Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 276
Filtrar
Más filtros

Intervalo de año de publicación
1.
Environ Res ; 241: 115755, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36972773

RESUMEN

Antibiotic resistance genes (ARGs) have been widely detected in the environment. Anaerobic digestion (AD) has the potential ability to remove ARGs, and a comprehensive study is needed on the variations in ARGs during AD. In this study, variations in antibiotic resistance genes (ARGs) and microbial communities were investigated during the long-term operation of an upflow anaerobic sludge blanket (UASB) reactor. An antibiotic mixture of erythromycin, sulfamethoxazole and tetracycline was added to the UASB influent and the operation period was 360 days. The abundances of 11 ARGs and class 1 integron-integrase gene were detected in the UASB reactor, and the correlation between the ARGs and the microbial community was analyzed. The composition of ARGs indicated that the main ARGs in the effluent were sul1, sul2, and sul3, whereas the main ARG in the sludge was tetW. Correlation analysis indicated a negative correlation between microorganisms and ARGs in the UASB. In addition, most of ARGs showed a positive correlation with norank_f_Propionibacteriaceae and Clostridum_sensu_stricto_6, which were identified as potential hosts. These findings may help develop a feasible strategy for removing ARGs from aquatic environments during anaerobic digestion.


Asunto(s)
Antibacterianos , Aguas del Alcantarillado , Antibacterianos/farmacología , Anaerobiosis , Tetraciclina , Farmacorresistencia Microbiana/genética , Eliminación de Residuos Líquidos
2.
J Environ Manage ; 359: 121109, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38723500

RESUMEN

The impact of climate change on water availability and quality has affected agricultural irrigation. The use of treated wastewater can alleviate water in agriculture. Nevertheless, it is imperative to ensure proper treatment of wastewater before reuse, in compliance with current regulations of this practice. In decentralized agricultural scenarios, the lack of adequate treatment facilities poses a challenge in providing treated wastewater for irrigation. Hence, there is a critical need to develop and implement innovative, feasible, and sustainable treatment solutions to secure the use of this alternative water source. This study proposes the integration of intensive treatment solutions and natural treatment systems, specifically, the combination of up-flow anaerobic sludge blanket reactor (UASB), anaerobic membrane bioreactor (AnMBR), constructed wetlands (CWs), and ultraviolet (UV) disinfection. For this purpose, a novel demo-scale plant was designed, constructed and implemented to test wastewater treatment and evaluate the capability of the proposed system to provide an effluent with a quality in compliance with the current European wastewater reuse regulatory framework. In addition, carbon-sequestration and energy analyses were conducted to assess the sustainability of the proposed treatment approach. This research confirmed that UASB rector can be employed for biogas production (2.5 L h-1) and energy recovery from organic matter degradation, but its effluent requires further treatment steps to be reused in agricultural irrigation. The AnMBR effluent complied with class A standards for E. coli, boasting a concentration of 0 CFU 100 mL-1, and nearly negligible TSS levels. However, further reduction of BOD5 (35 mg L-1) is required to reach water quality class A. CWs efficiently produced effluent with BOD5 below 10 mg L-1 and TSS close to 0 mg L-1, making it suitable for water reuse and meeting class A standards. Furthermore, CWs demonstrated significantly higher energy efficiency compared to intensive treatment systems. Nonetheless, the inclusion of a UV disinfection unit after CWs was required to attain water class B standards.


Asunto(s)
Reactores Biológicos , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas Residuales , Humedales , Anaerobiosis , Eliminación de Residuos Líquidos/métodos , Agricultura , Carbono
3.
Environ Res ; 217: 114843, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36400228

RESUMEN

The main objective of this work was to test different artificial neural network (ANN) based models, i.e. the ANN feed forward back propagation (ANN-FFBP), deep feed forward backpropagation (DFFBP), and deep cascade forward back propagation (DCFBP) models, for predicting the effluent quality of an upflow anaerobic sludge blanket-facultative pond (UASB-FP) system. The overall removal efficiency in the UASB-FP was >84% at organic loading rates of ∼26 kg d-1. The chemical oxygen demand (COD), ammonical nitrogen (AN), total suspended solids (TSS), biochemical oxygen demand (BOD), total Kjeldahl nitrogen (TKN), and total phosphorus (TP) were inputs to each model, while the water quality characteristics of the UASB-FP effluent was used as the output. The dataset of 180 samples, collected over a one-year period, was utilized to train, test, and validate the developed models. Compared to ANN-FFBP and DFFBP, the DCFBP network demonstrated the strongest capacity for prediction. The correlation coefficient RTrain and the root-mean-squared error (RMSE) for the selected DCFBP model (3 hidden layers and 11 neurons/layer) in the training data set were 0.997 and 6.018, respectively. The sensitivity analysis of the DCFBP model shows that the model's performance is very sensitive to BOD followed by AN, COD, TP, TSS and TKN, respectively. The results of this study will be helpful to wastewater treatment (WWTP) plant managers in their pursuit of data-driven UASB-FP based WWTP management.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Anaerobiosis , Eliminación de Residuos Líquidos/métodos , Reactores Biológicos , Estanques , Redes Neurales de la Computación , Algoritmos , Nitrógeno
4.
Appl Microbiol Biotechnol ; 107(9): 3047-3056, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37000227

RESUMEN

Tetramethylammonium hydroxide (TMAH) is a known toxic chemical used in the photolithography process of semiconductor photoelectronic processes. Significant amounts of wastewater containing TMAH are discharged from electronic industries. It is therefore attractive to apply anaerobic treatment to industrial wastewater containing TMAH. In this study, a novel TMAH-degrading methanogenic archaeon was isolated from the granular sludge of a psychrophilic upflow anaerobic sludge blanket (UASB) reactor treating synthetic wastewater containing TMAH. Although the isolate (strain NY-STAYD) was phylogenetically related to Methanomethylovorans uponensis, it was the only isolated Methanomethylovorans strain capable of TMAH degradation. Strain NY-STAYD was capable of degrading methylamine compounds, similar to the previously isolated Methanomethylovorans spp. While the strain was able to grow at temperatures ranging from 15 to 37°C, the cell yield was higher at lower temperatures. The distribution of archaeal cells affiliated with the genus Methanomethylovorans in the original granular sludge was investigated by fluorescence in situ hybridization (FISH) using specific oligonucleotide probe targeting 16S rRNA. The results demonstrated that the TMAH-degrading cells associated with the genus Methanomethylovorans were not intermingled with other microorganisms but rather isolated on the granule's surface as a lone dominant archaeon. KEY POINTS: • A TMAH-degrading methanogenic Methanomethylovorans strain was isolated • This strain was the only known Methanomethylovorans isolate that can degrade TMAH • The highest cell yield of the isolate was obtained at psychrophilic conditions.


Asunto(s)
Archaea , Euryarchaeota , Archaea/genética , Archaea/metabolismo , Aguas Residuales , Aguas del Alcantarillado/química , Hibridación Fluorescente in Situ , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Reactores Biológicos , Euryarchaeota/metabolismo , Methanosarcinaceae/genética , Anaerobiosis , Eliminación de Residuos Líquidos/métodos
5.
J Environ Manage ; 345: 118643, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37487453

RESUMEN

This research focuses on the application of respirometric techniques to provide new insights into the biokinetic behaviour of bacterial species developed in an Upflow Anaerobic Sludge Blanked -UASB reactor combined with a membrane bioreactor -MBR, treating urban wastewater with emerging contaminants frequently found in this kind of effluents. The lab-scale pilot plant was operated at different metabolic and operational conditions by limiting the organic loading rate- OLR of the influent. In a first stage, the MBR was performed with suspended biomass, while in a second stage bio-supports were introduced to operate coexisting suspended and fixed biomass. From the results of the microscopic monitoring of sludge, it was concluded that the decrease in OLR resulted in a greater disintegration of the floc structure, more dispersed growth, and a low presence of inter-floccular bonds. However, no effect of toxicity or inhibition of microorganisms caused by the presence of emerging contaminants -ECs was determined. Kinetic modelling was carried out to study the behaviour of the system. The results showed a slowing down of biomass degradative capacity at low OLR stages and operating at low temperatures of mixed liquor. In addition, a decrease in oxygen consumption was observed with decreasing biodegradable substrate, resulting in lower degradation of organic matter. Mean values of specific oxygen uptake rate and heterotrophic biomass yield at low OLR were SOUR end = 1.49 and 1.15 mg O2· g MLVSS-1 h-1 and YH,MLSSV end = 0.48 and 0.28 mg MLVSS· mg COD-1substrate at stage 1 (suspended biomass) and stage 2 (suspended and supported biomass), respectively. From the analysis of the endogenous decomposition constant (kd), a higher cell lysis was determined operating with suspended biomass (kd = 0.03 d-1) in comparison to the operation coexisting suspended and supported biomass (kd = 0.01 d-1). Heterotrophic biomass yield values (YH, MLVSS = 0.48 ± 0.06, 0.40 ± 0.01 and 0.29 ± 0.01 mg MLVSS· mg COD-1substrate at high, medium and low OLR) showed lower sludge production at low OLR due to the influence of substrate limitation on cell growth.


Asunto(s)
Aguas del Alcantarillado , Aguas Residuales , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos/métodos , Temperatura , Reactores Biológicos/microbiología , Anaerobiosis , Biomasa
6.
J Environ Manage ; 344: 118435, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37379625

RESUMEN

Due to the high concentration of pollutants, swine wastewater needs to be treated prior to disposal. The combination of anaerobic and aerobic technologies in one hybrid system allows to obtain higher removal efficiencies compared to those achieved via conventional biological treatment, and the performance of a hybrid system depends on the microbial community in the bioreactor. Here, we evaluated the community assembly of an anaerobic-aerobic hybrid reactor for swine wastewater treatment. Sequencing of partial 16S rRNA coding genes was performed using Illumina from DNA and retrotranscribed RNA templates (cDNA) extracted from samples from both sections of the hybrid system and from a UASB bioreactor fed with the same swine wastewater influent. Proteobacteria and Firmicutes were the dominant phyla and play a key role in anaerobic fermentation, followed by Methanosaeta and Methanobacterium. Several differences were found in the relative abundances of some genera between the DNA and cDNA samples, indicating an increase in the diversity of the metabolically active community, highlighting Chlorobaculum, Cladimonas, Turicibacter and Clostridium senso stricto. Nitrifying bacteria were more abundant in the hybrid bioreactor. Beta diversity analysis revealed that the microbial community structure significantly differed among the samples (p < 0.05) and between both anaerobic treatments. The main predicted metabolic pathways were the biosynthesis of amino acids and the formation of antibiotics. Also, the metabolism of C5-branched dibasic acid, Vit B5 and CoA, exhibited an important relationship with the main nitrogen-removing microorganisms. The anaerobic-aerobic hybrid bioreactor showed a higher ammonia removal rate compared to the conventional UASB system. However, further research and adjustments are needed to completely remove nitrogen from wastewater.


Asunto(s)
Chlorobi , Microbiota , Purificación del Agua , Animales , Porcinos , Aguas Residuales , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos , Anaerobiosis , Chlorobi/genética , ARN Ribosómico 16S/genética , ADN Complementario , Reactores Biológicos/microbiología
7.
J Environ Manage ; 327: 116886, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36455441

RESUMEN

High sulfate contents in skim latex serum (SLS) can be reduced by rubber wood ash (RWA). Subsequently, the desulfated skim latex serum (DSLS) can be further anaerobically treated more effectively with the accompanying generated biomethane. In this study, DSLS was treated using an up-flow anaerobic sludge blanket (UASB) reactor operated at 10-day HRT and under mesophilic (37 °C) conditions. The effect of organic loading rates (OLR) at 0.89, 1.79 and 3.57 g-COD/L-reactor∙d on DSLS biodegradability was investigated in Phase I-IV using NaHCO3 as an external buffering agent. Maximum methane production yield of 226.35 mL-CH4/g-CODadded corresponding to 403.25 mL-CH4/L reactor·d was achieved at the suitable OLR of 1.79 g-COD/L-reactor∙d. UASB effluent recirculation which was then applied to replace the NaHCO3. It was found that with 53% effluent recirculation similar to an OLR of 2.01 g-COD/L-reactor∙d, an average of 185.70 mL-CH4/g-CODadded corresponding to 371.40 mL/L reactor·d of methane production was reached. The dominant bacteria in UASB reactor were members of Proteobacteria, Bacteroidota, Firmicutes, and Desulfobacterota phyla. Meanwhile, the archaeal community was majorly dominated by the genera Methanosaeta sp. and Methanomethylovorans sp. The study clearly indicates the capabilities of UASB reactor with effluent recirculation to treat DSLS anaerobically.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Anaerobiosis , Biocombustibles , Látex , Reactores Biológicos/microbiología , Metano
8.
Environ Res ; 206: 112406, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-34838566

RESUMEN

Upflow anaerobic sludge blanket (UASB) reactors, with or without granular activated carbon (GAC) amendment, were applied for blackwater treatment. The impact of GAC on the formation of granules and biomethane recovery was assessed. High organic loading rates (OLRs) up to 15.7 ± 2.1 kg COD/(m3d) were achieved with both reactors. Similar chemical oxygen demand (COD) removal and methane production rate were observed with OLRs ranging from 5.1 ± 1.0 to 9.3 ± 1.5 kg COD/(m3d). Under higher OLR conditions (13.6 ± 1.1 to 15.7 ± 2.1 kg COD/(m3d)), the GAC-amended UASB achieved a higher COD reduction than the UASB without GAC addition. Interestingly, volatile suspended solids (VSS) concentrations, granule size, and extracellular polymeric substance concentrations were lower in the GAC-amended UASB reactor as compared to the UASB without GAC. The methanogenesis activity of the granules in the GAC-amended UASB reactor was significantly higher than the methanogenesis activity of the UASB granules. The microbes o_Bacteroidales and Syntrophus were predominant in both reactors. The acetoclastic methanogens dominated in the UASB reactor without GAC addition; while hydrogenotrophic methanogens dominated in the GAC-UASB reactor. A phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) indicated that syntrophic acetate oxidation improved with GAC addition. The co-occurrence network indicated that interactions between dominant bacteria and archaea were higher in the GAC-amended UASB reactor than in the UASB reactor without GAC addition. This study demonstrated the improved blackwater treatment performance as a result of granulation in UASB with the addition of GAC.


Asunto(s)
Carbón Orgánico , Eliminación de Residuos Líquidos , Anaerobiosis , Reactores Biológicos , Matriz Extracelular de Sustancias Poliméricas , Metano , Filogenia , Aguas del Alcantarillado/química
9.
Artículo en Inglés | MEDLINE | ID: mdl-35535707

RESUMEN

In the production of natural rubber, formate or acetate is added to the latex solution to coagulate the rubber; therefore, the wastewater contains high concentrations of organic acids, requiring the application of anaerobic treatment technology. In this study, a two-phase continuous flow experiment using a laboratory-scale upflow anaerobic sludge blanket (UASB) was conducted to investigate the influence of formate inflow on the microbial and physical characteristics of the retained granular sludge. In phase 1, acetate-based wastewater was used as feed, while in phase 2, formate-based wastewater was used as feed. In phase 1, the UASB exhibited high COD removal efficiency (97.2%); in addition, the retained sludge showed increased methane production from acetate and proliferation of acetate-utilizing Methanosaeta species. In phase 2, the UASB performed as well as phase 1, with 98.2% COD removal efficiency. Microbial community structure analysis confirmed that relatives of Methanobacterium formicicum present in the retained sludge were responsible for the degradation of formate in phase 2. However, decreased diameter and slight deterioration of granular sludge settleability were observed. In conclusion, formate inflow has low risk of interference with the process performance of the UASB, but it has negative effects on the physical properties of the granular sludge.


Asunto(s)
Aguas del Alcantarillado , Aguas Residuales , Anaerobiosis , Reactores Biológicos/microbiología , Formiatos , Metano/metabolismo , Aguas del Alcantarillado/microbiología , Eliminación de Residuos Líquidos , Aguas Residuales/química
10.
Artículo en Inglés | MEDLINE | ID: mdl-33657962

RESUMEN

In this study, a lab-scale upflow anaerobic sludge blanket (UASB) reactor was applied to the treatment of artificial electronics industry wastewater containing tetramethylammonium-hydroxide (TMAH), monoethanolamine (MEA), and isopropyl-alcohol (IPA) in order to evaluate process performance and degradation properties. During 800 days of operation, 96% efficiency of chemical oxygen demand (COD) removal was stably achieved at an organic loading rate of 8.5 kgCOD/m3/day at 18-19 °C. MEA degradation, carried out by acid-forming eubacteria, was confirmed within a week. The physical properties of the retained granular sludge were degraded by feeding with TMAH wastewater, but maintained by feeding with MEA wastewater due to an accumulation of species from the genus Methanosaeta and family Geobacteraceae. Analysis of the microbial community structure via SEM and 16S rRNA genes showed a proliferation of Methanomethylovorans-like cells and Methanosaeta-like cells at the surface and in the core of the granular sludge with TMAH, MEA and IPA acclimation. Furthermore, a batch degradation experiment confirmed that process inhibition due to increasing chemical concentration was relatively stronger for TMAH than for MEA or IPA. Thus, controlling the TMAH concentration of the influent to below 1 gCOD/L will be important for the stable treatment of electronics industry wastewater by UASB technology.


Asunto(s)
Reactores Biológicos/microbiología , Electrónica , Microbiota/fisiología , Aguas del Alcantarillado/microbiología , Eliminación de Residuos Líquidos/métodos , 2-Propanol/análisis , 2-Propanol/aislamiento & purificación , 2-Propanol/metabolismo , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Etanolamina/análisis , Etanolamina/aislamiento & purificación , Etanolamina/metabolismo , Compuestos de Amonio Cuaternario/análisis , Compuestos de Amonio Cuaternario/aislamiento & purificación , Compuestos de Amonio Cuaternario/metabolismo , Aguas Residuales/química
11.
Environ Res ; 182: 109060, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31884196

RESUMEN

The cultivation of the N, N-dimethylformamide (DMF)-degrading methanogenic consortium is considered difficult. In this study, an up-flow anaerobic sludge blanket (UASB) was inoculated with activated sludge in order to culture the DMF-degrading anaerobic sludge under a constant DMF concentration of approximately 2000 mg L-1. While the UASB realized a nearly 100% degradation of DMF and a high methane production of 1.03 L d-1 for the first two months, both the removal efficiency and methane production continued to decrease until the end. The characterization of the prokaryotic community reveals that those DMF-hydrolyzing bacteria (DHB) originating from the activated sludge were responsible for the effective degradation of DMF. However, even when fed with a constant concentration of DMF, the DHB kept decreasing all the time while methane-producing archaea were rapidly cultivated. The variation of prokaryotic community suggests that the DHB could not proliferate anaerobically without utilizing the intermediate products from the hydrolysis of DMF, resulting in an unstable DMF-degrading consortium. The cultivation of DHB under the anaerobic condition of the UASB was therefore difficult. The reason it was not possible to culture a DMF-degrading methanogenic consortium in this study is that the DHB are denitrifying bacteria which require nitrate for their cell growth under the anaerobic condition. The solution to maintain the abundance of these DHB is to add doses of nitrate into the system. Nitrate is likely to help these DHB recapture intermediates from methanogens, enabling them to perform a heterotrophic denitrification by using a small proportion of DMF as the carbon source while simultaneously maintaining the cell growth of DHB.


Asunto(s)
Reactores Biológicos , Dimetilformamida , Aguas del Alcantarillado , Anaerobiosis , Metano , Eliminación de Residuos Líquidos , Aguas Residuales
12.
J Environ Manage ; 274: 111201, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32798846

RESUMEN

Anaerobic degradation of enzymatically pretreated Chlorella vulgaris was aimed in an upflow anaerobic sludge blanket reactor (UASB) to evaluate the organic loading rate (OLR) effect on biomass valorization. Low OLRs resulted in high methane yields (171 mL CH4/g CODin) at low hydraulic retention time (HRT of 6 days). Firmicutes (35-43%), Bacteroidetes (17-18%) and Euryarchaeota (11%) dominated at low OLRs, promoting methanogenic activity. On the contrary, the highest OLRs resulted in low methane yield (86 mL CH4/gCODin) with a concomitant short-chain fatty acids (SCFAs) accumulation of 37% SCFAs-COD/CODin. The highest OLR decreased UASB reactor biodiversity, hampering Euryarchaeota population development (2.5%) and boosting Firmicutes (55%) and Proteobacteria (14%). These results demonstrated the suitability of UASB reactor configuration to reach high bioprocess efficiency for both, biogas and SCFAs production, with lower energetic and area requirements than those normally needed in continuous stirred tank reactors.


Asunto(s)
Chlorella vulgaris , Microbiota , Anaerobiosis , Biomasa , Reactores Biológicos , Metano , Aguas del Alcantarillado , Eliminación de Residuos Líquidos
13.
J Environ Manage ; 274: 111157, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32805474

RESUMEN

Thermophilic anaerobic digestion is a promising process for high-solid blackwater (BW) treatment due to improved hydrolysis rates, high methanogenesis efficiency, and pathogen removal, when compared with mesophilic treatment. In the present work, the effects of effluent recirculation (i.e., mixing) on thermophilic blackwater treatment were studied. A laboratory-scale thermophilic upflow anaerobic sludge blanket reactor was operated with and without effluent recirculation. The methanogenesis efficiency of the BW treatment increased from 45.0 ± 2.9% when effluent recirculation was applied to 56.7 ± 5.5% without effluent recirculation. Without effluent recirculation, the COD accumulation in the bioreactor was reduced from 17.2 to 3.8% and the effluent volatile fatty acids (VFA) concentration was reduced from 0.64 ± 0.18 to 0.15 ± 0.10 g/L. Further, both acetoclastic and hydrogenotrophic methanogenic activity increased from 101.3 ± 10.8 and 93.9 ± 6.1 to 120.4 ± 9.4 and 118.2 ± 13.2 mg CH4-COD/(gVSS⋅d), respectively, after effluent recirculation was discontinued. The predominant methanogens changed from Methanothermobacter (67%) with effluent recirculation to Methanosarcina (62%) without effluent recirculation. As compared to the effluent recirculation conditions, the enhanced biomethane recovery and treatment performance without effluent recirculation can be attributed to the close proximity of bacteria and archaea groups and the reduced VFA accumulation. Predicted functional gene comparison showed higher prevalence of function for intermediate metabolite transportation (transporters, ATP-binding cassette (ABC) transporters, and two-component system) after discontinuing effluent circulation, which contributed to improved syntrophic propionate oxidation and syntrophic acetate oxidization and enhanced hydrogenotrophic methanogenesis.


Asunto(s)
Metano , Aguas del Alcantarillado , Anaerobiosis , Reactores Biológicos , Ácidos Grasos Volátiles , Eliminación de Residuos Líquidos
14.
Artículo en Inglés | MEDLINE | ID: mdl-32684079

RESUMEN

The aim of this study was to interpret the development of Anammox activity by a mathematical model in an UASB reactor -originally inoculated with methanogenic granules- at which Anammox progress has been also experimentally observed while treating chicken manure digestate. Since ammonium is derived from anaerobic degradation of nitrogenous compounds in chicken manure similar to any other nitrogen-rich organic wastes; the reactor was operated intentionally at favorable conditions [i.e.; with external nitrite source for NH4 +:NO2 -≅1.0] in order to make Anammox process to prevail as operation continued. Results indicated significant ammonia removals (60% on average) although influent concentration was gradually increased up to 200 mg L-1. A modeling exercise has been undertaken to investigate the performance of the laboratory scale UASB reactor. In this scope, the experimental results were modeled by using Mantis2 model within GPS-X 6.5 simulation software that included several built in libraries. Accordingly, effluent chemical oxygen demand (COD) and total ammonia nitrogen (TAN) concentrations could be predicted with reasonably good accuracy demonstrating successful calibration. The regression coefficient (R2 ) and mean relative absolute error (MRAE) parameters were found as 0.66 and 16% and 0.70 and 19%, respectively.


Asunto(s)
Amoníaco/aislamiento & purificación , Estiércol , Amoníaco/química , Animales , Análisis de la Demanda Biológica de Oxígeno , Reactores Biológicos , Pollos , Nitrógeno/química , Oxidación-Reducción , Eliminación de Residuos Líquidos
15.
Artículo en Inglés | MEDLINE | ID: mdl-31584320

RESUMEN

There is a need for a broad study addressing different preservation conditions of anaerobic sludge and its activity after a prolonged storage. This study compared four different preservation methods of mesophilic anaerobic sludge for a period of up to 12 months: storage at 23 ± 2 °C, +4 °C, ‒20 °C, and freeze-dried. Anaerobic sludge was sampled from upper and bottom ports of an up flow anaerobic sludge blanket (UASB) reactor fed with microalgae and sodium acetate at organic loading rate of 5.4 gCOD/L·d. Specific methanogenic activity (SMA) tests were performed on the sludge samples after 2.5, 6, and 12 months of storage. Results demonstrated a statistically significant decrease in the SMA of the bottom port preserved sludge, but not of the upper port sludge, regardless of the method used for preservation. A varying susceptibility to the storage of the two types of the anaerobic sludge can be explained by the content of the methanogenic microorganisms, with bottom port sludge having a higher amount of the methane producing species. Interestingly, lyophilized samples were able to produce similar amounts of biogas when compared to the other three storage conditions, with the only difference of having a longer re-activation period.


Asunto(s)
Reactores Biológicos/microbiología , Euryarchaeota/metabolismo , Metano/biosíntesis , Preservación Biológica/métodos , Aguas del Alcantarillado/microbiología , Anaerobiosis , Arquitectura y Construcción de Instituciones de Salud , Factores de Tiempo
16.
Artículo en Inglés | MEDLINE | ID: mdl-31698987

RESUMEN

The objective of this research was to evaluate the distribution of the molecular weights of the recalcitrant organic matter contained in kraft mill effluents and identify microbial consortia responsible for an anaerobic biodegradable fraction. As a result, the average removal efficiencies of chemical organic demand (COD) and biological oxygen demand (BOD5) during the entire period of operation were 28% and 53%, respectively. The non-biodegradable organic matter was detected at molecular weights less than 1000 Da. However, most of the organic matter was in the molecular weight fraction higher than 10000 Da with 32 ± 11.6% COD as well as color (42.3 ± 8.7%), total phenolic compounds (35.9 ± 7.9%) and adsorbable organic compounds (AOX) (13.0 ± 2.7%). Methanogenic acetoclastic archaea of the genera Methanomethylovorans and Methanosarcina were found in the surface and middle zones of the reactor. Moreover, Methanosaeta and Methanolinea were identified in the low zone of the reactor. In all zones of the reactor, Desulfomicrobium and Desulfovibrio were found to be the most dominant genera of sulfate-reducing bacteria (SRB).


Asunto(s)
Residuos Industriales/análisis , Consorcios Microbianos , Compuestos Orgánicos/química , Compuestos Orgánicos/metabolismo , Papel , Anaerobiosis , Archaea/clasificación , Archaea/genética , Archaea/aislamiento & purificación , Archaea/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Análisis de la Demanda Biológica de Oxígeno , Reactores Biológicos , Consorcios Microbianos/genética , Peso Molecular , Eliminación de Residuos Líquidos
17.
J Appl Microbiol ; 126(2): 667-683, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30269410

RESUMEN

AIMS: The phylum Chloroflexi is frequently found in high abundance in methanogenic reactors, but their role is still unclear as most of them remain uncultured and understudied. Hence, a detailed analysis was performed in samples from five up-flow anaerobic sludge blanket (UASB) full-scale reactors fed different industrial wastewaters. METHODS AND RESULTS: Quantitative PCR show that the phylum Chloroflexi was abundant in all UASB methanogenic reactors, with higher abundance in the reactors operated for a long period of time, which presented granular biomass. Both terminal restriction fragment length polymorphism and 16S rRNA gene amplicon sequencing revealed diverse Chloroflexi populations apparently determined by the different inocula. According to the phylogenetic analysis, the sequences from the dominant Chloroflexi were positioned in branches where no sequences of the cultured representative strains were placed. Fluorescent in situ hybridization analysis performed in two of the reactors showed filamentous morphology of the hybridizing cells. CONCLUSIONS: While members of the Anaerolineae class within phylum Chloroflexi were predominant, their diversity is still poorly described in anaerobic reactors. Due to their filamentous morphology, Chloroflexi may have a key role in the granulation in methanogenic UASB reactors. SIGNIFICANCE AND IMPACT OF THE STUDY: Our results bring new insights about the diversity, stability, dynamics and abundance of this phylum in full-scale UASB reactors which aid in understanding their function within the reactor biomass. However, new methodological approaches and analysis of bulking biomass are needed to completely unravel their role in these reactors. Combining all this knowledge with reactor operational parameters will allow to understand their participation in granulation and bulking episodes and design strategies to prevent Chloroflexi overgrowth.


Asunto(s)
Reactores Biológicos/microbiología , Chloroflexi/aislamiento & purificación , Biomasa , Chloroflexi/clasificación , Chloroflexi/citología , Chloroflexi/genética , Hibridación Fluorescente in Situ , Metano/metabolismo , Filogenia , Aguas del Alcantarillado/microbiología , Aguas Residuales/microbiología
18.
Bioprocess Biosyst Eng ; 42(12): 2035-2046, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31506821

RESUMEN

The aim of this study was to understand how the microbial community adapted to changes, including a pH perturbation, occurring during the start-up and operation processes in a full-scale methanogenic UASB reactor designed to treat dairy wastewater. The reactor performance, prokaryotic community, and lipid degradation capacity were monitored over a 9-month period. The methanogenic community was studied by mcrA/mrtA gene copy-number quantification and methanogenic activity tests. A diverse prokaryotic community characterized the seeding sludge as assessed by sequencing the V4 region of the 16S rRNA gene. As the feeding began, the bacterial community was dominated by Firmicutes, Synergistetes, and Proteobacteria phyla. After an accidental pH increase that affected the microbial community structure, a sharp increase in the relative abundance of Clostridia and a decrease in the mcrA/mrtA gene copy number and methanogenic activity were observed. After a recovery period, the microbial population regained diversity and methanogenic activity. Alkaline shocks are likely to happen in dairy wastewater treatment because of the caustic soda usage. In this work, the plasticity of the prokaryotic community was key to surviving changes to the external environment and supporting biogas production in the reactor.


Asunto(s)
Reactores Biológicos/microbiología , Aguas del Alcantarillado/microbiología , Eliminación de Residuos Líquidos , Microbiología del Agua , Purificación del Agua , Anaerobiosis , Archaea/metabolismo , Bacterias Anaerobias/clasificación , Biocombustibles , Clostridium/clasificación , Industria Lechera , Euryarchaeota/metabolismo , Firmicutes/clasificación , Concentración de Iones de Hidrógeno , Metano/metabolismo , Microbiota , Proteobacteria/clasificación , ARN Ribosómico 16S/genética , Aguas Residuales
19.
J Environ Manage ; 236: 603-612, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30771679

RESUMEN

Efficacy of vermi-transformation for metal partitioning and transformation from Upflow Anaerobic Sludge Blanket (UASB) and Activated Sludge (AS) was investigated. Sludge samples were mixed with cow dung (CD) in two combinations (1:1 (UASB/AS:CD)) & (2:1(UASB/AS: CD)). Fractionation study revealed that Zn, Cd & Pb were associated with reducible fractions, and Cr, Cu with oxidizable fractions. Higher removal efficiency for 1:1 (UASB/AS: CD) combination over 2:1 (UASB/AS: CD) implies the non-significant contribution of cow dung during the metal stabilization process. After vermi-remediation, maximum metal removal was achieved at 1:1 ratio than 2:1 in AS. In UASB, 1:1 ratio worked better for Cr, Zn & Cd, whereas for Cu & Zn 2:1 ratio resulted in efficient removal. Overall for both AS and UASB, efficiency was found to be higher in 1:1 treatment ratio. The value of Kd (Bio sorption) was highest in Cu followed by Cr, which indicates the closer association with the metal bound organic matter (R2 ≥ 0.99). Based on the compliance study between two estimated sorption coefficients Kd (Biosorption & Fractions), vermi-remediation was found to be effective for AS than UASB. Therefore, the obtained results clearly validate the feasibility of integration of vermi-remediation as a potential promising ecological techniques for removing metal contaminant from the wastewater. Further research is required to study the decontamination of emerging contaminants with such integrated technology, which have physico-chemical properties different than metal ions.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Anaerobiosis , Animales , Reactores Biológicos , Bovinos , Femenino , Metales , Aguas Residuales
20.
J Environ Manage ; 242: 465-473, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31071623

RESUMEN

There is an enormous deficit in sanitation infrastructure in most Brazilian cities. To tackle this challenge, it is crucial to conceive the new sanitation infrastructure based on sustainability principles, including an integrated approach for the management of the liquid, solid and gaseous phases. This study aimed at developing sustainable sewage treatment flowsheets for different scales and regional scenarios in the state of Minas Gerais. Two watersheds were chosen as study areas, due to their remarkable regional importance and socioeconomic and environmental diversity, i.e. Rio das Velhas and Jequitaí-Pacuí. Currently available processes for sewage treatment and resources recovery were assessed based on: literature review and benchmarking of operational practices, experiences reported by sanitation companies, techno-economic feasibility of resource recovery and carbon footprint assessment of anaerobic-based technologies. Social acceptance was also considered. A total of 15 sustainable flowsheets were proposed, comprising passive/natural systems (stabilization ponds, constructed wetlands and controlled land application), anaerobic process combined with natural systems (UASB reactors followed by controlled land application, constructed wetlands or polishing ponds) and compact anaerobic/aerobic systems (UASB reactors followed by activated sludge or trickling filters). Processes selected for small-scale sewage treatment plants (STPs) (people-equivalent - PE < 10,000 inhab.) intended to be integrated into local communities and economic activities. Large-scale STPs (especially those with PE > 100,000 inhab.) were conceived as industries, where a wide range of resources (e.g. sand for non-structural concrete, biogas for electricity, sludge for thermal energy) could be recovered from the influent sewage. Results obtained from the current study could serve as support for decision-making on the planning and implementation of new sustainable sanitation solutions in the state of Minas Gerais and possibly in other regions of Brazil and other developing countries.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Reactores Biológicos , Brasil , Carbono , Ciudades
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA