Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Exp Mol Pathol ; 137: 104911, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38861838

RESUMEN

BACKGROUND: Recently, consensus molecular subtypes (CMSs) have been proposed as a robust transcriptome-based classification system for colorectal cancer (CRC). Tetraspanins (TSPANs) are transmembrane proteins. They have been associated with the development of numerous malignancies, including CRC, through their role as "master organizers" for multi-molecular membrane complexes. No previous study has investigated the correlation between TSPANs and CMS classification. Herein, we investigated the expression of TSPANs in patient-derived primary CRC tissues and their CMS classifications. METHODS: RNA samples were derived from primary CRC tissues (n = 100 patients diagnosed with colorectal adenocarcinoma) and subjected to RNA sequencing for transcriptome-based CMS classification and TSPAN-relevant analyses. Immunohistochemistry (IHC) and immunofluorescence (IF) stains were conducted to observe the protein expression level. To evaluate the relative biological pathways, gene-set enrichment analysis was performed. RESULTS: Of the highly expressed TSPAN genes in CRC tissues (TSPAN8, TSPAN29, and TSPAN30), TSPAN8 was notably overexpressed in CMS3-classified primary tissues. The overexpression of TSPAN8 protein in CMS3 CRC was also observed by IHC and IF staining. As a result of gene-set enrichment analysis, TSPAN8 may potentially play a role in organizing signaling complexes for kinase-based metabolic deregulation in CMS3 CRC. CONCLUSIONS: The present study reports the overexpression of TSPAN8 in CMS3 CRC. This study proposes TSPAN8 as a subtype-specific biomarker for CMS3 CRC. This finding provides a foundation for future CMS-based studies of CRC, a complex disease and the second leading cause of cancer mortality worldwide.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Colorrectales , Regulación Neoplásica de la Expresión Génica , Tetraspaninas , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/clasificación , Tetraspaninas/genética , Tetraspaninas/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Anciano , Adenocarcinoma/genética , Adenocarcinoma/patología , Adenocarcinoma/metabolismo , Adenocarcinoma/clasificación , Transcriptoma/genética , Inmunohistoquímica
2.
Mol Biol Rep ; 50(10): 7955-7965, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37535246

RESUMEN

BACKGROUND: Tetraspanin 8 (TSPAN8), a transmembrane glycoprotein, is implicated in various pathological conditions including human malignancies. However, the roles and underlying mechanisms of TSPAN8 in promoting gastric cancer(GC) progression are yet to be fully understood. METHODS AND RESULTS: Our study found that TSPAN8 expression was significantly elevated in GC tissues. We also observed a positive correlation between high TSPAN8 expression and various clinicopathological characteristics of GC, including tumor differentiation, invasion depth, lymph node metastasis, and clinical stage. Moreover, the elevated TSPAN8 expression was indicative of poor prognosis. Functionally, we observed that knockdown of TSPAN8 significantly attenuated while overexpression of TSPAN8 promoted GC cell migration and invasion. In vivo experiments, knockdown of TSPAN8 suppressed lung metastasis in nude mice. We further explored the underlying mechanisms of TSPAN8 and found that it regulated EGFR expression in GC cells by accelerating phosphorylation of EGFR and AKT. CONCLUSIONS: Our study reveals that TSPAN8 plays a significant role in promoting tumor metastasis by activating the EGFR/AKT pathway, indicating that it may serve as a promising therapeutic target of gastric cancer.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Neoplasias Gástricas , Animales , Ratones , Humanos , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Neoplasias Gástricas/metabolismo , Ratones Desnudos , Línea Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo , Movimiento Celular/genética , Proliferación Celular , Regulación Neoplásica de la Expresión Génica/genética , Invasividad Neoplásica , Tetraspaninas/genética , Tetraspaninas/metabolismo
3.
Biochem Biophys Res Commun ; 628: 104-109, 2022 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-36084547

RESUMEN

Metastasis is a major cause of breast cancer mortality and the current study found histone demethylase, KDM2A, expression to be negatively correlated with breast cancer metastasis. KDM2A knockdown greatly promoted migration and invasion of breast cancer cells. The histone demethylase activity of KDM2A downregulated EGF transcription and suppressed the EGF-TSPAN8 pathway. Inhibition of breast cancer cell migration was also dependent on the histone demethylase activity of KDM2A. A novel mechanism of KDM2A-suppression of the EGF-TSPAN8 pathway which inhibited breast cancer cell migration and invasion is reported.


Asunto(s)
Neoplasias de la Mama , Proteínas F-Box , Histona Demetilasas con Dominio de Jumonji , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Proliferación Celular/fisiología , Factor de Crecimiento Epidérmico/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Humanos , Histona Demetilasas con Dominio de Jumonji/metabolismo , Tetraspaninas/metabolismo
4.
Cell Biol Int ; 46(10): 1693-1703, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35904232

RESUMEN

TSPAN8 mediates signal transduction from extracellular cues and regulates cell development, activation, growth, and motility. However, whether TSPAN8 is involved in the progression of diabetic nephropathy (DN) remains unclear. This study aimed to explore the potential functional roles of TSPAN8 in regulating autophagy and apoptosis of HK-2 cells induced by high glucose (HG). RT-PCR and western blot analysis (WB) were employed to detect TSPAN8 levels in the blood samples of DN patients as well as in HG-induced HK-2 cells. Cell proliferation of HK-2 cells was examined by CCK-8 assay, and apoptosis was analyzed by flow cytometry. The functional role of TSPAN8 was evaluated by the transfection of TSPAN8 expression plasmid. Results showed that TSPAN8 level was significantly reduced in the blood samples of DN patients and HG-induced HK-2 cell lines. TSPAN8 overexpression rescued HG-induced apoptosis in HK-2 cells. TSPAN8 could form a complex with Rictor and mTORC2. TSPAN8 overexpression suppressed HG-induced autophagy in HK-2 cells, which was dependent on mTOR activity. In conclusion, the present study showed that TSPAN8 mitigates HG-induced autophagy and apoptosis in HK-2 cells, which may serve as candidate target for DN treatment.


Asunto(s)
Nefropatías Diabéticas , Diana Mecanicista del Complejo 2 de la Rapamicina , MicroARNs , Tetraspaninas , Apoptosis , Autofagia , Nefropatías Diabéticas/metabolismo , Glucosa/metabolismo , Glucosa/farmacología , Humanos , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , MicroARNs/metabolismo , Tetraspaninas/metabolismo
5.
BMC Nephrol ; 23(1): 89, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35246069

RESUMEN

BACKGROUND: Diabetic nephropathy (DN) is one of the most common and serious complications of diabetes, which can lead to renal failure and fatality. miRNAs are an important class of endogenous non-coding RNAs implicated in a wide range of biological processes and pathological conditions. This study aims to investigate the potential functional roles of miR-543 in DN and its underlying mechanisms. METHODS: qRT-PCR was performed to detect the expression levels of miR-543 and TSPAN8 in kidney tissues of mice with DN. Western blot (WB) was used to measure the protein levels. CCK8 assay was employed to evaluate the proliferation of HK2 cells. Dual luciferase reporter assay was conducted to verify the functional interaction between miR-543 and TSpan8. RESULTS: The downregulation of miR-543 and upregulation of TSPAN8 were observed in kidney tissues of mice with DN. miR-543 mimic significantly decreased cell proliferation and autophagy in high-glucose (HG)-induced HK2 cells, and promoted cell fibrosis. We further identified a putative binding site between miR-543 and TSPAN8, which was validated by Dual luciferase reporter assay. The treatment of miR-543 mimic and miR-543 inhibitor could reduce or increase TSPAN8 protein level respectively. We further showed that the overexpression of TSPAN8 could attenuate HG-induced cell injury by reducing fibrosis and increase autophagy. The effects of miR-543 mimic in proliferation, fibrosis, and autophagy were rescued by TSPAN8 overexpression. CONCLUSIONS: Our study indicate that miR-543 mediates high-glucose induced DN via targeting TSPAN8. Interfering miR-543/TSPAN8 axis could serve as potential approach to ameliorate DN.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , MicroARNs , Animales , Autofagia/genética , Nefropatías Diabéticas/patología , Femenino , Fibrosis , Glucosa/toxicidad , Humanos , Masculino , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Tetraspaninas/genética
6.
Int J Mol Sci ; 24(1)2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36613908

RESUMEN

Ovarian cancer (OC) is one of the most common and fatal types of gynecological cancer. In the early phase of OC detection, the current treatment and diagnostic methods are not efficient and sensitive enough. Therefore, it is crucial to explore the mechanisms of OC metastasis and discover valuable factors for early diagnosis of female cancers and novel therapeutic strategies for metastasis. Exosomes are known to be involved in the development, migration, and invasion of cancer cells, and their cargo could be useful for the non-invasive biopsy development. CD151- and Tspan8-positive exosomes are known to support the degradation of the extracellular matrix, and are involved in stroma remodeling, angiogenesis and cell motility, as well as the association of miR-24 and miR-101 with these processes. The objective of this study was to explore the relationship of these components of exosomal cargo, in patients with OC, to clarify the clinical significance of these markers in liquid biopsies. The levels of tetraspanins Tspan8+ and CD151+ exosomes were significantly higher in plasma exosomes of OC patients compared with healthy females (HFs). The relative levels of miR-24 and miR-101 in plasma exosomes of HFs were significantly higher than in plasma exosomes of OC patients, while the levels of these microRNAs in exosomes from plasma and ascites of ill females showed no difference. Our study revealed a strong direct correlation between the change in the ascites exosomes CD151+Tspan8+ subpopulation level and the expression levels of the ascites (R = 0.81, p < 0.05) and plasma exosomal miR-24 (R = 0.74, p < 0.05) in OC patients, which confirms the assumption that exosomal cargo act synergistically to increase cellular motility, affecting cellular processes and signaling. Bioinformatics analysis confirmed the involvement of CD151 and Tspan8 tetraspanins and genes controlled by miR-24-3p and miR-101 in signaling pathways, which are crucial for carcinogenesis, demonstrating that these tetraspanins and microRNAs are potential biomarkers for OC screening, and predictors of poor clinicopathological behavior in tumors.


Asunto(s)
Exosomas , MicroARNs , Neoplasias Ováricas , Humanos , Femenino , MicroARNs/metabolismo , Exosomas/metabolismo , Líquido Ascítico/metabolismo , Ascitis/genética , Ascitis/metabolismo , Neoplasias Ováricas/metabolismo , Tetraspaninas/genética , Tetraspaninas/metabolismo
7.
Diabetologia ; 64(12): 2803-2816, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34498099

RESUMEN

AIMS/HYPOTHESIS: Pancreatic polypeptide (PP) cells, which secrete PP (encoded by the Ppy gene), are a minor population of pancreatic endocrine cells. Although it has been reported that the loss of beta cell identity might be associated with beta-to-PP cell-fate conversion, at present, little is known regarding the characteristics of Ppy-lineage cells. METHODS: We used Ppy-Cre driver mice and a PP-specific monoclonal antibody to investigate the association between Ppy-lineage cells and beta cells. The molecular profiles of endocrine cells were investigated by single-cell transcriptome analysis and the glucose responsiveness of beta cells was assessed by Ca2+ imaging. Diabetic conditions were experimentally induced in mice by either streptozotocin or diphtheria toxin. RESULTS: Ppy-lineage cells were found to contribute to the four major types of endocrine cells, including beta cells. Ppy-lineage beta cells are a minor subpopulation, accounting for 12-15% of total beta cells, and are mostly (81.2%) localised at the islet periphery. Unbiased single-cell analysis with a Ppy-lineage tracer demonstrated that beta cells are composed of seven clusters, which are categorised into two groups (i.e. Ppy-lineage and non-Ppy-lineage beta cells). These subpopulations of beta cells demonstrated distinct characteristics regarding their functionality and gene expression profiles. Ppy-lineage beta cells had a reduced glucose-stimulated Ca2+ signalling response and were increased in number in experimental diabetes models. CONCLUSIONS/INTERPRETATION: Our results indicate that an unexpected degree of beta cell heterogeneity is defined by Ppy gene activation, providing valuable insight into the homeostatic regulation of pancreatic islets and future therapeutic strategies against diabetes. DATA AVAILABILITY: The single-cell RNA sequence (scRNA-seq) analysis datasets generated in this study have been deposited in the Gene Expression Omnibus (GEO) under the accession number GSE166164 ( www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE166164 ).


Asunto(s)
Células Secretoras de Insulina , Islotes Pancreáticos , Animales , Glucosa/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Ratones , Estreptozocina/farmacología
8.
J Pathol ; 248(4): 421-437, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30982971

RESUMEN

Tspan8 exhibits a functional role in many cancer types including pancreatic, colorectal, oesophagus carcinoma, and melanoma. We present a first study on the expression and function of Tspan8 in breast cancer. Tspan8 protein was present in the majority of human primary breast cancer lesions and metastases in the brain, bone, lung, and liver. In a syngeneic rat breast cancer model, Tspan8+ tumours formed multiple liver and spleen metastases, while Tspan8- tumours exhibited a significantly diminished ability to metastasise, indicating a role of Tspan8 in metastases. Addressing the underlying molecular mechanisms, we discovered that Tspan8 can mediate up-regulation of E-cadherin and down-regulation of Twist, p120-catenin, and ß-catenin target genes accompanied by the change of cell phenotype, resembling the mesenchymal-epithelial transition. Furthermore, Tspan8+ cells exhibited enhanced cell-cell adhesion, diminished motility, and decreased sensitivity to irradiation. As a regulator of the content and function of extracellular vesicles (EVs), Tspan8 mediated a several-fold increase in EV number in cell culture and the circulation of tumour-bearing animals. We observed increased protein levels of E-cadherin and p120-catenin in these EVs; furthermore, Tspan8 and p120-catenin were co-immunoprecipitated, indicating that they may interact with each other. Altogether, our findings show the presence of Tspan8 in breast cancer primary lesion and metastases and indicate its role as a regulator of cell behaviour and EV release in breast cancer. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Asunto(s)
Neoplasias de la Mama/metabolismo , Cadherinas/metabolismo , Carcinoma Ductal de Mama/metabolismo , Carcinoma Intraductal no Infiltrante/metabolismo , Carcinoma Lobular/metabolismo , Tetraspaninas/metabolismo , Animales , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/patología , Carcinoma Ductal de Mama/patología , Carcinoma Intraductal no Infiltrante/patología , Carcinoma Lobular/patología , Línea Celular Tumoral , Vesículas Extracelulares , Femenino , Humanos , Metástasis de la Neoplasia , Ratas , Transducción de Señal
9.
Biochim Biophys Acta Mol Cell Res ; 1865(2): 379-391, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29138006

RESUMEN

The tetraspanin Tspan8 supports via associated integrins and proteases tumor progression and angiogenesis. To shed light on its activities in non-transformed cells, we generated a Tspan8 knockout (ko) mouse, comparing leukocyte migration, angiogenesis, wound healing and tumor growth with wild type, CD151ko and Tspan8/CD151ko (dbko) mice. CD151ko mice were included as CD151 activities resemble that of Tspan8, and dbko mice to exclude mutual substitution. Tspan8ko and dbko mice show no pathological phenotype. However, delayed type hypersensitivity reactions are mitigated in Tspan8ko mice, angiogenesis is severely impaired in Tspan8ko, CD151ko and dbko mice, with Tspan8 mostly affecting lymphangiogenesis. Distinct contributions of CD151 and Tspan8 to skin wound healing rely on preferentially CD151 anchoring basal keratinocytes and Tspan8 promoting motility. Proliferation of wounded skin keratinocytes is not affected. Metastasis formation of a melanoma and a Tspan8-expressing pancreatic cancer line was impaired in Tspan8ko and dbko mice, pointing towards a contribution of host Tspan8 to tumor progression. In line with the importance of tetraspanins in exosome-mediated intercellular communication, defects became mitigated by Tspan8/CD151-competent serum exosomes, which offers a most promising therapeutic option for chronic wounds and arteriosclerosis.


Asunto(s)
Movimiento Celular , Integrina alfaV/genética , Leucocitos/metabolismo , Melanoma , Proteínas de Neoplasias/metabolismo , Neovascularización Patológica/metabolismo , Neoplasias Pancreáticas , Tetraspaninas/genética , Cicatrización de Heridas , Animales , Integrina alfaV/metabolismo , Leucocitos/patología , Melanoma/irrigación sanguínea , Melanoma/genética , Melanoma/metabolismo , Melanoma/patología , Ratones , Ratones Noqueados , Metástasis de la Neoplasia , Proteínas de Neoplasias/genética , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Neoplasias Pancreáticas/irrigación sanguínea , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Tetraspaninas/metabolismo
10.
Am J Med Genet B Neuropsychiatr Genet ; 174(7): 740-750, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28777493

RESUMEN

In a previous study, we identified the single nucleotide polymorphism (SNP) rs4500567, located in the upstream region of tetraspanin 8 (TSPAN8), to be associated with bipolar disorder (BD). Due to its proximal position, the SNP might have an impact on promoter activity, thus on TSPAN8 gene expression. We investigated the impact of rs4500567 on TSPAN8 expression in vitro with luciferase-based promoter assays in human embryonic kidney (HEK293) and neuroblastoma cells (SH-SY5Y), and its effect on expression of downstream associated genes by microarray-based transcriptome analyses. Immunohistochemical localization studies on murine brain slices served to identify possible target regions of altered TSPAN8 expression in the brain. Promoter assays revealed decreased TSPAN8 expression in presence of the minor allele. Transcriptome analyses of TSPAN8-knockdown cells, mirroring the effects of putatively reduced TSPAN8 expression in minor allele carriers, resulted in 231 differentially expressed genes with enrichments of relevant signaling pathways for psychiatric disorders and neuronal development. Finally, we demonstrate Tspan8 abundance in mouse cerebellum and hippocampus. These findings point to a role of TSPAN8 in neuronal function or development. Considering a rather protective effect of the minor allele of rs4500567, our findings reveal a possible novel mechanism that contributes to the development of BD.


Asunto(s)
Trastorno Bipolar/patología , Encéfalo/patología , Regulación de la Expresión Génica , Neuroblastoma/patología , Polimorfismo de Nucleótido Simple , Tetraspaninas/metabolismo , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Trastorno Bipolar/genética , Trastorno Bipolar/metabolismo , Encéfalo/metabolismo , Femenino , Perfilación de la Expresión Génica , Células HEK293 , Humanos , Luciferasas/metabolismo , Ratones , Ratones Endogámicos C57BL , Neuroblastoma/genética , Neuroblastoma/metabolismo , Regiones Promotoras Genéticas , Transducción de Señal , Tetraspaninas/genética , Células Tumorales Cultivadas
11.
Biochem Biophys Res Commun ; 468(4): 774-80, 2015 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-26562525

RESUMEN

Tetraspanin 8 (TSPAN8) is a tumor-associated antigen implicated in tumor progression and metastasis. However, the validation of TSPAN8 as a potential therapeutic target in metastatic colorectal cancer (mCRC) has not yet been studied. In this study, through several in vitro methodologies, we identified a large extracellular loop of TSPAN8 (TSPAN8-LEL) as a key domain for regulating mCRC invasion. Using phage display technology, we developed a novel anti-TSPAN8-LEL human antibody with subnanomolar affinity that specifically recognizes amino acids 140-205 of TSPAN8-LEL in a conformation-dependent manner. Finally, we demonstrated that the antibody specifically reduces invasion in the HCT116 and LoVo mCRC cell lines more potently than in the HCT-8 and SW480 non-mCRC cell lines. Our data suggest that TSPAN8-LEL may play an important role in mCRC cell invasion, and that the antibody we have developed could be a useful tool for inhibiting the invasion of TSPAN8-expressing mCRCs.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/secundario , Tetraspaninas/antagonistas & inhibidores , Anticuerpos Monoclonales/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/patología , Diseño de Fármacos , Humanos , Terapia Molecular Dirigida/métodos , Invasividad Neoplásica , Ingeniería de Proteínas/métodos , Resultado del Tratamiento
12.
Cells ; 13(2)2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38275818

RESUMEN

Tetraspanins, a superfamily of small integral membrane proteins, are characterized by four transmembrane domains and conserved protein motifs that are configured into a unique molecular topology and structure in the plasma membrane. They act as key organizers of the plasma membrane, orchestrating the formation of specialized microdomains called "tetraspanin-enriched microdomains (TEMs)" or "tetraspanin nanodomains" that are essential for mediating diverse biological processes. TSPAN8 is one of the earliest identified tetraspanin members. It is known to interact with a wide range of molecular partners in different cellular contexts and regulate diverse molecular and cellular events at the plasma membrane, including cell adhesion, migration, invasion, signal transduction, and exosome biogenesis. The functions of cell-surface TSPAN8 are governed by ER targeting, modifications at the Golgi apparatus and dynamic trafficking. Intriguingly, limited evidence shows that TSPAN8 can translocate to the nucleus to act as a transcriptional regulator. The transcription of TSPAN8 is tightly regulated and restricted to defined cell lineages, where it can serve as a molecular marker of stem/progenitor cells in certain normal tissues as well as tumors. Importantly, the oncogenic roles of TSPAN8 in tumor development and cancer metastasis have gained prominence in recent decades. Here, we comprehensively review the current knowledge on the molecular characteristics and regulatory mechanisms defining TSPAN8 functions, and discuss the potential and significance of TSPAN8 as a biomarker and therapeutic target across various epithelial cancers.


Asunto(s)
Neoplasias , Tetraspaninas , Humanos , Tetraspaninas/genética , Tetraspaninas/metabolismo , Neoplasias/genética , Proteínas de la Membrana , Membrana Celular/metabolismo , Adhesión Celular
13.
Gene ; 885: 147706, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37572802

RESUMEN

Changes in gene expression with aging are associated with a decline in physical and cognitive abilities. Here, we investigated the changes in mRNA and protein expression of TSPAN8 and SERT in the different parts of the brain for different age group rats. Our protein analysis revealed that aging mainly triggers SERT gene expression in the cerebellum and hippocampus, showing that an increase in mRNA expression correlates with protein expression. For TSPAN8, age-dependent protein increase was observed in the hippocampus and highest expression was observed for adult and middle-aged rats.


Asunto(s)
Encéfalo , Hipocampo , Ratas , Animales , Hipocampo/metabolismo , Encéfalo/metabolismo , Cerebelo/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Envejecimiento/genética , Envejecimiento/metabolismo
14.
Cancers (Basel) ; 15(19)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37835445

RESUMEN

Tspan8 is a member of the tetraspanins family of cell surface molecules. The ability of tetraspanins to organize membrane microdomains with other membrane molecules and interfere with their function suggests that they could act as surface integrators of external or internal signals. Among the first identified tetraspanins, Tspan8 promotes tumor progression and metastasis, presumably by stimulating angiogenesis and cell motility. In patients, its expression on digestive tract tumors seems to be associated with a bad prognosis. We showed previously that Tspan8 associates with E-cadherin and EGFR and modulates their effects on cell motility. Using Mass spectrometry and western blot, we found a new partner, the endothelin converting enzyme ECE1, and showed that Tspan8 amplifies its activity of conversion of the endothelin-1 precursor bigET1 to endothelin. This was observed by transduction of the colon carcinoma cell line Isreco1, which does not express Tspan8, and on ileum tissue fragments of tspan8ko mice versus wild type mice. Given these results, Tspan8 appears to be a modulator of the endothelin axis, which could possibly be targeted in case of over-activity of endothelins in biological processes of tissues expressing Tspan8.

15.
Stem Cell Reports ; 18(3): 636-653, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36827975

RESUMEN

Ancestral SARS coronavirus-2 (SARS-CoV-2) and variants of concern (VOC) caused a global pandemic with a spectrum of disease severity. The mechanistic explaining variations related to airway epithelium are relatively understudied. Here, we biobanked airway organoids (AO) by preserving stem cell function. We optimized viral infection with H1N1/PR8 and comprehensively characterized epithelial responses to SARS-CoV-2 infection in phenotypically stable AO from 20 different subjects. We discovered Tetraspanin-8 (TSPAN8) as a facilitator of SARS-CoV-2 infection. TSPAN8 facilitates SARS-CoV-2 infection rates independently of ACE2-Spike interaction. In head-to-head comparisons with Ancestral SARS-CoV-2, Delta and Omicron VOC displayed lower overall infection rates of AO but triggered changes in epithelial response. All variants shared highest tropism for ciliated and goblet cells. TSPAN8-blocking antibodies diminish SARS-CoV-2 infection and may spur novel avenues for COVID-19 therapy.


Asunto(s)
COVID-19 , Subtipo H1N1 del Virus de la Influenza A , Humanos , SARS-CoV-2 , Organoides , Tetraspaninas/genética
16.
J Extracell Vesicles ; 10(13): e12167, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34796683

RESUMEN

Small extracellular vesicles (sEVs) play a key role in intercellular communication. Cargo molecules carried by sEVs may affect the phenotype and function of recipient cells. Epithelial cancer cell-derived sEVs, particularly those enriched in CD151 or tetraspanin8 (TSPAN8) and associated integrins, promote tumour progression. The mechanism of binding and modulation of sEVs to recipient cells remains elusive. Here, we used genetically engineered breast cancer cells to derive TSPAN8-enriched sEVs and evaluated the impact of TSPAN8 on target cell membrane's diffusion and transport properties. The single-particle tracking technique showed that TSPAN8 significantly promoted sEV binding via confined diffusion. Functional assays indicated that the transgenic TSPAN8-sEV cargo increased cancer cell motility and epithelial-mesenchymal transition (EMT). In vivo, transgenic TSPAN8-sEV promoted uptake of sEVs in the liver, lung, and spleen. We concluded that TSPAN8 encourages the sEV-target cell interaction via forced confined diffusion and significantly increases cell motility. Therefore, TSPAN8-sEV may serve as an important direct or indirect therapeutic target.


Asunto(s)
Neoplasias de la Mama/metabolismo , Comunicación Celular/genética , Vesículas Extracelulares/metabolismo , Hígado/metabolismo , Pulmón/metabolismo , Transducción de Señal/genética , Bazo/metabolismo , Tetraspaninas/metabolismo , Animales , Neoplasias de la Mama/patología , Carcinogénesis/genética , Carcinogénesis/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Transición Epitelial-Mesenquimal/genética , Femenino , Técnicas de Silenciamiento del Gen/métodos , Xenoinjertos , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Tetraspanina 24/metabolismo , Tetraspaninas/genética , Transfección
17.
Ann Clin Lab Sci ; 50(5): 638-644, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33067209

RESUMEN

OBJECTIVE: Tspan8 (tetraspanin 8) plays critical roles in cell adhesion and motility. Recently, Tspan8 overexpression has been found in various tumors. However, its expression status and prognostic significance in clear cell renal cell carcinoma (ccRCC) remains unknown. The objective of the present study was to assess the expression of Tspan8 and its correlation with clinicopathological features in ccRCC. METHODS: Tspan8 expression was detected in 150 cases of ccRCC and matched paracancerous tissues by immunohistochemistry (IHC) and its relevance with prognosis was analyzed. RESULTS: Our data showed that the high-expression rate of Tspan8 in ccRCC tissues was 74.0%, which was significantly higher than those in paracancerous kidney tissues (43.3%, P=0.001). Meanwhile, Tspan8 expression was positively correlated with tumor size and WHO/ISUP grade in ccRCC. Significantly, Kaplan-Meier analysis and log-rank test revealed that Tspan8 higher expression was associated with poorer overall survival (OS) in ccRCC patients (P<0.05). Cox regression analysis further showed that Tspan8 was a significant independent negative prognostic factor for these patients. CONCLUSION: Tspan8 is overexpressed in ccRCC and indicates poor prognosis, suggesting potential roles of Tspan8 in prognostication and targeted therapy.


Asunto(s)
Carcinoma de Células Renales/genética , Tetraspaninas/genética , Adulto , Anciano , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Renales/metabolismo , China , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Estimación de Kaplan-Meier , Neoplasias Renales/patología , Masculino , Persona de Mediana Edad , Pronóstico , Modelos de Riesgos Proporcionales , Tetraspaninas/metabolismo
18.
Int J Biol Macromol ; 164: 1294-1303, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32698071

RESUMEN

Here, we revealed the novel role of long non-coding RNAs (lncRNAs) SOX21 antisense RNA 1 (SOX21-AS1)/TSPAN8/GATA6 in progression of lung adenocarcinoma. SOX21-AS1 expression was quantified in lung adenocarcinoma tissues and cells by RT-qPCR. Then, gain- and loss-of-function experiments were conducted in lung adenocarcinoma cells. Expression of GATA6, TSPAN8 and extracellular signal-regulated kinase (ERK) signaling pathway-related genes was determined in lung adenocarcinoma cells by western blot analysis. The interaction and relationship among SOX21-AS1, GATA6 and TSPAN8 were predicted and verified respectively by RNA pull down, RIP, ChIP, and dual-luciferase reporter assays. Next, lung adenocarcinoma cell proliferation, colony formation, invasion and migration were assessed by 5-ethynyl-2'-deoxyuridine staining, colony formation assay and Transwell assay. Xenograft tumors were established in nude mice and the tumor growth was observed and recorded. SOX21-AS1 was observed to be highly expressed in lung adenocarcinoma tissues. The overexpression of SOX21-AS1, GATA6 or TSPAN8 obviously enhanced cell biological functions in lung adenocarcinoma. Meanwhile, SOX21-AS1 interacted with GATA6 which bound to TSPAN8 promoter and promoted TSPAN8 expression, which further enhanced cell colony formation, proliferation and invasion, and also activated ERK signaling pathway. Silencing of SOX21-AS1 and inhibiting its binding to GATA6 downregulate TSPAN8 and thereby exert anti-oncogenic effects in lung adenocarcinoma.


Asunto(s)
Adenocarcinoma del Pulmón/genética , Factor de Transcripción GATA6/genética , Silenciador del Gen , Neoplasias Pulmonares/genética , ARN Largo no Codificante/genética , Tetraspaninas/genética , Animales , Línea Celular Tumoral , Proliferación Celular , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Factor de Transcripción GATA6/metabolismo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , MAP Quinasa Quinasa 1/metabolismo , Ratones , Ratones Desnudos , Invasividad Neoplásica , Trasplante de Neoplasias , Factores de Transcripción SOXB2/metabolismo , Transducción de Señal
19.
Life Sci ; 241: 117114, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31790687

RESUMEN

AIMS: Colorectal cancer (CRC) is the fourth leading cause of cancer-related mortality worldwide. Over-expression of tetraspanin 8 (TSPAN8) is related to the development and progression of CRC. Whether TSPAN8 plays a role in the growth of colorectal cancer and its epigenetic mechanisms regulated by Lysine Specific Demethylase 1 (LSD1) are still unknown. MAIN METHODS: In this study, RT-PCR and western blotting were used to analyze the mRNA and protein expression, respectively; cell viability was assayed with MTS analysis; cell migration was measured with Trans-well analysis. KEY FINDINGS: In the present study, the results indicated that the mRNA levels of LSD1 and TSPAN8 in CRC were significantly higher than that in corresponding adjacent non-tumor tissue. Down-regulation of LSD1 or TSPAN8 as well as LSD1 inhibitor Tranylcypromine hemisulfate inhibited the proliferation and migration of CRC cells, while over-expression of LSD1 exhibited opposite effects. LSD1 up-regulated TSPAN8 expression and reduced H3K9me2 occupancy on the TSPAN8 promoter in CRC cells. TSPAN8 promoted epithelial-mesenchymal transition (EMT) in CRC cells in LSD1-dependent manner. SIGNIFICANCE: TSPAN8 may be considered as a promising biomarker for the diagnosis and prognosis in patients with CRC. Furthermore, TSPAN8 could be a novel therapeutic target and potent LSD1 inhibitors could be designed and developed in the treatment of CRC.


Asunto(s)
Neoplasias Colorrectales/patología , Histona Demetilasas/metabolismo , Tetraspaninas/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Histona Demetilasas/genética , Histonas/metabolismo , Humanos , Lisina/metabolismo , Metilación , Regiones Promotoras Genéticas , Tetraspaninas/genética
20.
J Adv Res ; 24: 99-107, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32257432

RESUMEN

Prevention is essential to reduce Colorectal Cancer (CRC) mortality. We previously reported a panel of four genes: CEACAM6, LGALS4, TSPAN8, COL1A2 (CELTiC) able to discriminate patients with CRC. Here, we assessed the CELTiC panel by quantitative polymerase chain reaction, in the blood of 174 healthy subjects, who resulted negative to the faecal immunochemical test (FITN). Using non-parametric statistic and multinomial logistic models, the FITN were compared to previously analysed subjects: 36 false positive FIT (NFIT), who were negative at colonoscopy, 36 patients with low risk lesions (LR) and 92 patients with high risk lesions or CRC (HR/CRC). FITN showed a significantly lower expression of the four genes when compared to HR/CRC. Moreover, FITN showed a significantly lower expression of TSPAN8 and COL1A2 compared to NFIT and LR patients. The multinomial logistic model confirmed that TSPAN8 alone specifically discriminated FITN from NFIT, LR and HR/CRC, while LGALS4 was able to differentiate FITN from false positive FIT. Finally, ROC curves analysis of the comparisons between FITN and HR/CRC, LR or NFIT reported AUC greater than 0.87, with a sensitivity and specificity of 83% and 76%, respectively. The CELTiC panel was confirmed a useful tool to identify CRC patients and to discriminate false FIT positive subjects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA