Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Fish Shellfish Immunol ; 146: 109399, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38296005

RESUMEN

Immunonutrition is a promising and viable strategy for the development of prophylactic measures in aquaculture. Ulvan, a sulphated marine polysaccharide from green seaweeds, has many biological activities including the immunomodulatory ones. The aim of this study was to assess the short and long-term effects of an ulvan-rich extract obtained from U. ohnoi as immunonutrient in Senegalese sole juveniles. In this work, an ulvan-rich extract from Ulva ohnoi has been obtained by the hot water method and isolated by ethanol precipitation. The FTIR analysis revealed that the ulvan-rich extact had very similar characteristics to previously published ulvan spectra. The total sulfate and protein content was 24.85 ± 3.98 and 0.91 ± 0.04 %, respectively. In vitro assays performed in Senegalese sole (Solea senegalensis) macrophages showed that the ulvan obtained in this study did not compromise the cell viability at concentrations up to 1 mg ml-1 and expression levels of lyg, irf1, il6, il10, c7, tf and txn were significantly upregulated in a concentration dependent-manner. Finally, S. senegalensis juveniles were fed basal diets and diets supplemented with the ulvan-rich extract at ratios 1 and 2 % for 30 days and then, challenged with Photobacterium damselae subsp. piscicida (Phdp). Thereafter, ulvan was withdrawn from the diet and all juveniles were fed the basal diet for 30 days. At 30 days post withdrawal (dpw), juveniles were challenged with Phdp. The expression profiles of a set of genes related to the immune system in spleen were evaluated as well as the lysozyme, peroxidase and bactericidal activity in plasma. Dietary effects of 1 % ulvan resulted in a boost of the immune response and increased disease resistance at short-term whereas juveniles fed diets supplemented with 2 % ulvan showed a significant decrease in the bactericidal activity and lack of protection against Phdp. At long-term (30 days after the withdrawal of ulvan), an improved response was observed in juveniles previously fed 1 % ulvan.


Asunto(s)
Enfermedades de los Peces , Peces Planos , Infecciones por Bacterias Gramnegativas , Photobacterium , Animales , Polisacáridos
2.
Glycobiology ; 33(10): 837-845, 2023 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-37593920

RESUMEN

Ulva is globally distributed specie and has a high economic value. Ulvan is one of the main active substances in Ulva, which has a variety of biological properties. Ulvan lyase degrades ulvan through a ß-elimination mechanism which cleaves the ß-glycosidic bond between Rha3S and GlcA or IdoA. The complex monosaccharide composition of ulvan makes it promising for use in food and pharmaceutical applications. This thesis explores a putative ulvan lyase from Alteromonas sp. KUL_42. We expressed and purified the protein, performed a series of characterizations and signal peptide had been removed. The results showed that the protein molecular weight of ULA-2 was 53.97 kDa, and it had the highest catalytic activity at 45 °C and pH 8.0 in Tris-HCl buffer. The Km and Vmax values were 2.24 mg · mL-1 and 2.048 µmol · min-1 · mL-1, respectively. The activity of ULA-2 was able to maintain more than 80% at 20 ~ 30 °C. ESI-MS analysis showed that the primary end-products were mainly disaccharides to tetrasaccharides. The study of ULA-2 enriches the ulvan lyase library, promotes the development and high-value utilization of Ulva resources, and facilitates further research applications of ulvan lyase in ulva oligosaccharides.


Asunto(s)
Ulva , Ulva/química , Ulva/metabolismo , Polisacáridos/química , Oligosacáridos/metabolismo , Disacáridos
3.
Microb Cell Fact ; 22(1): 140, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37525181

RESUMEN

A sustainable biorefining and bioprocessing strategy was developed to produce edible-ulvan films and non-edible polyhydroxybutyrate films. The preparation of edible-ulvan films by crosslinking and plasticisation of ulvan with citric acid and xylitol was investigated using Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC) analysis. The edible ulvan film was tested for its gut-friendliness using Lactobacillus and Bifidobacterium spp. (yoghurt) and was shown to improve these gut-friendly microbiome's growth and simultaneously retarding the activity of pathogens like Escherchia coli and Staphylococcus aureus. Green macroalgal biomass refused after the extraction of ulvan was biologically processed by dark fermentation to produce a maximum of 3.48 (± 0.14) g/L of volatile fatty acids (VFAs). Aerobic processing of these VFAs using Cupriavidus necator cells produced 1.59 (± 0.12) g/L of biomass with 18.2 wt% polyhydroxybutyrate. The present study demonstrated the possibility of producing edible and non-edible packaging films using green macroalgal biomass as the sustainable feedstock.


Asunto(s)
Polihidroxialcanoatos , Algas Marinas , Ulva , Ulva/química , Algas Marinas/química , Polisacáridos/química , Verduras
4.
Mar Drugs ; 21(5)2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37233494

RESUMEN

Cancer is one of the most worldwide spread diseases and causes maximum death. Treatment of cancer depends on the host immune system and the type of drugs. The inefficiency of conventional cancer treatments as a result of drug resistance, nontargeted delivery, and chemotherapy-related negative side effects has caused bioactive phytochemicals to come into focus. As a result, recent years have seen an increase in research into screening and identifying natural compounds with anticancer properties. Recent studies on the isolation and use of polysaccharides derived from various marine algal species have revealed a variety of biological activities, including antioxidant and anticancer properties. Ulvan is a polysaccharide derived from various green seaweeds of the Ulva species in the family Ulvaceae. It has been demonstrated to have potent anticancer and anti-inflammatory properties through the modulation of antioxidants. It is vital to understand the mechanisms underlying the biotherapeutic activities of Ulvan in cancer and its role in immunomodulation. In this context, we reviewed the anticancer effects of ulvan based on its apoptotic effects and immunomodulatory activity. Additionally, we also focused on its pharmacokinetic studies in this review. Ulvan is the most conceivable candidate for use as a cancer therapeutic agent and could be used to boost immunity. Moreover, it may be established as an anticancer drug once its mechanisms of action are understood. Due to its high food and nutritive values, it can be used as a possible dietary supplement for cancer patients in the near future. This review may provide fresh perspectives on the potential novel role of ulvan, reveal a brand-new cancer-prevention strategy, and improve human health.


Asunto(s)
Neoplasias , Algas Marinas , Humanos , Antioxidantes/farmacología , Algas Marinas/química , Sulfatos/química , Polisacáridos/farmacología , Polisacáridos/química , Verduras , Neoplasias/tratamiento farmacológico
5.
Mar Drugs ; 21(11)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37999380

RESUMEN

Ulvan, a sulfated heteropolysaccharide with structural and functional properties of interest for various uses, was extracted from the green seaweed Ulva papenfussii. U. papenfussii is an unexplored Ulva species found in the South China Sea along the central coast of Vietnam. Based on dry weight, the ulvan yield was ~15% (w/w) and the ulvan had a sulfate content of 13.4 wt%. The compositional constitution encompassed L-Rhamnose (Rhap), D-Xylose (Xylp), D-Glucuronic acid (GlcAp), L-Iduronic acid (IdoAp), D-Galactose (Galp), and D-Glucose (Glcp) with a molar ratio of 1:0.19:0.35:0.52:0.05:0.11, respectively. The structure of ulvan was determined using High-Performance Liquid Chromatography (HPLC), Fourier Transform Infrared Spectroscopy (FT-IR), and Nuclear Magnetic Resonance spectroscopy (NMR) methods. The results showed that the extracted ulvan comprised a mixture of two different structural forms, namely ("A3s") with the repeating disaccharide [→4)-ß-D-GlcAp-(1→4)-α-L-Rhap 3S-(1→]n, and ("B3s") with the repeating disaccharide [→4)-α-L-IdoAp-(1→4)-α-L-Rhap 3S(1→]n. The relative abundance of A3s, and B3s was 1:1.5, respectively. The potential anticarcinogenic attributes of ulvan were evaluated against a trilogy of human cancer cell lineages. Concomitantly, Quantitative Structure-Activity Relationship (QSAR) modeling was also conducted to predict potential adverse reactions stemming from pharmacological interactions. The ulvan showed significant antitumor growth activity against hepatocellular carcinoma (IC50 ≈ 90 µg/mL), human breast cancer cells (IC50 ≈ 85 µg/mL), and cervical cancer cells (IC50 ≈ 67 µg/mL). The QSAR models demonstrated acceptable predictive power, and seven toxicity indications confirmed the safety of ulvan, warranting its candidacy for further in vivo testing and applications as a biologically active pharmaceutical source for human disease treatment.


Asunto(s)
Antineoplásicos , Chlorophyta , Neoplasias , Ulva , Humanos , Ulva/química , Espectroscopía Infrarroja por Transformada de Fourier , Polisacáridos/farmacología , Polisacáridos/química , Chlorophyta/química , Antineoplásicos/farmacología , Disacáridos
6.
Mar Drugs ; 22(1)2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38248655

RESUMEN

Marine algal extracts exhibit a potent inhibitory effect against several enveloped and non-enveloped viruses. The infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has several adverse effects, including an increased mortality rate. The anti-COVID-19 agents are still limited; this issue requires exploring novel, effective anti-SARS-CoV-2 therapeutic approaches. This study investigated the antiviral activity of an aqueous extract of Ulva lactuca, which was collected from the Gulf of Suez, Egypt. The aqueous extract of Ulva lactuca was characterized by high-performance liquid chromatography (HPLC), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and Energy Dispersive X-ray (EDX) analyses. According to the HPLC analysis, the extract comprises several sugars, mostly rhamnose (32.88%). The FTIR spectra showed numerous bands related to the functional groups. EDX analysis confirmed the presence of different elements, such as oxygen (O), carbon (C), sulfur (S), magnesium (Mg), potassium (K), calcium (Ca), and sodium (Na), with different concentrations. The aqueous extract of U. lactuca (0.0312 mg/mL) exhibited potent anti-SARS-CoV-2 activity via virucidal activity, inhibition of viral replication, and interference with viral adsorption (% inhibitions of 64%, 33.3%, and 31.1%, respectively). Consequently, ulvan could be a promising compound for preclinical study in the drug development process to combat SARS-CoV-2.


Asunto(s)
Productos Biológicos , COVID-19 , Algas Comestibles , Ulva , SARS-CoV-2 , Antivirales/farmacología
7.
Molecules ; 28(19)2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37836624

RESUMEN

Ulvan is a sulfated polysaccharide extracted from green macroalgae with unique structural and compositional properties. Due to its biocompatibility, biodegradability, and film-forming properties, as well as high stability, ulvan has shown promising potential as an ingredient of biopolymer films such as sustainable and readily biodegradable biomaterials that could replace petroleum-based plastics in diverse applications such as packaging. This work investigates the potential of Ulva fenestrata as a source of ulvan. Enzyme-assisted extraction with commercial cellulases (Viscozyme L and Cellulysin) and proteases (Neutrase 0.8L and Flavourzyme) was used for cell wall disruption, and the effect of the extraction time (3, 6, 17, and 20 h) on the ulvan yield and its main characteristics (molecular weight, functional groups, purity, and antioxidant capacity) were investigated. Furthermore, a combined process based on enzymatic and ultrasound extraction was performed. Results showed that higher extraction times led to higher ulvan yields, reaching a maximum of 14.1% dw with Cellulysin after 20 h. The combination of enzymatic and ultrasound-assisted extraction resulted in the highest ulvan extraction (17.9% dw). The relatively high protein content in U. fenestrata (19.8% dw) makes the residual biomass, after ulvan extraction, a potential protein source in food and feed applications.


Asunto(s)
Celulasa , Algas Marinas , Ulva , Ulva/química , Algas Marinas/metabolismo , Polisacáridos/química
8.
J Biol Chem ; 297(4): 101210, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34547290

RESUMEN

Marine algae catalyze half of all global photosynthetic production of carbohydrates. Owing to their fast growth rates, Ulva spp. rapidly produce substantial amounts of carbohydrate-rich biomass and represent an emerging renewable energy and carbon resource. Their major cell wall polysaccharide is the anionic carbohydrate ulvan. Here, we describe a new enzymatic degradation pathway of the marine bacterium Formosa agariphila for ulvan oligosaccharides involving unsaturated uronic acid at the nonreducing end linked to rhamnose-3-sulfate and glucuronic or iduronic acid (Δ-Rha3S-GlcA/IdoA-Rha3S). Notably, we discovered a new dehydratase (P29_PDnc) acting on the nonreducing end of ulvan oligosaccharides, i.e., GlcA/IdoA-Rha3S, forming the aforementioned unsaturated uronic acid residue. This residue represents the substrate for GH105 glycoside hydrolases, which complements the enzymatic degradation pathway including one ulvan lyase, one multimodular sulfatase, three glycoside hydrolases, and the dehydratase P29_PDnc, the latter being described for the first time. Our research thus shows that the oligosaccharide dehydratase is involved in the degradation of carboxylated polysaccharides into monosaccharides.


Asunto(s)
Organismos Acuáticos/enzimología , Proteínas Bacterianas/química , Deshidrogenasas de Carbohidratos/química , Flavobacteriaceae/enzimología , Polisacáridos/química , Proteínas Bacterianas/metabolismo , Deshidrogenasas de Carbohidratos/metabolismo , Polisacáridos/metabolismo , Ácidos Urónicos/química
9.
Metab Eng ; 71: 42-61, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35077903

RESUMEN

Marine macroalgae have huge potential as feedstocks for production of a wide spectrum of chemicals used in biofuels, biomaterials, and bioactive compounds. Harnessing macroalgae in these ways could promote wellbeing for people while mitigating climate change and environmental destruction linked to use of fossil fuels. Microorganisms play pivotal roles in converting macroalgae into valuable products, and metabolic engineering technologies have been developed to extend their native capabilities. This review showcases current achievements in engineering the metabolisms of various microbial chassis to convert red, green, and brown macroalgae into bioproducts. Unique features of macroalgae, such as seasonal variation in carbohydrate content and salinity, provide the next challenges to advancing macroalgae-based biorefineries. Three emerging engineering strategies are discussed here: (1) designing dynamic control of metabolic pathways, (2) engineering strains of halophilic (salt-tolerant) microbes, and (3) developing microbial consortia for conversion. This review illuminates opportunities for future research communities by elucidating current approaches to engineering microbes so they can become cell factories for the utilization of macroalgae feedstocks.


Asunto(s)
Algas Marinas , Biocombustibles , Biomasa , Humanos , Ingeniería Metabólica , Redes y Vías Metabólicas , Algas Marinas/química , Algas Marinas/genética , Algas Marinas/metabolismo
10.
Microb Cell Fact ; 21(1): 207, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36217189

RESUMEN

BACKGROUND: Marine algae are responsible for half of the global primary production, converting carbon dioxide into organic compounds like carbohydrates. Particularly in eutrophic waters, they can grow into massive algal blooms. This polysaccharide rich biomass represents a cheap and abundant renewable carbon source. In nature, the diverse group of polysaccharides is decomposed by highly specialized microbial catabolic systems. We elucidated the complete degradation pathway of the green algae-specific polysaccharide ulvan in previous studies using a toolbox of enzymes discovered in the marine flavobacterium Formosa agariphila and recombinantly expressed in Escherichia coli. RESULTS: In this study we show that ulvan from algal biomass can be used as feedstock for a biotechnological production strain using recombinantly expressed carbohydrate-active enzymes. We demonstrate that Bacillus licheniformis is able to grow on ulvan-derived xylose-containing oligosaccharides. Comparative growth experiments with different ulvan hydrolysates and physiological proteogenomic analyses indicated that analogues of the F. agariphila ulvan lyase and an unsaturated ß-glucuronylhydrolase are missing in B. licheniformis. We reveal that the heterologous expression of these two marine enzymes in B. licheniformis enables an efficient conversion of the algal polysaccharide ulvan as carbon and energy source. CONCLUSION: Our data demonstrate the physiological capability of the industrially relevant bacterium B. licheniformis to grow on ulvan. We present a metabolic engineering strategy to enable ulvan-based biorefinery processes using this bacterial cell factory. With this study, we provide a stepping stone for the development of future bioprocesses with Bacillus using the abundant marine renewable carbon source ulvan.


Asunto(s)
Bacillus licheniformis , Bacillus licheniformis/genética , Bacillus licheniformis/metabolismo , Dióxido de Carbono , Ingeniería Metabólica , Oligosacáridos , Polisacáridos/metabolismo , Xilosa
11.
J Appl Microbiol ; 133(5): 3176-3190, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35957555

RESUMEN

AIMS: To characterize the polysaccharide hydrolyzing potential of macroalgae-associated bacteria (MABs) for the enzymatic production of oligosaccharides and determining their prebiotic potential. METHODS AND RESULTS: Approximately 400 MABs were qualitatively characterized for polysaccharide hydrolyzing activity. Only about 5%-15% of the isolates were found to have the potential for producing porphyranase, alginate lyase and ulvan lyase enzymes, which were quantified in specific substrate broths. One potential MAB, Bacillus subtilis, NIOA181, isolated from green macroalgae, showed the highest ulvan lyase activity. This enzyme was partially purified and used to hydrolyse ulvan into ulvan oligosaccharides. Structural characterization of ulvan oligosaccharides showed that they are predominantly composed of di-, tri- and tetrasaccharide units. Results showed that the enzymatically produced ulvan oligosaccharides exhibited prebiotic activity by promoting the growth of probiotic bacteria and suppressing the enteric pathogens, which were higher than the ulvan polysaccharide and equivalent to commercial fructooligosaccharides. CONCLUSIONS: A potential MAB, NIOA181, producing ulvan lyase was isolated and used for the production of ulvan oligosaccharides with prebiotic activity. SIGNIFICANCE AND IMPACT OF THE STUDY: Rarely studied ulvan oligosaccharides with prebiotic activity can be widely used as an active pharmaceutical ingredient in nutraceutical and other healthcare applications.


Asunto(s)
Bacillus subtilis , Algas Marinas , Polisacárido Liasas , Polisacáridos/química , Oligosacáridos , Preparaciones Farmacéuticas
12.
Mar Drugs ; 20(9)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36135740

RESUMEN

Keloids are skin fibroproliferative disorders, resulting from abnormal healing of deep cutaneous injuries. Cryosurgery, the most common treatment for keloids, causes skin traumas. Even though the clinical practice of cryosurgery has increased, effective wound healing therapy is still lacking. In this investigation, nonwoven nanofibrous patches composed of ulvan, a marine sulfated polysaccharide exhibiting anti-inflammatory and antioxidant activities, and polyethylene oxide (PEO) were fabricated through electrospinning and characterized. Their wound healing efficacy on skin traumas resulting from cryosurgical treatment of keloids was clinically tested and evaluated in comparison to a reference product. Twenty-four volunteer patients undergoing cryosurgery as a treatment of keloids were selected to apply either the ulvan/PEO patch or the reference product for 21 days. The ulvan/PEO patch, 21 days after cryosurgery, showed significant wound healing, elimination of skin inflammation, restoration of biophysical parameters similar to normal values and significant decrease in haemoglobin concentration, skin texture and volume, while no discomfort or adverse reaction was observed. In contrast, the reference product showed inferior performance in all evaluated parameters. The designed ulvan/PEO patch represents the first wound dressing to effectively heal skin trauma after cryosurgical treatment of keloids.


Asunto(s)
Queloide , Nanofibras , Enfermedades de la Piel , Antioxidantes , Hemoglobinas , Humanos , Queloide/etiología , Queloide/cirugía , Polietilenglicoles , Polisacáridos , Cicatrización de Heridas
13.
Mar Drugs ; 20(3)2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35323467

RESUMEN

Marine macroalgae, contributing much to the bioeconomy, have inspired tremendous attention as sustainable raw materials. Ulvan, as one of the main structural components of green algae cell walls, can be degraded by ulvan lyase through the ß-elimination mechanism to obtain oligosaccharides exhibiting several good physiological activities. Only a few ulvan lyases have been characterized until now. This thesis explores the properties of a new polysaccharide lyase family 25 ulvan lyase TsUly25B from the marine bacterium Thalassomonas sp. LD5. Its protein molecular weight was 54.54 KDa, and it was most active under the conditions of 60 °C and pH 9.0. The Km and kcat values were 1.01 ± 0.05 mg/mL and 10.52 ± 0.28 s-1, respectively. TsUly25B was salt-tolerant and NaCl can significantly improve its thermal stability. Over 80% of activity can be preserved after being incubated at 30 °C for two days when the concentration of NaCl in the solution is above 1 M, while 60% can be preserved after incubation at 40 °C for 10 h with 2 M NaCl. TsUly25B adopted an endolytic manner to degrade ulvan polysaccharides, and the main end-products were unsaturated ulvan disaccharides and tetrasaccharides. In conclusion, our research enriches the ulvan lyase library and advances the utilization of ulvan lyases in further fundamental research as well as ulvan oligosaccharides production.


Asunto(s)
Proteínas Bacterianas , Gammaproteobacteria/enzimología , Polisacárido Liasas , Polisacáridos/química , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Escherichia coli/genética , Gammaproteobacteria/genética , Conformación Molecular , Filogenia , Polisacárido Liasas/química , Polisacárido Liasas/genética , Polisacárido Liasas/aislamiento & purificación , Proteínas Recombinantes/química , Cloruro de Sodio/química
14.
Int J Mol Sci ; 23(4)2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35216277

RESUMEN

Recurrent microbial infections are a major cause of surgical failure and morbidity. Wound healing strategies based on hydrogels have been proposed to provide at once a barrier against pathogen microbial colonization, as well as a favorable environment for tissue repair. Nevertheless, most biocompatible hydrogel materials are more bacteriostatic than antimicrobial materials, and lack specific action against pathogens. Silver-loaded polymeric nanocomposites have efficient and selective activity against pathogenic organisms exploitable for wound healing. However, the loading of metallic nanostructures into hydrogels represents a major challenge due to the low stability of metal colloids in aqueous environments. In this context, the aim of the present study was the development of highly stable silver nanoparticles (AgNPs) as novel potential antimicrobial agents for hyaluronic acids hydrogels. Two candidate stabilizing agents obtained from natural and renewable sources, namely cellulose nanocrystals and ulvan polysaccharide, were exploited to ensure high stability of the silver colloid. Both stabilizing agents possess inherent bioactivity and biocompatibility, as well as the ability to stabilize metal nanostructures thanks to their supramolecular structures. Silver nitrate reduction through sodium borohydride in presence of the selected stabilizing agents was adopted as a model strategy to achieve AgNPs with narrow size distribution. Optimized AgNPs stabilized with the two investigated polysaccharides demonstrated high stability in phosphate buffer saline solution and strong antimicrobial activity. Loading of the developed AgNPs into photocrosslinked methacrylated hyaluronic acid hydrogels was also investigated for the first time as an effective strategy to develop novel antimicrobial wound dressing materials.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Nanopartículas del Metal/química , Plata/química , Cicatrización de Heridas/efectos de los fármacos , Vendajes , Celulosa/química , Nanocompuestos/química , Polisacáridos/química
15.
Molecules ; 27(11)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35684358

RESUMEN

In this study, we aimed to isolate bacteria capable of degrading the polysaccharide ulvan from the green algae Ulva sp. (Chlorophyta, Ulvales, Ulvaceae) in marine environments. We isolated 13 ulvan-degrading bacteria and observed high diversity at the genus level. Further, the genera Paraglaciecola, Vibrio, Echinicola, and Algibacter, which can degrade ulvan, were successfully isolated for the first time from marine environments. Among the 13 isolates, only one isolate (Echinicola sp.) showed the ability not only to produce externally expressed ulvan lyase, but also to be periplasmic or on the cell surface. From the results of the full-genome analysis, lyase was presumed to be a member of the PL25 (BNR4) family of ulvan lyases, and the bacterium also contained the sequence for glycoside hydrolase (GH43, GH78 and GH88), which is characteristic of other ulvan-degrading bacteria. Notably, this bacterium has a unique ulvan lyase gene not previously reported.


Asunto(s)
Chlorophyta , Flavobacteriaceae , Ulva , Chlorophyta/metabolismo , Flavobacteriaceae/genética , Flavobacteriaceae/metabolismo , Polisacáridos
16.
Chembiochem ; 22(13): 2247-2256, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33890358

RESUMEN

Macroalgae species are fast growing and their polysaccharides are already used as food ingredient due to their properties as hydrocolloids or they have potential high value bioactivity. The degradation of these valuable polysaccharides to access the sugar components has remained mostly unexplored so far. One reason is the high structural complexity of algal polysaccharides, but also the need for suitable enzyme cocktails to obtain oligo- and monosaccharides. Among them, there are several rare sugars with high value. Recently, considerable progress was made in the discovery of highly specific carbohydrate-active enzymes able to decompose complex marine carbohydrates such as carrageenan, laminarin, agar, porphyran and ulvan. This minireview summarizes these achievements and highlights potential applications of the now accessible abundant renewable resource of marine polysaccharides.


Asunto(s)
Polisacárido Liasas/metabolismo , Polisacáridos/metabolismo , Ascomicetos/enzimología , Polisacáridos/química , Algas Marinas/química
17.
Appl Environ Microbiol ; 87(12): e0041221, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-33771786

RESUMEN

Ulvan is an important marine polysaccharide. Bacterial ulvan lyases play important roles in ulvan degradation and marine carbon cycling. Until now, only a small number of ulvan lyases have been characterized. Here, a new ulvan lyase, Uly1, belonging to polysaccharide lyase family 24 (PL24) from the marine bacterium Catenovulum maritimum, is characterized. The optimal temperature and pH for Uly1 to degrade ulvan are 40°C and pH 9.0, respectively. Uly1 degrades ulvan polysaccharides in the endolytic manner, mainly producing ΔRha3S, consisting of an unsaturated 4-deoxy-l-threo-hex-4-enopyranosiduronic acid and a 3-O-sulfated α-l-rhamnose. The structure of Uly1 was resolved at a 2.10-Å resolution. Uly1 adopts a seven-bladed ß-propeller architecture. Structural and site-directed mutagenesis analyses indicate that four highly conserved residues, H128, H149, Y223, and R239, are essential for catalysis. H128 functions as both the catalytic acid and base, H149 and R239 function as the neutralizers, and Y223 plays a supporting role in catalysis. Structural comparison and sequence alignment suggest that Uly1 and many other PL24 enzymes may directly bind the substrate near the catalytic residues for catalysis, different from the PL24 ulvan lyase LOR_107, which adopts a two-stage substrate binding process. This study provides new insights into ulvan lyases and ulvan degradation. IMPORTANCE Ulvan is a major cell wall component of green algae of the genus Ulva. Many marine heterotrophic bacteria can produce extracellular ulvan lyases to degrade ulvan for a carbon nutrient. In addition, ulvan has a range of physiological bioactivities based on its specific chemical structure. Ulvan lyase thus plays an important role in marine carbon cycling and has great potential in biotechnological applications. However, only a small number of ulvan lyases have been characterized over the past 10 years. Here, based on biochemical and structural analyses, a new ulvan lyase of polysaccharide lyase family 24 is characterized, and its substrate recognition and catalytic mechanisms are revealed. Moreover, a new substrate binding process adopted by PL24 ulvan lyases is proposed. This study offers a better understanding of bacterial ulvan lyases and is helpful for studying the application potentials of ulvan lyases.


Asunto(s)
Alteromonadaceae/enzimología , Polisacárido Liasas/química , Secuencia de Aminoácidos , Catálisis , Filogenia , Polisacárido Liasas/genética , Polisacáridos/química , Especificidad por Sustrato
18.
Fish Shellfish Immunol ; 117: 262-273, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34384870

RESUMEN

This study reports the effect of ulvan enriched diet on the influence of growth, changes in hemato-biochemical indices, improvement of antioxidant system, enhancement of innate-adaptive immunity and modification of immuno-antioxidant genes expression in Labeo rohita against Flavobacterium columnaris. The weight gain (WG) was significantly high (P > 0.05) in unchallenged normal and challenged fish fed with diets enriched with 25 and 50 mg kg-1 ulvan; the FCR was better (P > 0.05) when fed with 50 mg kg-1 enriched diet. In normal fish fed with or without ulvan supplementation was noted 100% survival rate (SR). In both groups, the red blood cell (RBC) and while blood cell (WBC) counts increased significantly (P > 0.05) when fed with 50 mg kg-1 ulvan diet whereas the hemoglobin (Hb) level increased significantly on being fed with 25 and 50 mg kg-1 ulvan diets. The SOD activity was enhanced significantly in both groups fed with any dose of ulvan diets whereas the MDA and GPx activity increased only with 25 and 50 mg kg-1 ulvan diets. The phagocytic (PC) activity significantly increased with any enriched diet and control diet groups while the respiratory burst (RB) activity increased only with 50 mg kg-1 ulvan diet. The alternate complement pathway (ACP), activity of lysozyme (Lyz), and immunoglobuline M (IgM) were better in both groups fed with 50 mg kg-1 ulvan diet. The SOD and GPx antioxidant gene expression were significantly high in both groups fed with any ulvan diet while the Nrf2 gene expression was high with 50 mg kg-1 ulvan diet. The IL-1ß, TNFα, hepcidin, Lyz, and IgM cytokines or proteins mRNA expression were significant in both groups fed with all ulvan supplement diet whereas the ß-2M expression was significant only with 50 mg kg-1 ulvan diet. The present research indicates that both L. rohita groups fed with 50 mg kg-1 ulvan diet significantly improved growth, antioxidant system, immune defense system, and immuno-antioxidant related gene expression against F. columnaris.


Asunto(s)
Cyprinidae , Enfermedades de los Peces , Infecciones por Flavobacteriaceae , Flavobacterium , Factores Inmunológicos/farmacología , Polisacáridos/farmacología , Animales , Cyprinidae/genética , Cyprinidae/crecimiento & desarrollo , Cyprinidae/inmunología , Cyprinidae/microbiología , Enfermedades de los Peces/sangre , Enfermedades de los Peces/genética , Enfermedades de los Peces/inmunología , Infecciones por Flavobacteriaceae/sangre , Infecciones por Flavobacteriaceae/genética , Infecciones por Flavobacteriaceae/inmunología , Infecciones por Flavobacteriaceae/veterinaria , Regulación de la Expresión Génica/efectos de los fármacos , Glutatión/inmunología , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/inmunología , Riñón Cefálico/efectos de los fármacos , Riñón Cefálico/inmunología , Inmunoglobulina M/sangre , Inmunoglobulina M/genética , Malondialdehído/inmunología , Muramidasa/sangre , Muramidasa/genética , Superóxido Dismutasa/genética , Superóxido Dismutasa/inmunología , Aumento de Peso/efectos de los fármacos
19.
Chem Pharm Bull (Tokyo) ; 69(5): 432-443, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33952853

RESUMEN

Ulvan is a natural sulfated polysaccharide obtained from marine green algae composed of 3-sulfated rhamnoglucuronan as the main component. It has a unique chemical structure that rich of L-rhamnosa, D-glucuronic acid, and L-iduronic acid. Ulvan has a similar structure to glycosaminoglycans (GAGs) in mammals including chondroitin sulfate, dermatan sulfate, and heparan sulfate that has broad range applications for many years. Here, we provide an overview of ulvan based hydrogels for biomedical applications. Hydrogels are one of ulvan advances in polymer science for application in drug delivery, tissue engineering, and wound healing. This review presented an overview about functional information of ulvan based hydrogels and the promising potential in biomedicals collected from published papers in Scopus, PubMed, and Google Scholar. Other important aspects concerning properties, hydrogel-forming mechanisms, and ulvan based hydrogel developments were reported as well. As conclusion, ulvan showed interesting properties in forming hydrogels and promising advances in biomedical applications.


Asunto(s)
Productos Biológicos/farmacología , Sistemas de Liberación de Medicamentos , Hidrogeles/farmacología , Polisacáridos/farmacología , Ingeniería de Tejidos , Cicatrización de Heridas/efectos de los fármacos , Animales , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Chlorophyta/química , Humanos , Hidrogeles/química , Hidrogeles/aislamiento & purificación , Polisacáridos/química , Polisacáridos/aislamiento & purificación
20.
Int J Mol Sci ; 22(6)2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33802984

RESUMEN

Hybrid composites of synthetic and natural polymers represent materials of choice for bone tissue engineering. Ulvan, a biologically active marine sulfated polysaccharide, is attracting great interest in the development of novel biomedical scaffolds due to recent reports on its osteoinductive properties. Herein, a series of hybrid polycaprolactone scaffolds containing ulvan either alone or in blends with κ-carrageenan and chondroitin sulfate was prepared and characterized. The impact of the preparation methodology and the polysaccharide composition on their morphology, as well as on their mechanical, thermal, water uptake and porosity properties was determined, while their osteoinductive potential was investigated through the evaluation of cell adhesion, viability, and osteogenic differentiation of seeded human adipose-derived mesenchymal stem cells. The results verified the osteoinductive ability of ulvan, showing that its incorporation into the polycaprolactone matrix efficiently promoted cell attachment and viability, thus confirming its potential in the development of biomedical scaffolds for bone tissue regeneration applications.


Asunto(s)
Organismos Acuáticos/química , Huesos/fisiología , Osteogénesis/efectos de los fármacos , Poliésteres/química , Polisacáridos/farmacología , Ingeniería de Tejidos , Andamios del Tejido/química , Huesos/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Elasticidad , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Polisacáridos/ultraestructura , Espectroscopía Infrarroja por Transformada de Fourier , Termogravimetría , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA