Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.016
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(40): e2408277121, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39331411

RESUMEN

Palladium (Pd) catalysts have been extensively studied for the direct synthesis of H2O through the hydrogen oxidation reaction at ambient conditions. This heterogeneous catalytic reaction not only holds considerable practical significance but also serves as a classical model for investigating fundamental mechanisms, including adsorption and reactions between adsorbates. Nonetheless, the governing mechanisms and kinetics of its intermediate reaction stages under varying gas conditions remain elusive. This is attributed to the intricate interplay between adsorption, atomic diffusion, and concurrent phase transformation of catalyst. Herein, the Pd-catalyzed, water-forming hydrogen oxidation is studied in situ, to investigate intermediate reaction stages via gas cell transmission electron microscopy. The dynamic behaviors of water generation, associated with reversible palladium hydride formation, are captured in real time with a nanoscale spatial resolution. Our findings suggest that the hydrogen oxidation rate catalyzed by Pd is significantly affected by the sequence in which gases are introduced. Through direct evidence of electron diffraction and density functional theory calculation, we demonstrate that the hydrogen oxidation rate is limited by precursors' adsorption. These nanoscale insights help identify the optimal reaction conditions for Pd-catalyzed hydrogen oxidation, which has substantial implications for water production technologies. The developed understanding also advocates a broader exploration of analogous mechanisms in other metal-catalyzed reactions.

2.
Proc Natl Acad Sci U S A ; 120(44): e2304148120, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37844213

RESUMEN

Premelting of ice, a quasi-liquid layer (QLL) at the surface below the melting temperature, was first postulated by Michael Faraday 160 y ago. Since then, it has been extensively studied theoretically and experimentally through many techniques. Existing work has been performed predominantly on hexagonal ice, at conditions close to the triple point. Whether the same phenomenon can persist at much lower pressure and temperature, where stacking disordered ice sublimates directly into water vapor, remains unclear. Herein, we report direct observations of surface premelting on ice nanocrystals below the sublimation temperature using transmission electron microscopy (TEM). Similar to what has been reported on hexagonal ice, a QLL is found at the solid-vapor interface. It preferentially decorates certain facets, and its thickness increases as the phase transition temperature is approached. In situ TEM reveals strong diffusion of the QLL, while electron energy loss spectroscopy confirms its amorphous nature. More significantly, the premelting observed in this work is thought to be related to the metastable low-density ultraviscous water, instead of ambient liquid water as in the case of hexagonal ice. This opens a route to understand premelting and grassy liquid state, far away from the normal water triple point.

3.
Proc Natl Acad Sci U S A ; 120(50): e2310500120, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38060557

RESUMEN

Deformation at high strain rates often results in high stresses on many engineering materials, potentially leading to catastrophic failure without proper design. High-strain-rate mechanical testing is thus needed to improve the design of future structural materials for a wide range of applications. Although several high-strain-rate mechanical testing techniques have been developed to provide a fundamental understanding of material responses and microstructural evolution under high-strain-rate deformation conditions, these tests are often very time consuming and costly. In this work, we utilize a high-strain-rate nanoindentation testing technique and system in combination with transmission electron microscopy to reveal the deformation mechanisms and dislocation substructures that evolve in pure metals from low (10-2 s-1) to very high indentation strain rates (104 s-1), using face-centered cubic aluminum and body-centered cubic molybdenum as model materials. The results help to establish the conditions under which micro- and macro-scale tests can be compared with validity and also provide a promising pathway that could lead to accelerated high-strain-rate testing at substantially reduced costs.

4.
Proc Natl Acad Sci U S A ; 120(30): e2301856120, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37459518

RESUMEN

Benjamin Franklin was a preeminent proponent of the new colonial and Continental paper monetary system in 18th-century America. He established a network of printers, designing and printing money notes at the same time. Franklin recognized the necessity of paper money in breaking American dependence on the British trading system, and he helped print Continental money to finance the American War of Independence. We use a unique combination of nondistractive, microdestructive, and advanced atomic-level imaging methods, including Raman, Infrared, electron energy loss spectroscopy, X-ray diffraction, X-ray fluorescence, and aberration-corrected scanning transmission electron microscopy, to analyze pre-Federal American paper money from the Rare Books and Special Collections of the Hesburgh Library at the University of Notre Dame. We investigate and compare the chemical compositions of the paper fibers, the inks, and fillers made of special crystals in the bills printed by Franklin's printing network, other colonial printers, and counterfeit money. Our results reveal previously unknown ways that Franklin developed to safeguard printed money notes against counterfeiting. Franklin used natural graphite pigments to print money and developed durable "money paper" with colored fibers and translucent muscovite fillers, along with his own unique designs of "nature-printed" patterns and paper watermarks. These features and inventions made pre-Federal American paper currency an archetype for developing paper money for centuries to come. Our multiscale analysis also provides essential information for the preservation of historical paper money.

5.
Mol Microbiol ; 121(4): 659-670, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38140856

RESUMEN

Since its inception in the 1930s, transmission electron microscopy (TEM) has been a powerful method to explore the cellular structure of parasites. TEM usually requires samples of <100 nm thick and with protozoans being larger than 1 µm, their study requires resin embedding and ultrathin sectioning. During the past decade, several new methods have been developed to improve, facilitate, and speed up the structural characterisation of biological samples, offering new imaging modalities for the study of protozoans. In particular, scanning transmission electron microscopy (STEM) can be used to observe sample sections as thick as 1 µm thus becoming an alternative to conventional TEM. STEM can also be performed under cryogenic conditions in combination with cryo-electron tomography providing access to the study of thicker samples in their native hydrated states in 3D. This method, called cryo-scanning transmission electron tomography (cryo-STET), was first developed in 2014. This review presents the basic concepts and benefits of STEM methods and provides examples to illustrate the potential for new insights into the structure and ultrastructure of protozoans.


Asunto(s)
Tomografía con Microscopio Electrónico , Microscopía Electrónica de Transmisión de Rastreo/métodos , Tomografía con Microscopio Electrónico/métodos , Microscopía por Crioelectrón/métodos , Microscopía Electrónica de Rastreo
6.
Brief Bioinform ; 24(6)2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37903415

RESUMEN

The identification of viruses from negative staining transmission electron microscopy (TEM) images has mainly depended on experienced experts. Recent advances in artificial intelligence have enabled virus recognition using deep learning techniques. However, most of the existing methods only perform virus classification or semantic segmentation, and few studies have addressed the challenge of virus instance segmentation in TEM images. In this paper, we focus on the instance segmentation of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) and other respiratory viruses and provide experts with more effective information about viruses. We propose an effective virus instance segmentation network based on the You Only Look At CoefficienTs backbone, which integrates the Swin Transformer, dense connections and the coordinate-spatial attention mechanism, to identify SARS-CoV-2, H1N1 influenza virus, respiratory syncytial virus, Herpes simplex virus-1, Human adenovirus type 5 and Vaccinia virus. We also provide a public TEM virus dataset and conduct extensive comparative experiments. Our method achieves a mean average precision score of 83.8 and F1 score of 0.920, outperforming other state-of-the-art instance segmentation algorithms. The proposed automated method provides virologists with an effective approach for recognizing and identifying SARS-CoV-2 and assisting in the diagnosis of viruses. Our dataset and code are accessible at https://github.com/xiaochiHNU/Virus-Instance-Segmentation-Transformer-Network.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Humanos , Inteligencia Artificial , Algoritmos , SARS-CoV-2
7.
Proc Natl Acad Sci U S A ; 119(15): e2200290119, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35377799

RESUMEN

There is increasing attention to chemical applications of transmission electron microscopy, which is often plagued by radiation damage. The damage in organic matter predominantly occurs via radiolysis. Although radiolysis is highly important, previous studies on radiolysis have largely been descriptive and qualitative, lacking in such fundamental information as the product structure, the influence of the energy of the electrons, and the reaction kinetics. We need a chemically well-defined system to obtain such data and have chosen as a model a variable-temperature and variable-voltage (VT/VV) study of the [2 + 2] dimerization of a van der Waals dimer [60]fullerene (C60) to C120 in a carbon nanotube (CNT), as studied for several hundred individual reaction events at atomic resolution. We report here the identification of five reaction pathways that serve as mechanistic models of radiolysis damage. Two of them occur via a radical cation of the specimen generated by specimen ionization, and three involve singlet or triplet excited states of the specimen, as initiated by electron excitation of the CNT, followed by energy transfer to the specimen. The [2 + 2] product was identified by measuring the distance between the two C60 moieties, and the mechanisms were distinguished by the pre-exponential factor and the Arrhenius activation energy­the standard protocol of chemical kinetic studies. The results illustrate the importance of VT/VV kinetic analysis in the studies of radiation damage and show that chemical ionization and electron excitation are inseparable, but different, mechanisms of radiation damage, which has so far been classified loosely under the single term "ionization."

8.
Proc Natl Acad Sci U S A ; 119(14): e2114432119, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35349339

RESUMEN

SignificanceAtomic resolution transmission electron microscopy (TEM) has opened up a new era of molecular science by providing atomic video images of dynamic motions of single organic and inorganic molecules. However, the images often look different from the images of molecular models, because these models are designed to visualize the electronic properties of the molecule instead of nuclear electrostatic potentials that are felt by the e-beam in TEM imaging. Here, we propose a molecular model that reproduces TEM images using atomic radii correlated to atomic number (Z). The model serves to provide a priori a useful idea of how a single molecule, molecular assemblies, and thin crystals of organic or inorganic materials look in TEM.


Asunto(s)
Electrones , Microscopía Electrónica , Microscopía Electrónica de Transmisión
9.
Nano Lett ; 24(23): 7063-7068, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38805318

RESUMEN

High-entropy alloy (HEA) nanoparticles (NPs) have attracted attention in several fields because of their fascinating properties. The high mechanical strength, good thermal stability, and superior corrosion resistance of HEAs, which are derived from their high configurational entropy, are attractive features. Herein, we investigated the thermal stability of FeCoNiCuPd HEA NPs on reduced graphene oxide via in situ transmission electron microscopy observations at elevated temperatures. The HEA NPs maintained their structure, size, and composition at 700 °C, and their size gradually decreased accompanied by the preferential sublimation of Cu. On the contrary, the deterioration of the monometallic Pd NPs begins at temperatures greater than 700 °C according to Ostwald ripening, which involves the migration of adatoms or mobile molecular species. Theoretical calculations revealed that the detachment of adatoms from clusters (i.e., the first step of Ostwald ripening) was suppressed in the case of HEA NPs because of the high-configuration-entropy effect.

10.
Nano Lett ; 24(10): 2998-3004, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38319977

RESUMEN

Transition metal oxide dielectric layers have emerged as promising candidates for various relevant applications, such as supercapacitors or memory applications. However, the performance and reliability of these devices can critically depend on their microstructure, which can be strongly influenced by thermal processing and substrate-induced strain. To gain a more in-depth understanding of the microstructural changes, we conducted in situ transmission electron microscopy (TEM) studies of amorphous HfO2 dielectric layers grown on highly textured (111) substrates. Our results indicate that the minimum required phase transition temperature is 180 °C and that the developed crystallinity is affected by texture transfer. Using in situ TEM and 4D-STEM can provide valuable insights into the fundamental mechanisms underlying the microstructural evolution of dielectric layers and could pave the way for the development of more reliable and efficient devices for future applications.

11.
Nano Lett ; 24(7): 2157-2164, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38319745

RESUMEN

Carbon support is essential for electrocatalysis, but limitations remain, as carbon corrosion can lead to electrocatalyst degradation and affect the long-term durability of electrocatalysts. Here, we studied the corrosion dynamics of carbon nanotubes (CNTs) and Vulcan carbon (VC) together with platinum (Pt) nanoparticles in real time by liquid cell (LC) transmission electron microscopy (TEM). The results showed that CNTs with a high degree of graphitization exhibited higher corrosion resistance compared to VC. Furthermore, we observed that the main degradation path of Pt nanoparticles in Pt/CNTs was ripening, while in Pt/VC, it was aggregation and coalescence, which was dominated by the interactions between Pt nanoparticles and different hybridization of carbon supports. Finally, we performed an ex situ CV stability test to confirm the conclusions obtained from in situ experiments. This work provides deep insights into the corrosion mechanism of carbon-supported electrocatalysts to optimize the design of electrocatalysts with a higher durability.

12.
Nano Lett ; 24(3): 929-934, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38173237

RESUMEN

Control of the angular momentum of light is a key technology for next-generation nano-optical devices and optical communications, including quantum communication and encoding. We propose an approach to controllably generate circularly polarized light from a circular hole in a metal film using an electron beam by coherently exciting transition radiation and light scattering from the hole through surface plasmon polaritons. The circularly polarized light generation is confirmed by fully polarimetric four-dimensional cathodoluminescence mapping, where angle-resolved spectra are simultaneously obtained. The obtained intensity and Stokes maps show clear interference fringes as well as almost fully circularly polarized light generation with controllable parities by the electron beam position. By applying this approach to a three-hole system, a vortex field with a phase singularity is visualized in the middle of three holes.

13.
Nano Lett ; 24(1): 378-385, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38117785

RESUMEN

In self-intercalated two-dimensional (ic-2D) materials, understanding the local chemical environment and the topology of the filling site remains elusive, and the subsequent correlation with the macroscopically manifested physical properties has rarely been investigated. Herein, highly crystalline gram-scale ic-2D Ta1.33S2 crystals were successfully grown by the high-pressure high-temperature method. Employing combined atomic-resolution scanning transmission electron microscopy annular dark field imaging and density functional theory calculations, we systematically unveiled the atomic structures of an atlas of stacking registries in a well-defined √3(a) × âˆš3(a) Ta1.33S2 superlattice. Ferromagnetic order was observed in the AC' stacking registry, and it evolves into an antiferromagnetic state in AA/AB/AB' stacking registries; the AA' stacking registry shows ferrimagnetic ordering. Therefore, we present a novel approach for fabricating large-scale highly crystalline ic-2D crystals and shed light on a powerful means of modulating the magnetic order of ic-2D systems via stacking engineering, i.e., stackingtronics.

14.
Nano Lett ; 24(12): 3624-3630, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38421603

RESUMEN

Twinning is an important deformation mode of face-centered-cubic (FCC) medium- and high-entropy alloys, especially under extreme loading conditions. However, the twinning mechanism in these alloys that have a low or even negative stacking fault energy remains debated. Here, we report atomic-scale in situ observations of the deformation process of a prototypical CrCoNi medium-entropy alloy under tension. We found that the parent FCC phase first transforms into a hexagonal close-packed (HCP) phase through Shockley partial dislocations slipping on the alternate {111} planes. Subsequently, the HCP phase rapidly changes to an FCC twin band. Such reversible phase transformation assisted twinning is greatly promoted by external tensile loads, as elucidated by geometric phase analysis. These results indicate the previously underestimated role of the metastable HCP phase in nanotwin nucleation and early plastic deformations of CrCoNi alloys and shed light on microstructure regulation of medium-entropy alloys with enhanced mechanical properties.

15.
Nano Lett ; 24(26): 8171-8178, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38912705

RESUMEN

Orientation engineering is a crucial aspect of thin film growth, and it is rather challenging to engineer film epitaxy beyond the substrate constraint. Guided by density functional theory calculations, we use SrRuO3 (SRO) as a buffer layer and successfully deposit [111]-oriented CoFe2O4 (CFO) on [001]-, [110]-, and [111]-oriented SrTiO3 (STO) substrates. This enables subsequent growth of [111]-oriented functional oxides, such as PbTiO3 (PTO), overcoming the constraint of the substrate. This strategy is quite general and applicable to lanthanum aluminate and yttria-stabilized zirconia substrates as well. X-ray Φ scans and atomic resolution aberration-corrected scanning transmission electron microscopy (AC-STEM) reveal detailed epitaxial relations in each of the cases, with four variants of [111]-CFO found on [001]-STO and two variants found on [110]-STO, formed to mitigate the large lattice misfit strain between the film and substrate. Our strategy thus provides a general pathway for orientation engineering of oxide epitaxy beyond substrate constraint.

16.
Nano Lett ; 24(33): 10275-10283, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39106329

RESUMEN

Defect engineering is widely used to impart the desired functionalities on materials. Despite the widespread application of atomic-resolution scanning transmission electron microscopy (STEM), traditional methods for defect analysis are highly sensitive to random noise and human bias. While deep learning (DL) presents a viable alternative, it requires extensive amounts of training data with labeled ground truth. Herein, employing cycle generative adversarial networks (CycleGAN) and U-Nets, we propose a method based on a single experimental STEM image to tackle high annotation costs and image noise for defect detection. Not only atomic defects but also oxygen dopants in monolayer MoS2 are visualized. The method can be readily extended to other two-dimensional systems, as the training is based on unit-cell-level images. Therefore, our results outline novel ways to train the model with minimal data sets, offering great opportunities to fully exploit the power of DL in the materials science community.

17.
Nano Lett ; 24(22): 6714-6721, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38781452

RESUMEN

The cycle stability of lithium metal anode (LMA) largely depends on solid-electrolyte interphase (SEI). Electrolyte engineering is a common strategy to adjust SEI properties, yet understanding its impact is challenging due to limited knowledge on ultrafine SEI structures. Herein, using cryogenic transmission electron microscopy, we reveal the atomic-level SEI structure of LMA in ether-based electrolytes, focusing on the role of LiNO3 additives in SEI modulation at different temperature (25 and 50 °C). Poor cycle stability of LMA in the baseline electrolyte without LiNO3 additives stems from the Li2CO3-rich mosaic-type SEI. Increased LiNO3 content and elevated operating temperature enhance cyclic performance by forming bilayer or multilayer SEI structures via preferential LiNO3 decomposition, but may thicken the SEI, leading to reduced initial Coulombic efficiency and increased overpotential. The optimal SEI features a multilayer structure with Li2O-rich inner layer and closely packed grains in the outer layer, minimizing electrolyte decomposition or corrosion.

18.
Nano Lett ; 24(21): 6441-6449, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38757836

RESUMEN

In the realm of condensed matter physics and materials science, charge density waves (CDWs) have emerged as a captivating way to modulate correlated electronic phases and electron oscillations in quantum materials. However, collectively and efficiently tuning CDW order is a formidable challenge. Herein, we introduced a novel way to modulate the CDW order in 1T-TaS2 via stacking engineering. By introducing shear strain during the electrochemical exfoliation, the thermodynamically stable AA-stacked TaS2 consecutively transform into metastable ABC stacking, resulting in unique 3a × 1a CDW order. By decoupling atom coordinates, we atomically deciphered the 3D subtle structural variations in trilayer samples. As suggested by density functional theory (DFT) calculations, the origin of CDWs is presumably due to collective excitations and charge modulation. Therefore, our works shed light on a new avenue to collectively modulate the CDW order via stackingtronics and unveiled novel mechanisms for triggering CDW formation via charge modulation.

19.
Nano Lett ; 24(19): 5746-5753, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38701367

RESUMEN

Surface charging is ubiquitously observable during in situ transmission electron microscopy of nonconducting specimens as a result of electron beam/sample interactions or optical stimuli and often limits the achievable image stability and spatial or spectral resolution. Here, we report on the electron-optical imaging of surface charging on a nanostructured surface following femtosecond multiphoton photoemission. By quantitatively extracting the light-induced electrostatic potential and studying the charging dynamics on relevant time scales, we gain insights into the details of the multiphoton photoemission process in the presence of an electrostatic background field. We study the interaction of the charge distribution with the high-energy electron beam and secondary electrons and propose a simple model to describe the interplay of electron- and light-induced processes. In addition, we demonstrate how to mitigate sample charging by simultaneously optically illuminating the sample.

20.
Nano Lett ; 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39316412

RESUMEN

Structural transformations in strongly correlated materials promise efficient and fast control of materials' properties via electrical or optical stimulation. The desired functionality of devices operating based on phase transitions, however, will also be influenced by nanoscale heterogeneity. Experimentally characterizing the relationship between microstructure and phase switching remains challenging, as nanometer resolution and high sensitivity to subtle structural modifications are required. Here, we demonstrate nanoimaging of a current-induced phase transformation in the charge-density wave (CDW) material 1T-TaS2. Combining electrical characterizations with tailored contrast enhancement, we correlate macroscopic resistance changes with the nanoscale nucleation and growth of CDW phase domains. In particular, we locally determine the transformation barrier in the presence of dislocations and strain, underlining their non-negligible impact on future functional devices. Thereby, our results demonstrate the merit of tailored contrast enhancement and beam shaping for advanced operando microscopy of quantum materials and devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA