Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 376
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Chemistry ; 30(18): e202303854, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38183331

RESUMEN

Hydroxytrifluoroethyl and trifluoroacetyl groups are of utmost importance in biologically active compounds, but methods to tether these motifs to organic architectures have been limited. Typically, the preparation of these compounds relied on the use of strong bases or multistep routes. The renaissance of radical chemistry in photocatalytic, transition metal mediated, and hydrogen atom transfer (HAT) processes have allowed the installation of these medicinally relevant fluorinated motifs. This review provides an overview of the methods available for the direct synthesis of hydroxytrifluoroethyl- and trifluoroacetyl-derived compounds governed by single-electron transfer processes.

2.
Chemistry ; 30(6): e202303314, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38018464

RESUMEN

The use of trifluoromethyl containing compounds is well established within medicinal chemistry, with a range of approved drugs containing C-CF3 and O-CF3 moieties. However, the utilisation of the N-CF3 functional group remains relatively unexplored. This may be attributed to the challenging synthesis of this unit, with many current methods employing harsh conditions or less accessible reagents. A robust methodology for the N-trifluoromethylation of secondary amines has been developed, which employs an umpolung strategy in the form of a copper-catalysed electrophilic amination. The method is operationally simple, uses mild, inexpensive reagents, and has been used to synthesise a range of novel, structurally complex N-CF3 containing compounds.

3.
Chemistry ; 30(11): e202303599, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38055226

RESUMEN

Trifluoromethyl group relishes a privileged position in the realm of medicinal chemistry because its incorporation into organic molecules often enhances the bioactivity by altering pharmacological profile of molecule. Trifluoromethyl-ß-dicarbonyls have emerged as pivotal building blocks in synthetic organic chemistry due to their facile accessibility, stability and remarkable versatility. Owing to presence of nucleophilic and electrophilic sites, they offer multifunctional sites for the reaction. This review covers a meticulous exploration of their multifaceted role, encompassing an in-depth analysis of mechanism, extensive scope, limitations and wide-ranging applications in diverse organic synthesis, covering the literature from the 21st century. This comprehensive review encapsulates the applications of trifluoromethyl-ß-dicarbonyls and their synthetic equivalents as precursors of complex and diverse heterocyclic scaffolds, fused heterocycles and spirocyclic compounds having medicinal and material importance. Their potent synthetic utility in cyclocondensation reactions with binucleophiles, cycloaddition reactions, C-C bond formations, asymmetric multicomponent reactions using classical/solvent-free/catalytic synthesis have been presented. Influence of unsymmetrical trifluoromethyl-ß-diketones on regioselectivity of transformation is also reviewed. This review will benefit the synthetic and pharmaceutical communities to explore trifluoromethyl-ß-dicarbonyls as trifluoromethyl building blocks for fabrication of heterocyclic scaffolds having implementation into drug discovery programs in the imminent future.

4.
Chemistry ; : e202401954, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958040

RESUMEN

Considering the broad use of the trifluoromethyl functional group (-CF3) in medicinal chemistry and taking into account the recent concerns on the negative environmental effects of CF3 containing compounds, we are searching for "greener" alternatives. Thus, different chemical groups (i. e. iodide, fluoride, cyclopropyl, isopropyl, cyclobutyl, 3-oxetyl, 2-oxetyl, methylsulfide, pentafluorosulfide, methylsulfonyl and sulfonamide) have been considered as potential bioequivalents of -CF3 aiming to use them in compounds with therapeutic interest instead of the polyfluoride functionality. Different structural (molecular surface and volume) and physicochemical (electronic and lipophilic) aspects of the bioequivalent functionalities proposed have been theoretically calculated and compared to those of -CF3. Additionally, the corresponding phenyl derivatives carrying these functionalities have been purchased or prepared and their experimental lipophilicity (i. e. LogP) measured using shake-flask experiments and UV-vis spectroscopy.

5.
Chemistry ; : e202401753, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38924636

RESUMEN

Gold (III) complexes containing trifluromethyl ligands are efficient catalyst in the hydration of alkynes, operating at low catalyst loadings, without additives, using environmentally friendly solvents and at mild conditions (60 ºC). Hydration of terminal and internal alkynes provide the corresponding ketones in quantitative yields without special precautions as dry solvents or inert atmospheres. Remarkably, hydration of asymmetric internal alkynes proceeds with moderate to notable regioselectivities, providing mixtures of the two possible isomers with ratios up to 90:10.

6.
Chemistry ; 30(43): e202400881, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38567827

RESUMEN

The acetonitrile AgIII complex [AgIII(CF3)3(NCCH3)] (2) has been reported independently by Eujen and Naumann in the last century, albeit with intriguing NMR discrepancy. In their reports, 2 was claimed to be obtained starting from either [AgIII(CF3)3Cl]- (3⋅Cl) or [AgIII(CF3)4]- (1) via halide abstraction using AgNO3 or acidic treatment, resp. These two synthetic routes are herein reinvestigated. The feasibility of Naumann's method is demonstrated, thus providing 2 yet accompanied by its s-triazinyl derivative [AgIII(CF3)3(C6H9N3)] (2'). The formation of 2' is unprecedented and was thereby investigated. Both 2 and 2' were isolated in pure fashion and fully characterized. In turn, halide extraction from 3⋅Cl leads to the AgIII-ONO2 anion 5 instead of 2, as evidenced by NMR spectroscopy, EA and Sc-XRD.

7.
Chemistry ; : e202401791, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976449

RESUMEN

Copper(III) iodide and bromide complexes representing a unique combination of highly-coordinated metal and soft polarizable anions were synthesized and fully characterized, including X-ray crystallography. Ligand substitution in well-defined highly-coordinated copper complex PyCu(CF3)3 with pincer ligands was achieved to give formally octahedral copper(III) complexes.

8.
Chemistry ; 30(33): e202400658, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38600038

RESUMEN

Photoinduced single-electron reduction is an efficient method for the mono-selective activation of the C-F bond on a trifluoromethyl group to construct a difluoroalkyl group. We have developed an electron-donor-acceptor (EDA) complex mediated single-electron transfer (EDA-SET) of α,α,α-trifluoromethyl arenes in the presence of lithium salt to give α,α-difluoroalkylarenes. The C-F bond reduction was realized by lithium iodide and triethylamine, two common feedstock reagents. Mechanistic studies revealed the generation of a α,α-difluoromethyl radical by single-electron reduction and defluorination, followed by the radical addition to alkenes. Lithium salt interacted with the fluorine atom to promote the photoinduced reduction mediated by the EDA complex. Computational studies indicated that the lithium-assisted defluorination and the single-electron reduction occurred concertedly. We call this phenomenon fluoride-coupled electron transfer (FCET). FCET is a novel approach to C-F bond activation for the synthesis of organofluorine compounds.

9.
Chemistry ; 30(12): e202303937, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38157456

RESUMEN

We have synthesized the first silver(III) carbene complexes, (CF3 )3 Ag(NHC), by direct reaction of the silver(III) fluoride precursor complex [PPh4 ][(CF3 )3 AgF] with different imidazolium salts. This novel methodology circumvents the use of free NHC molecules. The silver(III) carbene complexes thus prepared are unprecedented and show remarkable thermal stabilities. They display square-planar or square-pyramidal geometry. Following our calculations, the electronic structure of a model representative complex exhibits Inverse Ligand Field (ILF). The compounds reported herein are synthetic analogues of the elusive difluorocarbene and carbonyl species proposed as intermediates in the acidic decomposition of [Ag(CF3 )4 ]- . The synthetic procedure reported is envisaged to enable access to carbene complexes of other late transition-metals in high oxidation states.

10.
Protein Expr Purif ; 219: 106461, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38460621

RESUMEN

Nuclear magnetic resonance (NMR) spectroscopy NMR is a well-established technique for probing protein structure, dynamics and conformational changes. Taking advantage of the high signal sensitivity and broad chemical shift range of 19F nuclei, 19F NMR has been applied to investigate protein function at atomic resolution. In this report, we extend the unnatural amino acid site-specific incorporation into V. natriegens, an alternate protein expression system. The unnatural amino acid L-4-trifluoromethylphenylalanine (tfmF) was site-specifically introduced into the mitogen-activated protein kinase MEKK3 in V. natriegens using genetically encoded technology, which will be an extensive method for in-cell protein structure and dynamic investigation.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular , Fenilalanina/química , Fenilalanina/metabolismo , Fenilalanina/genética , Flúor/química , Aminoácidos/química , Aminoácidos/genética , Aminoácidos/metabolismo
11.
Chem Rec ; 24(3): e202300332, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38251926

RESUMEN

The increasing demand of organofluorine compounds in medicine, agriculture, and materials sciences makes sophisticated methods for their synthesis ever more necessary. Nowadays, not only the C-F bond formation but also the selective C-F bond cleavage of readily available poly- or perfluorine-containing compounds have become powerful tools for the effective synthesis of organofluorine compounds. The defluorinative cross-coupling of trifluoromethyl alkenes with various nucleophiles or radical precursors in an SN 2' manner is a convergent route to access gem-difluoroalkenes, which in turn react with nucleophiles or radical precursors via an SN V-type reaction. If the SN V reactions occur intramolecularly, the dual C-F bond cleavage of trifluoromethyl alkenes allows facile assembly of monofluorinated cyclic skeletons with structural complexity and diversity. In this personal account, we summarized the advances in this field on the basis of coupling and cyclization partners, including binucleophiles, alkynes, diradical precursors and radical precursors bearing a nucleophilic site. Accordingly, the annulation reactions can be achieved by base-mediated sequential SN 2'/SN V reactions, transition metal catalyzed or mediated reactions, photoredox catalysis, and the combination of photocatalytic reactions with SN V reaction. In the context of seminal works of others in this field, a concise summary of the contributions of the authors is also offered.

12.
Pharmacol Res ; 200: 107082, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38280440

RESUMEN

Lenvatinib is a frontline tyrosine kinase inhibitor for patients with advanced hepatocellular carcinoma (HCC). However, just 25% of patients benefit from the treatment, and acquired resistance always develops. To date, there are neither effective medications to combat lenvatinib resistance nor accurate markers that might predict how well a patient would respond to the lenvatinib treatment. Thus, novel strategies to recognize and deal with lenvatinib resistance are desperately needed. In the current study, a robust Lenvatinib Resistance index (LRi) model to predict lenvatinib response status in HCC was first established. Subsequently, five candidate drugs (Mercaptopurine, AACOCF3, NU1025, Fasudil, and Exisulind) that were capable of reversing lenvatinib resistance signature were initially selected by performing the connectivity map (CMap) analysis, and fasudil finally stood out by conducting a series of cellular functional assays in vitro and xenograft mouse model. Transcriptomics revealed that the co-administration of lenvatinib and fasudil overcame lenvatinib resistance by remodeling the hedgehog signaling pathway. Mechanistically, the feedback activation of EGFR by lenvatinib led to the activation of the GLI2-ABCC1 pathway, which supported the HCC cell's survival and proliferation. Notably, co-administration of lenvatinib and fasudil significantly inhibited IHH, the upstream switch of the hedgehog pathway, to counteract GLI2 activation and finally enhance the effectiveness of lenvatinib. These findings elucidated a novel EGFR-mediated mechanism of lenvatinib resistance and provided a practical approach to overcoming drug resistance in HCC through meaningful drug repurposing strategies.


Asunto(s)
1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/análogos & derivados , Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Compuestos de Fenilurea , Quinolinas , Humanos , Animales , Ratones , Carcinoma Hepatocelular/metabolismo , Proteínas Hedgehog , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Línea Celular Tumoral , Receptores ErbB , Proteína Gli2 con Dedos de Zinc , Proteínas Nucleares
13.
Bioorg Chem ; 148: 107453, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38761708

RESUMEN

Thirty-five trifluoromethyl hydrazones and seventeen trifluoromethyl oxime esters were designed and synthesized via molecular hybridization. All the target compounds were initially screened for in vitro anti-inflammatory activity by assessing their inhibitory effect on NO release in LPS-stimulated RAW264.7 cells, and the optimal compound was finally identified as 2-(3-Methoxyphenyl)-N'-((6Z,9Z,12Z,15Z)-1,1,1-trifluorohenicosa-6,9,12,15-tetraen-2-ylidene)acetohydrazide (F26, IC50 = 4.55 ± 0.92 µM) with no cytotoxicity. Moreover, F26 potently reduced the production of PGE2 in LPS-stimulated RAW264.7 cells compared to indomethacin. The interaction of F26 with COX-2 and cPLA2 was directly verified by the CETSA technique. F26 was found to modulate the phosphorylation levels of p38 MAPK and NF-κB p65, as well as the protein expression of IκB, cPLA2, COX-2, and iNOS in LPS-stimulated rat peritoneal macrophages. Additionally, F26 was observed to prevent the nuclear translocation of NF-κB p65 in LPS-stimulated rat peritoneal macrophages by immunofluorescence localization. Therefore, the aforementioned in vitro experiments demonstrated that F26 blocked the p38 MAPK and NF-κB pathways by binding to COX-2 and cPLA2. In the adjuvant-induced arthritis model, F26 demonstrated a significant effect in preventing arthritis symptoms and inflammatory status in rats, exerting an immunomodulatory role by regulating the homeostasis between Th17 and Treg through inhibition of the p38 MAPK/cPLA2/COX-2/PGE2 and NF-κB pathways. Encouragingly, F26 caused less acute ulcerogenicity in rats at a dose of 50 mg/kg compared to indomethacin. Overall, F26 is a promising candidate worthy of further investigation for treating inflammation and associated pain with lesser gastrointestinal irritation, as well as other symptoms in which cPLA2 and COX-2 are implicated in the pathophysiology.


Asunto(s)
Artritis Reumatoide , Inhibidores de la Ciclooxigenasa 2 , Ciclooxigenasa 2 , Animales , Ratones , Ciclooxigenasa 2/metabolismo , Artritis Reumatoide/tratamiento farmacológico , Células RAW 264.7 , Inhibidores de la Ciclooxigenasa 2/farmacología , Inhibidores de la Ciclooxigenasa 2/química , Inhibidores de la Ciclooxigenasa 2/síntesis química , Ratas , Relación Estructura-Actividad , Estructura Molecular , Inflamación/tratamiento farmacológico , Masculino , Relación Dosis-Respuesta a Droga , Cetonas/química , Cetonas/farmacología , Cetonas/síntesis química , Lipopolisacáridos/farmacología , Lipopolisacáridos/antagonistas & inhibidores , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/síntesis química , Fosfolipasas A2/metabolismo , Administración Oral , Ratas Sprague-Dawley
14.
Bioorg Chem ; 145: 107222, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38401359

RESUMEN

Ubiquitination is a representative post-translational modification that tags target proteins with ubiquitin to induce protein degradation or modify their functions. Deubiquitinating enzymes (DUBs) play a crucial role in reversing this process by removing ubiquitin from target proteins. Among them, USP2a has emerged as a promising target for cancer therapy due to its oncogenic properties in various cancer types, but its inhibitors have been limited. In this study, our aim was to optimize the structure of ML364, a USP2a inhibitor, and synthesize a series of its derivatives to develop potent USP2a inhibitors. Compound 8v emerged as a potential USP2a inhibitor with lower cytotoxicity compared to ML364. Cellular assays demonstrated that compound 8v effectively reduced the levels of USP2a substrates and attenuated cancer cell growth. We confirmed its direct interaction with the catalytic domain of USP2a and its selective inhibitory activity against USP2a over other USP subfamily proteins (USP7, 8, or 15). In conclusion, compound 8v has been identified as a potent USP2a inhibitor with substantial potential for cancer therapy.


Asunto(s)
Endopeptidasas , Ubiquitina , Endopeptidasas/química , Proteolisis , Ubiquitina/metabolismo , Ubiquitinación
15.
Mol Divers ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38739229

RESUMEN

To discover new Werner (WRN) helicase inhibitors, a series of N-aryl-2-trifluoromethyl-quinazoline-4-amine derivatives were designed and synthesized through a structural optimization strategy, and the anticancer activities of 25 new target compounds against PC3, K562, and HeLa cell lines were evaluated by the MTT assay. Some of these compounds exhibited excellent inhibitory activity against three different cancer cell lines. Compounds 6a, 8i, and 13a showed better antiproliferative activity against K562 cells, with IC50 values of 3871.5, 613.6 and 134.7 nM, respectively, than did paclitaxel (35.6 nM), doxorubicin (2689.0 nM), and NSC 617145 (20.3 nM). To further verify whether the antiproliferative activity of these compounds is dependent on WRN, PC3 cells overexpressing WRN (PC3-WRN) were constructed to further study their antiproliferative potency in vitro, and the inhibition ratio and IC20 values showed that compounds 6a, 8i, and 13a were more sensitive to PC3-WRN than were the control group cells (PC3-NC). The IC20 ratios of compounds 6a, 8i, and 13a to PC3-NC and PC3-WRN were 94.3, 153.4 and 505.5, respectively. According to the docking results, the compounds 6a, 8i, and 13a overlapped well with the binding pocket of 6YHR. Further study demonstrated that among the tested compounds, 13a was the most sensitive to PC3-WRN. In summary, our research identified a series of N-aryl-2-trifluoromethyl-quinazoline-4-amine derivatives as potential WRN-dependent anticancer agents.

16.
Mol Divers ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39117890

RESUMEN

Given the critical necessity for the development of more potent anti-cancer drugs, a series of novel compounds incorporating trifluoromethyl groups within the privileged 2-anilinoquinoline scaffold was designed, synthesized, and subjected to biological evaluation through a pharmacophore hybridization strategy. Upon evaluating the in vitro anti-cancer characteristics of the target compounds, it became clear that compound 8b, which contains a (4-(piperazin-1-yl)phenyl)amino substitution at the 2-position of the quinoline skeleton, displayed superior efficacy against four cancer cell lines by inducing apoptosis and cell cycle arrest. Following research conducted in a PC3 xenograft mouse model, it was found that compound 8b exhibited significant anti-cancer efficacy while demonstrating minimal toxicity. Additionally, the analysis of a 217-kinase panel pinpointed SGK1 as a potential target for this compound class with anti-cancer capabilities. This finding was further verified through molecular docking analysis and cellular thermal shift assays. To conclude, our results emphasize that compound 8b can be used as a lead compound for the development of anti-cancer drugs that target SGK1.

17.
Phytopathology ; 114(6): 1244-1252, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38916562

RESUMEN

Three novel trifluoromethylated compounds were designed and synthesized by reacting trifluoroacetimidoyl chloride derivatives with acetamidine hydrochloride or thiourea in the presence of potassium carbonate or sodium hydrogen carbonate as a base. In vitro and in vivo assays demonstrated the efficacy of the tested compounds in controlling root-knot nematode disease on pistachio rootstocks caused by Meloidogyne incognita. Bis-trifluoromethylated derivatives, namely N,N''-thiocarbonylbis(N'-(3,4-dimethylphenyl)-2,2,2-trifluoroacetimidamide) (compound A1), showed high efficacy as novel and promising nematicides, achieving up to 78.28% control at a concentration of 0.042 mg/liter. This effect is attributed to four methyl and two trifluoromethyl groups. In the pre-inoculation application of compound A1, all three concentrations (0.033, 0.037, and 0.042 mg/liter, and Velum) exhibited a higher level of control, with 83.79, 87.46, and 80.73% control, respectively. In the microplot trials, compound A1 effectively reduced population levels of M. incognita and enhanced plant growth at a concentration of 0.037 mg/liter. This suggests that compound A1 has the potential to inhibit hedgehog protein and could be utilized to prevent the progression of root-knot disease. Furthermore, the molecular docking results revealed that compounds A1 and A3 interact with specific amino acid residues (Gln60, Asp530, Glu70, Arg520, and Thr510) located in the active site of hedgehog protein. Based on the experimental findings of this study, compound A1 shows promise as a lead compound for future investigations.


Asunto(s)
Antinematodos , Simulación del Acoplamiento Molecular , Pistacia , Enfermedades de las Plantas , Raíces de Plantas , Tylenchoidea , Animales , Tylenchoidea/efectos de los fármacos , Antinematodos/farmacología , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/prevención & control , Raíces de Plantas/parasitología , Pistacia/química
18.
Arch Toxicol ; 98(7): 2213-2229, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38627326

RESUMEN

All areas of the modern society are affected by fluorine chemistry. In particular, fluorine plays an important role in medical, pharmaceutical and agrochemical sciences. Amongst various fluoro-organic compounds, trifluoromethyl (CF3) group is valuable in applications such as pharmaceuticals, agrochemicals and industrial chemicals. In the present study, following the strict OECD modelling principles, a quantitative structure-toxicity relationship (QSTR) modelling for the rat acute oral toxicity of trifluoromethyl compounds (TFMs) was established by genetic algorithm-multiple linear regression (GA-MLR) approach. All developed models were evaluated by various state-of-the-art validation metrics and the OECD principles. The best QSTR model included nine easily interpretable 2D molecular descriptors with clear physical and chemical significance. The mechanistic interpretation showed that the atom-type electro-topological state indices, molecular connectivity, ionization potential, lipophilicity and some autocorrelation coefficients are the main factors contributing to the acute oral toxicity of TFMs against rats. To validate that the selected 2D descriptors can effectively characterize the toxicity, we performed the chemical read-across analysis. We also compared the best QSTR model with public OPERA tool to demonstrate the reliability of the predictions. To further improve the prediction range of the QSTR model, we performed the consensus modelling. Finally, the optimum QSTR model was utilized to predict a true external set containing many untested/unknown TFMs for the first time. Overall, the developed model contributes to a more comprehensive safety assessment approach for novel CF3-containing pharmaceuticals or chemicals, reducing unnecessary chemical synthesis whilst saving the development cost of new drugs.


Asunto(s)
Relación Estructura-Actividad Cuantitativa , Pruebas de Toxicidad Aguda , Animales , Ratas , Administración Oral , Pruebas de Toxicidad Aguda/métodos , Algoritmos , Hidrocarburos Fluorados/toxicidad , Modelos Lineales
19.
Chem Biodivers ; 21(5): e202301776, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38602834

RESUMEN

A novel series of trifluoromethyl-containing quinazoline derivatives with a variety of functional groups was designed, synthesized, and tested for their antitumor activity by following a pharmacophore hybridization strategy. Most of the 20 compounds displayed moderate to excellent antiproliferative activity against five different cell lines (PC3, LNCaP, K562, HeLa, and A549). After three rounds of screening and structural optimization, compound 10 b was identified as the most potent one, with IC50 values of 3.02, 3.45, and 3.98 µM against PC3, LNCaP, and K562 cells, respectively, which were comparable to the effect of the positive control gefitinib. To further explore the mechanism of action of 10 b against cancer, experiments focusing on apoptosis induction, cell cycle arrest, and cell migration assay were conducted. The results showed that 10 b was able to induce apoptosis and prevent tumor cell migration, but had no effect on the cell cycle of tumor cells.


Asunto(s)
Antineoplásicos , Apoptosis , Movimiento Celular , Proliferación Celular , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Quinazolinas , Humanos , Quinazolinas/farmacología , Quinazolinas/química , Quinazolinas/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Relación Estructura-Actividad , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Línea Celular Tumoral , Estructura Molecular , Relación Dosis-Respuesta a Droga , Puntos de Control del Ciclo Celular/efectos de los fármacos
20.
Molecules ; 29(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38542827

RESUMEN

Incorporation of a trifluoromethyl group with 1,2,3-triazoles motifs was described. We explored a click reaction approach for regioselective synthesis of 1-susbstituted-4-trifluoromethyl-1,2,3-triazoles in which 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) reacts with commercial 2-bromo-3,3,3-trifluoropropene (BTP) to form 3,3,3-trifloropropyne (TFP) in situ. Arising from merits associated with the availability and stability of BTP, and the high efficiencies of CuI/1,10-Phenanthroline (Phen)-catalyzed cycloaddition reactions of azides with alkynes, this readily performed click process takes place to form the target 1,2,3-triazoles in high yields, and with a wide azide substrate scope. The potential value of this protocol was demonstrated by its application to a gram-scale reaction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA