA1A3 gene transgenic mice (DEFA4/4) to further elucidate the biological relevance of this locus in the murine urinary tract. We demonstrate that the kidney transcriptional and translational expression pattern is similar in humans and the human gene transgenic mouse upon uropathogenic Escherichia coli (UPEC) stimulus in vitro and in vivo. We also demonstrate transgenic human DEFA4/4 gene mice are protected from UTI and pyelonephritis under various UPEC challenges. This study serves as the foundation to start the exploration of manipulating the DEFA1A3 locus and alpha-defensins 1-3 expression as a potential therapeutic target for UTIs and other infectious diseases.


Asunto(s)
Infecciones por Escherichia coli , Pielonefritis , Infecciones Urinarias , Escherichia coli Uropatógena , alfa-Defensinas , Animales , Variaciones en el Número de Copia de ADN , Infecciones por Escherichia coli/genética , Infecciones por Escherichia coli/inmunología , Sitios Genéticos , Humanos , Ratones , Ratones Transgénicos , Pielonefritis/genética , Pielonefritis/inmunología , Pielonefritis/microbiología , Sistema Urinario/microbiología , Infecciones Urinarias/genética , Infecciones Urinarias/inmunología , Infecciones Urinarias/microbiología , alfa-Defensinas/genética
5.
Proc Natl Acad Sci U S A ; 119(49): e2207824119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36454756

RESUMEN

Revealing the molecular events associated with reprogramming different somatic cell types to pluripotency is critical for understanding the characteristics of induced pluripotent stem cell (iPSC) therapeutic derivatives. Inducible reprogramming factor transgenic cells or animals-designated as secondary (2°) reprogramming systems-not only provide excellent experimental tools for such studies but also offer a strategy to study the variances in cellular reprogramming outcomes due to different in vitro and in vivo environments. To make such studies less cumbersome, it is desirable to have a variety of efficient reprogrammable mouse systems to induce successful mass reprogramming in somatic cell types. Here, we report the development of two transgenic mouse lines from which 2° cells reprogram with unprecedented efficiency. These systems were derived by exposing primary reprogramming cells containing doxycycline-inducible Yamanaka factor expression to a transient interruption in transgene expression, resulting in selection for a subset of clones with robust transgene response. These systems also include reporter genes enabling easy readout of endogenous Oct4 activation (GFP), indicative of pluripotency, and reprogramming transgene expression (mCherry). Notably, somatic cells derived from various fetal and adult tissues from these 2° mouse lines gave rise to highly efficient and rapid reprogramming, with transgene-independent iPSC colonies emerging as early as 1 wk after induction. These mouse lines serve as a powerful tool to explore sources of variability in reprogramming and the mechanistic underpinnings of efficient reprogramming systems.


Asunto(s)
Reprogramación Celular , Doxiciclina , Animales , Ratones , Ratones Transgénicos , Reprogramación Celular/genética , Transgenes , Células Clonales , Doxiciclina/farmacología
6.
J Neurophysiol ; 132(2): 573-588, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38988288

RESUMEN

Growing evidence suggests that neuropeptide signaling shapes auditory computations. We previously showed that neuropeptide Y (NPY) is expressed in the inferior colliculus (IC) by a population of GABAergic stellate neurons and that NPY regulates the strength of local excitatory circuits in the IC. NPY neurons were initially characterized using the NPY-hrGFP mouse, in which humanized renilla green fluorescent protein (hrGFP) expression indicates NPY expression at the time of assay, i.e., an expression-tracking approach. However, studies in other brain regions have shown that NPY expression can vary based on several factors, suggesting that the NPY-hrGFP mouse might miss NPY neurons not expressing NPY on the experiment date. Here, we hypothesized that neurons with the ability to express NPY represent a larger population of IC GABAergic neurons than previously reported. To test this hypothesis, we used a lineage-tracing approach to irreversibly tag neurons that expressed NPY at any point prior to the experiment date. We then compared the physiological and anatomical features of neurons labeled with this lineage-tracing approach to our prior data set, revealing a larger population of NPY neurons than previously found. In addition, we used optogenetics to test the local connectivity of NPY neurons and found that NPY neurons provide inhibitory synaptic input to other neurons in the ipsilateral IC. Together, our data expand the definition of NPY neurons in the IC, suggest that NPY expression might be dynamically regulated in the IC, and provide functional evidence that NPY neurons form local inhibitory circuits in the IC.NEW & NOTEWORTHY Across brain regions, neuropeptide Y (NPY) expression is dynamic and influenced by extrinsic and intrinsic factors. We previously showed that NPY is expressed by a class of inhibitory neurons in the auditory midbrain. Here, we find that this neuron class also includes neurons that previously expressed NPY, suggesting that NPY expression is dynamically regulated in the auditory midbrain. We also provide functional evidence that NPY neurons contribute to local inhibitory circuits in the auditory midbrain.


Asunto(s)
Neuronas GABAérgicas , Colículos Inferiores , Neuropéptido Y , Colículos Inferiores/citología , Colículos Inferiores/metabolismo , Colículos Inferiores/fisiología , Neuropéptido Y/metabolismo , Animales , Ratones , Neuronas GABAérgicas/fisiología , Neuronas GABAérgicas/metabolismo , Masculino , Ratones Transgénicos , Femenino , Neuronas/metabolismo , Neuronas/fisiología , Linaje de la Célula , Ratones Endogámicos C57BL
7.
Clin Immunol ; 266: 110312, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39019339

RESUMEN

STAT3 gain-of-function (GOF) variants results in a heterogeneous clinical syndrome characterized by early onset immunodeficiency, multi-organ autoimmunity, and lymphoproliferation. While 191 documented cases with STAT3 GOF variants have been reported, the impact of individual variants on immune regulation and the broad clinical spectrum remains unclear. We developed a Stat3p.L387R mouse model, mirroring a variant identified in a family exhibiting common STAT3 GOF symptoms, and rare phenotypes including pulmonary hypertension and retinal vasculitis. In vitro experiments revealed increased STAT3 phosphorylation, nuclear migration, and DNA binding of the variant. Our Stat3p.L387R model displayed similar traits from previous Stat3GOF strains, such as splenomegaly and lymphadenopathy. Notably, Stat3p.L387R/+ mice exhibited heightened embryonic lethality compared to prior Stat3GOF/+ models and ocular abnormalities were observed. This research underscores the variant-specific pathology in Stat3p.L387R/+ mice, highlighting the ability to recapitulate human STAT3 GOF syndrome in patient-specific transgenic murine models. Additionally, such models could facilitate tailored treatment development.


Asunto(s)
Modelos Animales de Enfermedad , Mutación con Ganancia de Función , Factor de Transcripción STAT3 , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Animales , Ratones , Humanos , Mutación con Ganancia de Función/genética , Femenino , Masculino , Ratones Transgénicos , Fenotipo , Fosforilación , Ratones Endogámicos C57BL
8.
J Neuroinflammation ; 21(1): 11, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38178148

RESUMEN

The tetracycline transactivator (tTA) system provides controllable transgene expression through oral administration of the broad-spectrum antibiotic doxycycline. Antibiotic treatment for transgene control in mouse models of disease might have undesirable systemic effects resulting from changes in the gut microbiome. Here we assessed the impact of doxycycline on gut microbiome diversity in a tTA-controlled model of Alzheimer's disease and then examined neuroimmune effects of these microbiome alterations following acute LPS challenge. We show that doxycycline decreased microbiome diversity in both transgenic and wild-type mice and that these changes persisted long after drug withdrawal. Despite the change in microbiome composition, doxycycline treatment had minimal effect on basal transcriptional signatures of inflammation the brain or on the neuroimmune response to LPS challenge. Our findings suggest that central neuroimmune responses may be less affected by doxycycline at doses needed for transgene control than by antibiotic cocktails at doses used for experimental microbiome disruption.


Asunto(s)
Doxiciclina , Microbioma Gastrointestinal , Ratones , Animales , Doxiciclina/farmacología , Ratones Transgénicos , Lipopolisacáridos , Tetraciclina/farmacología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Transactivadores/genética , Inflamación , Transgenes
9.
Mol Carcinog ; 63(9): 1768-1782, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38869281

RESUMEN

To study mechanisms driving/inhibiting skin carcinogenesis, stage-specific expression of 14-3-3σ (Stratifin) was analyzed in skin carcinogenesis driven by activated rasHa/fos expression (HK1.ras/fos) and ablation of PTEN-mediated AKT regulation (K14.creP/Δ5PTENflx/flx). Consistent with 14-3-3σ roles in epidermal differentiation, HK1.ras hyperplasia and papillomas displayed elevated 14-3-3σ expression in supra-basal keratinocytes, paralleled by supra-basal p-MDM2166 activation and sporadic p-AKT473 expression. In bi-genic HK1.fos/Δ5PTENflx/flx hyperplasia, basal-layer 14-3-3σ expression appeared, and alongside p53/p21, was associated with keratinocyte differentiation and keratoacanthoma etiology. Tri-genic HK1.ras/fos-Δ5PTENflx/flx hyperplasia/papillomas initially displayed increased basal-layer 14-3-3σ, suggesting attempts to maintain supra-basal p-MDM2166 and protect basal-layer p53. However, HK1.ras/fos-Δ5PTENflx/flx papillomas exhibited increasing basal-layer p-MDM2166 activation that reduced p53, which coincided with malignant conversion. Despite p53 loss, 14-3-3σ expression persisted in well-differentiated squamous cell carcinomas (wdSCCs) and alongside elevated p21, limited malignant progression via inhibiting p-AKT1473 expression; until 14-3-3σ/p21 loss facilitated progression to aggressive SCC exhibiting uniform p-AKT1473. Analysis of TPA-promoted HK1.ras-Δ5PTENflx/flx mouse skin, demonstrated early loss of 14-3-3σ/p53/p21 in hyperplasia and papillomas, with increased p-MDM2166/p-AKT1473 that resulted in rapid malignant conversion and progression to poorly differentiated SCC. In 2D/3D cultures, membranous 14-3-3σ expression observed in normal HaCaT and SP1ras61 papilloma keratinocytes was unexpectedly detected in malignant T52ras61/v-fos SCC cells cultured in monolayers, but not invasive 3D-cells. Collectively, these data suggest 14-3-3σ/Stratifin exerts suppressive roles in papillomatogenesis via MDM2/p53-dependent mechanisms; while persistent p53-independent expression in early wdSCC may involve p21-mediated AKT1 inhibition to limit malignant progression.


Asunto(s)
Proteínas 14-3-3 , Proteínas Proto-Oncogénicas c-akt , Proteínas Proto-Oncogénicas c-mdm2 , Neoplasias Cutáneas , Proteína p53 Supresora de Tumor , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/genética , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Ratones , Exorribonucleasas/metabolismo , Exorribonucleasas/genética , Carcinogénesis/metabolismo , Carcinogénesis/genética , Carcinogénesis/patología , Progresión de la Enfermedad , Humanos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Queratinocitos/metabolismo , Queratinocitos/patología , Regulación Neoplásica de la Expresión Génica
10.
BMC Cancer ; 24(1): 792, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38956496

RESUMEN

The in vivo functions of SerpinB2 in tumor cells and tumor-associated macrophages (TAMs) during breast cancer development and metastasis remain elusive. SerpinB2-deficient MMTV-PyMT mice (PyMTSB2-/-) were previously produced to explore the biological roles of SerpinB2 in breast cancer. Compared with MMTV-PyMT wild-type (PyMTWT) mice, PyMTSB2-/- mice showed delayed tumor progression and reduced CK8 + tumor cell dissemination to lymph nodes. RNA-Seq data revealed significantly enriched genes associated with inflammatory responses, especially upregulated M1 and downregulated M2 macrophage marker genes in PyMTSB2-/- tumors. Decreased CD206+M2 and increased NOS2+M1 markers were detected in the primary tumors and metastatic lymph nodes of PyMTSB2-/- mice. In an in vitro study, SerpinB2 knockdown decreased the sphere formation and migration of MDA-MB-231 cells and suppressed protumorigenic M2 polarization of RAW264.7 cells. The combination of low SerpinB2, high NOS2, and low CD206 expression was favorable for survival in patients with breast cancer, as assessed in the BreastMark dataset. Our study demonstrates that SerpinB2 deficiency delays mammary tumor development and metastasis in PyMTWT mice, along with reduced sphere formation and migration abilities of tumor cells and decreased macrophage protumorigenic polarization.


Asunto(s)
Neoplasias de la Mama , Inhibidor 2 de Activador Plasminogénico , Animales , Femenino , Humanos , Ratones , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Macrófagos/metabolismo , Neoplasias Mamarias Experimentales/patología , Neoplasias Mamarias Experimentales/genética , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Inhibidor 2 de Activador Plasminogénico/genética , Inhibidor 2 de Activador Plasminogénico/metabolismo , Inhibidor 2 de Activador Plasminogénico/deficiencia , Células RAW 264.7 , Macrófagos Asociados a Tumores/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo
11.
Brain Behav Immun ; 121: 122-141, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38986725

RESUMEN

Multiple system atrophy (MSA) is a severe α-synucleinopathy facilitated by glial reactions; the cerebellar variant (MSA-C) preferentially involves olivopontocerebellar fibres with conspicuous demyelination. A lack of aggressive models that preferentially involve olivopontocerebellar tracts in adulthood has hindered our understanding of the mechanisms of demyelination and neuroaxonal loss, and thus the development of effective treatments for MSA. We therefore aimed to develop a rapidly progressive mouse model that recaptures MSA-C pathology. We crossed Plp1-tTA and tetO-SNCA*A53T mice to generate Plp1-tTA::tetO-SNCA*A53T bi-transgenic mice, in which human A53T α-synuclein-a mutant protein with enhanced aggregability-was specifically produced in the oligodendrocytes of adult mice using Tet-Off regulation. These bi-transgenic mice expressed mutant α-synuclein from 8 weeks of age, when doxycycline was removed from the diet. All bi-transgenic mice presented rapidly progressive motor deterioration, with wide-based ataxic gait around 22 weeks of age and death around 30 weeks of age. They also had prominent demyelination in the brainstem/cerebellum. Double immunostaining demonstrated that myelin basic protein was markedly decreased in areas in which SM132, an axonal marker, was relatively preserved. Demyelinating lesions exhibited marked ionised calcium-binding adaptor molecule 1-, arginase-1-, and toll-like receptor 2-positive microglial reactivity and glial fibrillary acidic protein-positive astrocytic reactivity. Microarray analysis revealed a strong inflammatory response and cytokine/chemokine production in bi-transgenic mice. Neuronal nuclei-positive neuronal loss and patchy microtubule-associated protein 2-positive dendritic loss became prominent at 30 weeks of age. However, a perceived decrease in tyrosine hydroxylase-positive neurons in the substantia nigra pars compacta in bi-transgenic mice compared with wild-type mice was not significant, even at 30 weeks of age. Wild-type, Plp1-tTA, and tetO-SNCA*A53T mice developed neither motor deficits nor demyelination. In bi-transgenic mice, double immunostaining revealed human α-synuclein accumulation in neurite outgrowth inhibitor A (Nogo-A)-positive oligodendrocytes beginning at 9 weeks of age; its expression was further increased at 10 to 12 weeks, and these increased levels were maintained at 12, 24, and 30 weeks. In an α-synuclein-proximity ligation assay, α-synuclein oligomers first appeared in brainstem oligodendrocytes as early as 9 weeks of age; they then spread to astrocytes, neuropil, and neurons at 12 and 16 weeks of age. α-Synuclein oligomers in the brainstem neuropil were most abundant at 16 weeks of age and decreased thereafter; however, those in Purkinje cells successively increased until 30 weeks of age. Double immunostaining revealed the presence of phosphorylated α-synuclein in Nogo-A-positive oligodendrocytes in the brainstem/cerebellum as early as 9 weeks of age. In quantitative assessments, phosphorylated α-synuclein gradually and successively accumulated at 12, 24, and 30 weeks in bi-transgenic mice. By contrast, no phosphorylated α-synuclein was detected in wild-type, tetO-SNCA*A53T, or Plp1-tTA mice at any age examined. Pronounced demyelination and tubulin polymerisation, promoting protein-positive oligodendrocytic loss, was closely associated with phosphorylated α-synuclein aggregates at 24 and 30 weeks of age. Early inhibition of mutant α-synuclein expression by doxycycline diet at 23 weeks led to fully recovered demyelination; inhibition at 27 weeks led to persistent demyelination with glial reactions, despite resolving phosphorylated α-synuclein aggregates. In conclusion, our bi-transgenic mice exhibited progressively increasing demyelination and neuroaxonal loss in the brainstem/cerebellum, with rapidly progressive motor deterioration in adulthood. These mice showed marked microglial and astrocytic reactions with inflammation that was closely associated with phosphorylated α-synuclein aggregates. These features closely mimic human MSA-C pathology. Notably, our model is the first to suggest that α-synuclein oligomers may spread from oligodendrocytes to neurons in transgenic mice with human α-synuclein expression in oligodendrocytes. This model of MSA is therefore particularly useful for elucidating the in vivo mechanisms of α-synuclein spreading from glia to neurons, and for developing therapies that target glial reactions and/or α-synuclein oligomer spreading and aggregate formation in MSA.

12.
Pharm Res ; 41(4): 651-672, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38519817

RESUMEN

BACKGROUND AND PURPOSE: There is concern that subvisible aggregates in biotherapeutic drug products pose a risk to patient safety. We investigated the threshold of biotherapeutic aggregates needed to induce immunogenic responses. METHODS AND RESULTS: Highly aggregated samples were tested in cell-based assays and induced cellular responses in a manner that depended on the number of particles. The threshold of immune activation varied by disease state (cancer, rheumatoid arthritis, allergy), concomitant therapies, and particle number. Compared to healthy donors, disease state patients showed an equal or lower response at the late phase (7 days), suggesting they may not have a higher risk of responding to aggregates. Xeno-het mice were used to assess the threshold of immune activation in vivo. Although highly aggregated samples (~ 1,600,000 particles/mL) induced a weak and transient immunogenic response in mice, a 100-fold dilution of this sample (~ 16,000 particles/mL) did not induce immunogenicity. To confirm this result, subvisible particles (up to ~ 18,000 particles/mL, containing aggregates and silicone oil droplets) produced under representative administration practices (created upon infusion of a drug product through an IV catheter) did not induce a response in cell-based assays or appear to increase the rate of adverse events or immunogenicity during phase 3 clinical trials. CONCLUSION: The ability of biotherapeutic aggregates to elicit an immune response in vitro, in vivo, and in the clinic depends on high numbers of particles. This suggests that there is a high threshold for aggregates to induce an immunogenic response which is well beyond that seen in standard biotherapeutic drug products.


Asunto(s)
Formación de Anticuerpos , Humanos , Ratones , Animales , Preparaciones Farmacéuticas
13.
Biol Pharm Bull ; 47(6): 1079-1086, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38825461

RESUMEN

Idiosyncratic drug toxicities (IDTs) pose a significant challenge; they are marked by life-threatening adverse reactions that emerge aftermarket release and are influenced by intricate genetic and environmental variations. Recent genome-wide association studies have highlighted a strong correlation between specific human leukocyte antigen (HLA) polymorphisms and IDT onset. This review provides an overview of current research on HLA-mediated drug toxicities. In the last six years, HLA-transgenic (Tg) mice have been instrumental in advancing our understanding of these underlying mechanisms, uncovering systemic immune reactions that replicate human drug-induced immune stimulation. Additionally, the potential role of immune tolerance in shaping individual differences in adverse effects highlights its relevance to the interplay between HLA polymorphisms and IDTs. Although HLA-Tg mice offer valuable insights into systemic immune reactions, further exploration is essential to decipher the intricate interactions that lead to organ-specific adverse effects, especially in organs such as the skin or liver. Navigating the intricate interplay of HLA, which may potentially trigger intracellular immune responses, this review emphasizes the need for a holistic approach that integrates findings from both animal models and molecular/cellular investigations. The overarching goal is to enhance our comprehensive understanding of HLA-mediated IDTs and identify factors shaping individual variations in drug reactions. This review aims to facilitate the development of strategies to prevent severe adverse effects, address existing knowledge gaps, and provide guidance for future research initiatives in the field of HLA-mediated IDTs.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Antígenos HLA , Animales , Humanos , Antígenos HLA/genética , Antígenos HLA/inmunología , Ratones Transgénicos , Polimorfismo Genético , Ratones
14.
Cell Mol Life Sci ; 80(5): 123, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37071198

RESUMEN

Alzheimer's disease (AD), as the most common type of dementia, has two pathological hallmarks, extracellular senile plaques composed of ß-amyloid peptides and intracellular neurofibrillary tangles containing phosphorylated-tau protein. Amyloid precursor protein (APP) and tau each play central roles in AD, although how APP and tau interact and synergize in the disease process is largely unknown. Here, we showed that soluble tau interacts with the N-terminal of APP in vitro in cell-free and cell culture systems, which can be further confirmed in vivo in the brain of 3XTg-AD mouse. In addition, APP is involved in the cellular uptake of tau through endocytosis. APP knockdown or N-terminal APP-specific antagonist 6KApoEp can prevent tau uptake in vitro, resulting in an extracellular tau accumulation in cultured neuronal cells. Interestingly, in APP/PS1 transgenic mouse brain, the overexpression of APP exacerbated tau propagation. Moreover, in the human tau transgenic mouse brain, overexpression of APP promotes tau phosphorylation, which is significantly remediated by 6KapoEp. All these results demonstrate the important role of APP in the tauopathy of AD. Targeting the pathological interaction of N-terminal APP with tau may provide an important therapeutic strategy for AD.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Ratones , Humanos , Animales , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Modelos Animales de Enfermedad , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Ratones Transgénicos
15.
Bioessays ; 44(8): e2200026, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35587163

RESUMEN

The integrated stress response (ISR) is a key determinant of tumorigenesis in response to oncogenic forms of stress like genotoxic, proteotoxic and metabolic stress. ISR relies on the phosphorylation of the translation initiation factor eIF2 to promote the translational and transcriptional reprogramming of gene expression in stressed cells. While ISR promotes tumor survival under stress, its hyperactivation above a level of tolerance can also cause tumor death. The tumorigenic function of ISR has been recently demonstrated for lung adenocarcinomas (LUAD) with KRAS mutations. ISR mediates the translational repression of the dual-specificity phosphatase DUSP6 to stimulate ERK activity and LUAD growth. The significance of this finding is highlighted by the strong anti-tumor responses of ISR inhibitors in pre-clinical LUAD models. Elucidation of the mechanisms of ISR action in LUAD progression via cell-autonomous and immune regulatory mechanisms will provide a better understanding of its tumorigenic role to fully exploit its therapeutic potential in the treatment of a deadly form of cancer.


Asunto(s)
Neoplasias Pulmonares , Proteínas Proto-Oncogénicas p21(ras) , Carcinogénesis/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Humanos , Pulmón/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Fosforilación , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Estrés Fisiológico/genética
16.
Artículo en Inglés | MEDLINE | ID: mdl-38752269

RESUMEN

The Gt(ROSA)26Sor ( ROSA26) and H11 loci are commonly used as safe harbors for the construction of targeted transgenic mice. However, it remains unclear whether these two loci have distinct effects on transgene expression. In this study, we insert three differently colored fluorescent protein expression cassettes (EGFP, tdTomato and mTagBFP2) driven by the CAG promoter into the ROSA26 and H11 loci. We generate five single-transgenic mouse models and a triple-transgenic mouse model expressing three distinct fluorescent proteins simultaneously. Our results reveal that the efficiency of transgene expression is greater at the ROSA26 locus with a reverse orientation relative to the transcription of the ROSA26 gene. In most tissues examined, the efficiency of transgene expression at the ROSA26 locus exceeds that at the H11 locus. Moreover, the expression profiles of identical transgenes display discrepancies across various tissues, and notably, substantial heterogeneity in transgene expression is discernible within cells of the same tissue. Our findings offer a valuable reference for the selection of safe harbors and strategies for the construction of transgenic mouse models.

17.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33688035

RESUMEN

Modified vaccinia virus Ankara (MVA) is a replication-restricted smallpox vaccine, and numerous clinical studies of recombinant MVAs (rMVAs) as vectors for prevention of other infectious diseases, including COVID-19, are in progress. Here, we characterize rMVAs expressing the S protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Modifications of full-length S individually or in combination included two proline substitutions, mutations of the furin recognition site, and deletion of the endoplasmic retrieval signal. Another rMVA in which the receptor binding domain (RBD) is flanked by the signal peptide and transmembrane domains of S was also constructed. Each modified S protein was displayed on the surface of rMVA-infected cells and was recognized by anti-RBD antibody and soluble hACE2 receptor. Intramuscular injection of mice with the rMVAs induced antibodies, which neutralized a pseudovirus in vitro and, upon passive transfer, protected hACE2 transgenic mice from lethal infection with SARS-CoV-2, as well as S-specific CD3+CD8+IFNγ+ T cells. Antibody boosting occurred following a second rMVA or adjuvanted purified RBD protein. Immunity conferred by a single vaccination of hACE2 mice prevented morbidity and weight loss upon intranasal infection with SARS-CoV-2 3 wk or 7 wk later. One or two rMVA vaccinations also prevented detection of infectious SARS-CoV-2 and subgenomic viral mRNAs in the lungs and greatly reduced induction of cytokine and chemokine mRNAs. A low amount of virus was found in the nasal turbinates of only one of eight rMVA-vaccinated mice on day 2 and none later. Detection of low levels of subgenomic mRNAs in turbinates indicated that replication was aborted in immunized animals.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Vectores Genéticos/genética , SARS-CoV-2/inmunología , Vacunas de ADN/inmunología , Virus Vaccinia/genética , Enzima Convertidora de Angiotensina 2/genética , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Especificidad de Anticuerpos/inmunología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/genética , Modelos Animales de Enfermedad , Expresión Génica , Humanos , Inmunización , Inmunización Pasiva , Inmunoglobulina G/inmunología , Ratones , Ratones Transgénicos , Glicoproteína de la Espiga del Coronavirus/inmunología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Vacunas de ADN/administración & dosificación , Vacunas de ADN/genética
18.
Pediatr Surg Int ; 40(1): 195, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39017743

RESUMEN

BACKGROUND: We previously showed that total tumor resection enhances metastatic growth in a syngeneic metastatic mouse model of neuroblastoma. In this study, we further investigated which surgical factors contributed most to metastatic growth. METHODS: Tumor cells derived from MYCN transgenic mice were subcutaneously injected into wild-type mice. Mice were randomly assigned to receive partial resection (PR group), subcutaneous implantation of a sponge (Sp group), or observation (Obs group). The lymph node metastasis volume and the frequency of lung metastasis were compared 14 days after assignment by measuring C-reactive protein (CRP) and interleukin-6 (IL-6) levels. RESULTS: The lymph node metastasis volume in the Sp group was larger than in the Obs group (148.4 [standard deviation {SD}: 209.5] vs. 10.2 [SD 12.8] mm3). The frequency of lung metastasis was greater in the Sp group than in the PR group (11.9 [SD 12.2] vs. 6.6 [SD 4.0] counts/slide). The CRP level in the Sp group was higher than in the PR group (2.3 [SD 0.5] vs. 1.5 [SD 0.4] µg/mL), and the IL-6 level in the Sp group was higher than in the PR or Obs groups (28.4 [SD 34.5] vs. 12.4 [SD 19.0] vs. 5.4 [SD 8.1] pg/mL). CONCLUSION: Metastatic growth may be enhanced by systemic inflammation.


Asunto(s)
Proteína C-Reactiva , Modelos Animales de Enfermedad , Inflamación , Neoplasias Pulmonares , Neuroblastoma , Animales , Neuroblastoma/patología , Ratones , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/secundario , Proteína C-Reactiva/metabolismo , Inflamación/patología , Interleucina-6 , Metástasis Linfática , Ratones Transgénicos
19.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38474278

RESUMEN

The small GTPase RAS acts as a plasma membrane-anchored intracellular neurotrophin counteracting neuronal degeneration in the brain, but the underlying molecular mechanisms are largely unknown. In transgenic mice expressing constitutively activated V12-Ha-RAS selectively in neurons, proteome analysis uncovered a 70% decrease in voltage-dependent anion channel-1 (VDAC-1) in the cortex and hippocampus. We observed a corresponding reduction in the levels of mRNA splicing variant coding for plasma membrane-targeted VDAC-1 (pl-VDAC-1) while mRNA levels for mitochondrial membrane VDAC-1 (mt-VDAC-1) remained constant. In primary cortical neurons derived from V12-Ha-RAS animals, a decrease in pl-VDAC-1 mRNA levels was observed, accompanied by a concomitant reduction in the ferricyanide reductase activity associated with VDAC-1 protein. Application of MEK inhibitor U0126 to transgenic cortical neurons reconstituted pl-VDAC-1 mRNA to reach wild-type levels. Excitotoxic glutamate-induced cell death was strongly attenuated in transgenic V12-Ha-RAS overexpressing cortical cultures. Consistently, a neuroprotective effect could also be achieved in wild-type cortical cultures by the extracellular application of channel-blocking antibody targeting the N-terminus of VDAC-1. These results may encourage novel therapeutic approaches toward blocking pl-VDAC-1 by monoclonal antibody targeting for complementary treatments in transplantation and neurodegenerative disease.


Asunto(s)
Enfermedades Neurodegenerativas , Canales Aniónicos Dependientes del Voltaje , Ratones , Animales , Canales Aniónicos Dependientes del Voltaje/metabolismo , Neuroprotección , Enfermedades Neurodegenerativas/metabolismo , Proteínas ras/metabolismo , Regulación hacia Abajo , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Membrana Celular/metabolismo , Ratones Transgénicos , ARN Mensajero/metabolismo , Canal Aniónico 2 Dependiente del Voltaje/metabolismo
20.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38396719

RESUMEN

Preeclampsia (PE) is characterized by maternal hypertension and placental dysfunction, often leading to fetal growth restriction (FGR). It is associated with an overexpression of the anti-angiogenic sFLT1 protein, which originates from the placenta and serves as a clinical biomarker to predict PE. To analyze the impact of sFLT1 on placental function and fetal growth, we generated transgenic mice with placenta-specific human sFLT1 (hsFLT1) overexpression. Immunohistochemical, morphometrical, and molecular analyses of the placentas on 14.5 dpc and 18.5 dpc were performed with a focus on angiogenesis, nutrient transport, and inflammation. Additionally, fetal development upon placental hsFLT1 overexpression was investigated. Dams exhibited a mild increase in serum hsFLT1 levels upon placental hsFLT1 expression and revealed growth restriction of the fetuses in a sex-specific manner. Male FGR fetuses expressed higher amounts of placental hsFLT1 mRNA compared to females. FGR placentas displayed an altered morphology, hallmarked by an increase in the spongiotrophoblast layer and changes in labyrinthine vascularization. Further, FGR placentas showed a significant reduction in placental glycogen storage and nutrient transporter expression. Moreover, signs of hypoxia and inflammation were observed in FGR placentas. The transgenic spongiotrophoblast-specific hsFLT1 mouse line demonstrates that low hsFLT1 serum levels are sufficient to induce significant alterations in fetal and placental development in a sex-specific manner.


Asunto(s)
Retardo del Crecimiento Fetal , Preeclampsia , Ratones , Animales , Embarazo , Humanos , Masculino , Femenino , Ratones Transgénicos , Retardo del Crecimiento Fetal/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Placenta/metabolismo , Preeclampsia/genética , Inflamación/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA