Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros

Intervalo de año de publicación
1.
Pestic Biochem Physiol ; 204: 106018, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39277354

RESUMEN

The biological behavior of flusulfinam, a potential commercial chiral herbicide for rice, has not been well explored. Herein, the uptake of chiral flusulfinam by rice and its transport, degradation, and subcellular distribution in rice (Oryza sativa L.) were investigated. The enantiomeric fraction (EF) in roots was 0.54 during 0 d to 7 d in hydroponic laboratory conditions. The bioconcentration factor of flusulfinam enantiomers was 2.1, suggesting an absence of observed enantioselectivity in the absorption process. Notably, the EF in the shoots decreased to 0.35 on the 7th day. The translocation factors of R- and S-flusulfinam were 0.12 and 0.27, respectively, indicating a preferential transfer of the S-flusulfinam from the root to the shoot. Flusulfinam was identified in the root after spraying. The translocation factors of R- and S-flusulfinam were consistently similar, signifying the capacity for downward movement without enantioselectivity. Interestingly, the degradation half-lives of R- and S-flusulfinam in the total plant were 5.50 and 5.06 d (p < 0.05), respectively, supporting the preferential degradation of S-flusulfinam throughout the total plant. Flusulfinam primarily entered the roots via the apoplastic pathway and was subsequently transported within the plant through aquaporins and ion channels. The subcellular distribution experiment revealed the predominant accumulation of flusulfinam enantiomers in soluble components (84%) with no enantioselectivity in these processes. There was upregulation lipid transfer protein-2 and carboxylesterases15 genes, which could explain the preferential transport and degradation of S-flusulfinam. This study is important in assessing the environmental risk associated with flusulfinam and ensuring food safety.


Asunto(s)
Herbicidas , Oryza , Oryza/metabolismo , Herbicidas/metabolismo , Estereoisomerismo , Transporte Biológico , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo
2.
J Environ Manage ; 364: 121428, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38879966

RESUMEN

The use of wetland plants in the context of phytoremediation is effective in the removal of antibiotics from contaminated water. However, the effectiveness and efficiency of many of these plants in the removal of antibiotics remain undetermined. In this study, the effectiveness of two plants-Phragmites australis and Iris pseudacorus-in the removal of tetracycline (TC) in hydroponic systems was investigated. The uptake of TC at the roots of I. pseudacorus and P. australis occurred at concentrations of 588.78 and 106.70 µg/g, respectively, after 7-day exposure. The higher uptake of TC in the root of I. pseudacorus may be attributed to its higher secretion of root exudates, which facilitate conditions conducive to the reproduction of microorganisms. These rhizosphere-linked microorganisms then drove the TC uptake, which was higher than that in the roots of P. australis. By elucidating the mechanisms underlying these uptake-linked outcomes, we found that the uptake of TC for both plants was significantly suppressed by metabolic and aquaporin inhibition, suggesting uptake and transport of TC were active (energy-dependent) and passive (aquaporin-dominated) processes, respectively. The subcellular distribution patterns of I. pseudacorus and P. australis in the roots were different, as expressed by differences in organelles, cell wall concentration levels, and transport-related dynamics. Additionally, the microbe-driven enhancement of the remediation capacities of the plants was studied comprehensively via a combined microbial-phytoremediation hydroponic system. We confirmed that the microbial agents increased the secretion of root exudates, promoting the variation of TC chemical speciation and thus enhancing the active transport of TC. These results contribute toward the improved application of wetland plants in the context of antibiotic phytoremediation.


Asunto(s)
Biodegradación Ambiental , Raíces de Plantas , Tetraciclina , Humedales , Tetraciclina/metabolismo , Raíces de Plantas/metabolismo , Contaminantes Químicos del Agua/metabolismo , Rizosfera , Hidroponía
3.
Appl Environ Microbiol ; 89(1): e0173222, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36533965

RESUMEN

Marine cyanobacteria contribute to approximately half of the ocean primary production, and their biomass is limited by low iron (Fe) bioavailability in many regions of the open seas. The mechanisms by which marine cyanobacteria overcome Fe limitation remain unclear. In this study, multiple Fe uptake pathways have been identified in a coastal strain of Synechococcus sp. strain PCC 7002. A total of 49 mutants were obtained by gene knockout methods, and 10 mutants were found to have significantly decreased growth rates compared to the wild type (WT). The genes related to active Fe transport pathways such as TonB-dependent transporters and the synthesis and secretion of siderophores are found to be essential for the adaptation of Fe limitation in Synechococcus sp. PCC 7002. By comparing the Fe uptake pathways of this coastal strain with other open-ocean cyanobacterial strains, it can be concluded that the Fe uptake strategies from different cyanobacteria have a strong relationship with the Fe bioavailability in their habitats. The evolution and adaptation of cyanobacterial iron acquisition strategies with the change of iron environments from ancient oceans to modern oceans are discussed. This study provides new insights into the diversified strategies of marine cyanobacteria in different habitats from temporal and spatial scales. IMPORTANCE Iron (Fe) is an important limiting factor of marine primary productivity. Cyanobacteria, the oldest photosynthetic oxygen-evolving organisms on the earth, play crucial roles in marine primary productivity, especially in the oligotrophic ocean. How they overcome Fe limitation during the long-term evolution process has not been fully revealed. Fe uptake mechanisms of cyanobacteria have been partially studied in freshwater cyanobacteria but are largely unknown in marine cyanobacterial species. In this paper, the characteristics of Fe uptake mechanisms in a coastal model cyanobacterium, Synechococcus sp. PCC 7002, were studied. Furthermore, the relationship between Fe uptake strategies and Fe environments of cyanobacterial habitats has been revealed from temporal and spatial scales, which provides a good case for marine microorganisms adapting to changes in the marine environment.


Asunto(s)
Hierro , Synechococcus , Hierro/metabolismo , Synechococcus/genética , Synechococcus/metabolismo , Transporte Biológico , Sideróforos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
4.
Small ; 18(40): e2203207, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36057991

RESUMEN

Triple ionic and electronic conductivity (TIEC) in cathode materials for protonic ceramic fuel cells (PCFCs) is a desirable feature that enhances the spatial expansion of active reaction sites for electrochemical oxygen reduction reaction. The realization of optimal TIEC in single-phase materials, however, is challenging. A facile route that facilitates the optimization of TIEC in PCFC cathodes is the strategic development of multiphase cathode materials. In this study, a cubic-rhombohedral TIEC nanocomposite material with the composition Ba(CeCo)0.4 (FeZr)0.1 O3- δ (BCCFZ) is designed via self-assembly engineering. The material consists of a mixed ionic and electronic conducting phase, BaCo1-( x + y + z ) Cex Fey Zrz O3- δ (M-BCCFZ), and a dominant proton-conducting phase, BaCe1-( x + y + z ) Cox Zry Fez O3- δ (H-BCCZF). The dominant cerium-rich H-BCCFZ phase enhances the material's oxygen vacancy concentration and the proton defects formation and transport with a low enthalpy of protonation of -30 ± 9 kJ mol-1 . The area-specific resistance of the BCCFZ symmetrical cell is 0.089 Ω cm2 at 650 °C in 2.5% H2 O-air. The peak power density of the anode-supported single cell based on BCCFZ cathode reaches 1054 mW cm-2 at 650 °C with good operation stability spanning over 500 h at 550 °C. These promote BCCFZ as a befitting cathode material geared toward PCFC commercialization.

5.
Appl Environ Microbiol ; 87(5): e0199820, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33310714

RESUMEN

Diazotrophs can produce bioavailable nitrogen from inert N2 gas by bioelectrochemical nitrogen fixation (e-BNF), which is emerging as an energy-saving and highly selective strategy for agriculture and industry. However, current e-BNF technology is impeded by requirements for NH4+ assimilation inhibitors to facilitate intracellular ammonia secretion and precious metal catalysts to generate H2 as the energy-carrying intermediate. Here, we initially demonstrate inhibitor- and catalystless extracellular NH4+ production by the diazotroph Pseudomonas stutzeri A1501 using an electrode as the sole electron donor. Multiple lines of evidence revealed that P. stutzeri produced 2.32 ± 0.25 mg/liter extracellular NH4+ at a poised potential of -0.3 V (versus standard hydrogen electrode [SHE]) without the addition of inhibitors or expensive catalysts. The electron uptake mechanism was attributed to the endogenous electron shuttle phenazine-1-carboxylic acid, which was excreted by P. stutzeri and mediated electron transfer from electrodes into cells to directly drive N2 fixation. The faradaic efficiency was 20% ± 3%, which was 2 to 4 times that of previous e-BNF attempts using the H2-mediated pathway. This study reports a diazotroph capable of producing secretable NH4+ via extracellular electron uptake, which has important implications for optimizing the performance of e-BNF systems and exploring the novel nitrogen-fixing mode of syntrophic microbial communities in the natural environment. IMPORTANCE Ammonia greatly affects global ecology, agriculture, and the food industry. Diazotrophs with an enhanced capacity of extracellular NH4+ excretion have been proven to be more beneficial to the growth of microalgae and plants, whereas most previously reported diazotrophs produce intracellular organic nitrogen in the absence of chemical suppression and genetic manipulation. Here, we demonstrate that Pseudomonas stutzeri A1501 is capable of extracellular NH4+ production without chemical suppression or genetic manipulation when the extracellular electrode is used as the sole electron donor. We also reveal the electron uptake pathway from the extracellular electron-donating partner to P. stutzeri A1501 via redox electron shuttle phenazines. Since both P. stutzeri A1501 and potential electron-donating partners (such as electroactive microbes and natural semiconductor minerals) are abundant in diverse soils and sediments, P. stutzeri A1501 has broader implications on the improvement of nitrogen fertilization in the natural environment.


Asunto(s)
Amoníaco , Fijación del Nitrógeno , Pseudomonas stutzeri , Amoníaco/química , Pseudomonas stutzeri/metabolismo
6.
J Exp Biol ; 223(Pt 24)2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33199450

RESUMEN

Although the sea cucumber Apostichopus japonicus has been characterised as a deposit feeder, nutrients sourced from the water column have been recorded in the intestines of this species. However, the mechanisms whereby nutrients in the water enter the intestinal tract of A. japonicus, and whether other suspended particles can be ingested via the mouth of A. japonicus adults, remain unknown. Here, we reveal how A. japonicus ingests suspended particles through the mouth. We used synthetic particles and video recording to confirm the suspension uptake by the sea cucumber. Apostichopus japonicus continued to ingest suspended particles (if present) over time, and the particle ingestion rate was positively correlated with the concentration of suspended particles (Pearson correlation: r=0.808). Additionally, clearance rates of the suspended particles ranged from 0.3 to 0.9 l h-1 The findings of this study thus provide evidence of a previously undescribed particle uptake mechanism in a commercially important species.


Asunto(s)
Pepinos de Mar , Stichopus , Animales , Intestinos , Boca , Agua
7.
Nanomedicine ; 30: 102300, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32931929

RESUMEN

Zwitterionic molecules are used as an alternative to PEGylation to reduce protein adsorption on nanocarriers. Nonetheless, little is known on the effect of zwitterionic modifications on the mechanisms cells use for nanocarrier uptake. In this study, the uptake mechanism of liposomes containing zwitterionic or negatively charged lipids was characterized using pharmacological inhibitors and RNA interference on HeLa cells to block endocytosis. As expected, introducing zwitterionic lipids reduced protein adsorption in serum, as well as uptake efficiency. Blocking clathrin-mediated endocytosis strongly decreased the uptake of the negatively charged liposomes, but not the zwitterionic ones. Additionally, inhibition of macropinocytosis reduced uptake of both liposomes, but blocking actin polymerization had effects only on the negatively charged ones. Overall, the results clearly indicated that the two liposomes were internalized by HeLa cells using different pathways. Thus, introducing zwitterionic lipids affects not only protein adsorption and uptake efficiency, but also the mechanisms of liposome uptake by cells.


Asunto(s)
Liposomas , Endocitosis , Citometría de Flujo , Células HeLa , Humanos , Cinética , Interferencia de ARN
8.
Chembiochem ; 20(8): 1023-1026, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30550626

RESUMEN

Amyloidâ€…ß is an inherently disordered peptide that can form diverse neurotoxic aggregates, and its 42-amino-acid isoform is believed to be the agent responsible for Alzheimer's disease (AD). Cellular uptake of the peptide is a pivotal step for it to be able to exert many of its toxic actions. The cellular uptake process is complex, and numerous competing internalization pathways have been proposed. To date, it remains unclear which of the uptake mechanisms are particularly important for the overall process, and improvement of this understanding is needed, so that better molecular AD therapeutics can be designed. Chirality can be used as a unique tool to study this process, because some of the proposed mechanisms are expected to proceed in stereoselective fashion, whereas others are not. To shed light on this important issue, we synthesized fluorescently labeled enantiomers of amyloidâ€…ß and quantified their cellular uptake, finding that uptake occurs in stereoselective fashion, with a typical preference for the l stereoisomer of ≈5:1. This suggests that the process is predominantly receptor-mediated, with likely minor contributions of non-stereoselective mechanisms.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/química , Línea Celular Tumoral , Citometría de Flujo , Humanos , Estereoisomerismo
9.
Arch Biochem Biophys ; 645: 107-116, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29567208

RESUMEN

Four Cellular Retinol-binding Proteins (CRBP 1, 2, 3, 4) are encoded in the human genome. CRBP 1 and 2, sharing a 56% amino acid sequence identity, exhibit the highest binding affinities for retinol. Previous NMR studies provided some insights into the mechanism of retinol uptake, but details of such mechanism remain to be elucidated. Herein, the results of molecular dynamics simulations for the uptake of retinol by CRBP 1 and 2 are consistent with the presence of two different retinol entry points, both involving the 'cap region' (α-helices I and II and neighboring loops). We observed that a hydrophobic patch at the surface of the 'portal region' (α-helix II, CD and EF loops) of CRBP 1 attracts retinol, which accesses the binding cavity through an opening generated by the concerted movements of Arg58 and Phe57, present in the CD loop. In CRBP 2 a different distribution of the surface residues of the 'cap region' allows retinol to access the binding cavity by sinking in a hydrophobic matrix between the two α-helices. Polar interactions mainly affect retinol movements inside the ß-barrel cavities of both CRBPs. The interaction energy profiles are in agreement with the different behavior of the two protein systems.


Asunto(s)
Proteínas Celulares de Unión al Retinol/química , Proteínas Celulares de Unión al Retinol/metabolismo , Vitamina A/metabolismo , Apoproteínas/química , Apoproteínas/metabolismo , Humanos , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica en Hélice alfa
10.
J Pept Sci ; 24(6): e3083, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29737576

RESUMEN

Cell-penetrating peptides (CPPs) are commonly defined by their shared ability to be internalized into eukaryotic cells, without inducing permanent membrane damage, and to improve cargo delivery. Many CPPs also possess antimicrobial action strong enough to selectively lyse microbes in infected mammalian cultures. pVEC, a CPP derived from cadherin, is able to translocate into mammalian cells, and it is also antimicrobial. Structure-activity relationship and sequence alignment studies have suggested that the hydrophobic N-terminus (LLIIL) of pVEC is essential for this peptide's uptake into eukaryotic cells. In this study, our aim was to examine the contribution of these residues to the antimicrobial action and the translocation mechanism of pVEC. We performed antimicrobial activity and microscopy experiments with pVEC and with del5 pVEC (N-terminal truncated variant of pVEC) and showed that pVEC loses its antimicrobial effect upon deletion of the LLIIL residues, even though both peptides induce membrane permeability. We also calculated the free energy of the transport process using steered molecular dynamic simulations and replica exchange umbrella sampling simulations to compare the difference in uptake mechanism of the 2 peptides in atomistic detail. Despite the difference in experimentally observed antimicrobial activity, the simulations on the 2 peptides showed similar characteristics and the energetic cost of translocation of pVEC was higher than that of del5 pVEC, suggesting that pVEC uptake mechanism cannot be explained by simple passive transport. Our results suggest that LLIIL residues are key contributors to pVEC antibacterial activity because of irreversible membrane disruption.


Asunto(s)
Antibacterianos/farmacología , Antiinfecciosos/farmacología , Péptidos de Penetración Celular/farmacología , Péptidos/farmacología , Antibacterianos/química , Antiinfecciosos/química , Cadherinas/química , Cadherinas/farmacología , Permeabilidad de la Membrana Celular/efectos de los fármacos , Péptidos de Penetración Celular/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas/efectos de los fármacos , Simulación de Dinámica Molecular , Péptidos/química , Relación Estructura-Actividad
11.
J Environ Manage ; 206: 715-730, 2018 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-29156430

RESUMEN

In the current industrial scenario, chromium (Cr) as a metal is of great importance, but poses a major threat to the environment. Phytoremediation provides an environmentally sustainable, ecofriendly, cost effective approach for environmental cleanup of Cr. This review presents the current status of phytoremediation research with particular emphasis on cleanup of Cr contaminated soil and water systems. It gives a detailed account of the work done by different authors on the Cr bioavailability, uptake pathway, toxicity and storage in plants following the phytoextraction mechanism. This paper also describes recent findings related to Cr localization in hyperaccumulator plants. It gives an insight into the processes and mechanisms that allow plants to remove Cr from contaminated sites under varying conditions. These detailed knowledge of changes in plant metabolic pool in response to Cr stress would immensely help understand and improve the phytoextraction process. Further, this review provides a detailed understanding of Cr uptake and detoxification mechanism by plants that can be applied in developing a suitable approach for a better applicability of the process.


Asunto(s)
Cromo , Plantas , Contaminantes del Suelo , Biodegradación Ambiental , Cromo/farmacocinética , Cromo/toxicidad , Suelo , Contaminantes del Suelo/farmacocinética , Contaminantes del Suelo/toxicidad
12.
Adv Exp Med Biol ; 1030: 255-264, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29081057

RESUMEN

Cell-penetrating peptides have been extensively used since their discovery for delivering cargoes unable to cross the cell membrane. Among other transported cargoes, they have shown very efficient delivery for oligonucleotides making cell-penetrating peptides a powerful tool for gene therapy. Numerous cell-penetrating peptides have now been discovered offering a wide library of structures and mechanisms of actions. Nevertheless, if it is known that different pathways are available for particles to be taken up, most mechanisms by which these particles enter cells are still to be characterized more precisely. Indeed it is admitted that cell-penetrating peptides are taken up either by direct translocation or by endocytosis but classes of cell-penetrating peptides are usually not related to specific entrance mechanisms. Actually, for most particles, different pathways can be detected during their uptake which makes the literature sometimes contradictory. Recent studies have nevertheless shown convergent uptake patterns for individual structures. Acetylated cell-penetrating peptides complexed with oligonucleotides have been shown to interact to scavenger receptor class A to induce caveolae-mediated endocytosis whereas antimicrobial peptides create pores in the cell membrane for direct translocation. Arginine-rich peptides have presented concentration-dependent mechanisms, being taken up either by membrane destabilization or clathrin-mediated endocytosis. Relating the structure of cell-penetrating peptides or their particles to distinct mechanisms would allow this delivery platform to become even more specific by using rational design to fit to the desired uptake pathway.


Asunto(s)
Membrana Celular/metabolismo , Péptidos de Penetración Celular/metabolismo , Endocitosis , Vesículas Transportadoras/metabolismo , Animales , Arginina/química , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/farmacocinética , Humanos , Modelos Biológicos , Oligopéptidos/química , Oligopéptidos/metabolismo , Oligopéptidos/farmacocinética
13.
J Microencapsul ; 34(7): 659-666, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28862080

RESUMEN

The blood-brain barrier (BBB) is the major problem for the treatment of central nervous system diseases. A previous study from our group showed that the brain-targeted chitosan nanoparticles-loaded with large peptide moieties can rapidly cross the barrier and provide neuroprotection. The present study aims to determine the efficacy of the brain-targeted chitosan nanoparticles' uptake by the human BBB cerebral microvessel endothelial cells (hCMECs) and to investigate the underlying mechanisms for enhanced cellular entry. Fluorescently labelled nanoparticles either conjugated with antibodies recognising human transferrin receptor (anti-TfR mAb) or not were prepared, characterised and their interaction with cerebral endothelial cells was evaluated. The antibody decoration of chitosan nanoparticles significantly increased their entry into hCMEC/D3 cell line. Inhibition of cellular uptake by chlorpromazine indicated that the anti-TfR mAb-conjugated nanoparticles were preferentially cell internalised through receptor-mediated endocytosis pathway. Alternatively, as primarily observed with control chitosan nanoparticles, aggregation of nanoparticles may also have induced macropinocytosis.


Asunto(s)
Barrera Hematoencefálica , Encéfalo/efectos de los fármacos , Circulación Cerebrovascular , Quitosano/administración & dosificación , Microvasos/efectos de los fármacos , Nanopartículas , Anticuerpos Monoclonales/inmunología , Colorantes Fluorescentes , Humanos , Microvasos/metabolismo , Receptores de Transferrina/inmunología , Receptores de Transferrina/metabolismo
14.
Mol Pharm ; 13(4): 1366-74, 2016 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-26937821

RESUMEN

Since their development, cell-penetrating peptides (CPPs) have been used as delivery vehicles for various genetic or therapeutic agents; however, the uptake mechanisms of CPPs and the delivery details are still unclear. Understanding the mechanisms of cellular internalization of CPPs facilitate their development of CPPs as gene delivery vectors. In the present study, we evaluated the internalization process of a previously designed CPP, STR-KV, complexed with small interference RNA (siRNA) targeting at the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene. Using heparin treatment and chemical endocytic inhibitors, we elucidated that the electrostatic interaction of STR-KV/siRNA complex with heparin sulfate proteoglycans at the cell membrane surface triggered the energy-independent uptake of the majority of the complexes, which most likely through a direct translocation pathway. The intracellular trafficking and internalization kinetics observed by confocal microscopy also confirmed that the complex was uptaken through a nonendocytic pathway.


Asunto(s)
Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/metabolismo , ARN Interferente Pequeño/química , ARN Interferente Pequeño/metabolismo , Animales , Transporte Biológico/fisiología , Células CHO , Línea Celular Tumoral , Permeabilidad de la Membrana Celular , Cricetulus , Heparina/química , Humanos , Microscopía Confocal , Proteoglicanos/química
15.
Nanomedicine ; 12(6): 1603-13, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26995094

RESUMEN

Silica nanoparticles embedded in a biodegradable scaffold have been proposed to offer several advantages when used in laser-tissue-soldering of blood vessels in the brain. During degradation, these nanoparticles are likely to be released into the surrounding brain tissue. The aim of this study was to investigate possible cellular uptake mechanism(s) of the two silica nanoparticle types in microglial cells as well as their effect on autophagy and inflammatory cytokines. The nanoparticle uptake was analysed quantitatively using high-content analysis. Nanoparticle incubation did not modulate cytokine secretion and autophagy at any time point investigated. The nanoparticles were taken up by the microglia cells in a time- and particle-dependent manner. The maximal uptake was reached after 4hours and the nanoparticles were found in the endoplasmic reticulum and lysosomes. Macropinocytosis and phagocytosis were predominantly responsible for the uptake, whereas clathrin- and caveolin-independent endocytosis were involved to a minor extent.


Asunto(s)
Implantes Absorbibles , Encéfalo , Nanopartículas , Dióxido de Silicio/farmacocinética , Clatrina , Endocitosis , Humanos
16.
Proc Natl Acad Sci U S A ; 110(34): 13803-8, 2013 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-23922388

RESUMEN

Polymeric microspheres (MSs) have received attention for their potential to improve the delivery of drugs with poor oral bioavailability. Although MSs can be absorbed into the absorptive epithelium of the small intestine, little is known about the physiologic mechanisms that are responsible for their cellular trafficking. In these experiments, nonbiodegradable polystyrene MSs (diameter range: 500 nm to 5 µm) were delivered locally to the jejunum or ileum or by oral administration to young male rats. Following administration, MSs were taken up rapidly (≤ 5 min) by the small intestine and were detected by transmission electron microscopy and confocal laser scanning microscopy. Gel permeation chromatography confirmed that polymer was present in all tissue samples, including the brain. These results confirm that MSs (diameter range: 500 nm to 5 µm) were absorbed by the small intestine and distributed throughout the rat. After delivering MSs to the jejunum or ileum, high concentrations of polystyrene were detected in the liver, kidneys, and lungs. The pharmacologic inhibitors chlorpromazine, phorbol 12-myristate 13-acetate, and cytochalasin D caused a reduction in the total number of MSs absorbed in the jejunum and ileum, demonstrating that nonphagocytic processes (including endocytosis) direct the uptake of MSs in the small intestine. These results challenge the convention that phagocytic cells such as the microfold cells solely facilitate MS absorption in the small intestine.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Tránsito Gastrointestinal/fisiología , Absorción Intestinal/fisiología , Intestino Delgado/metabolismo , Microesferas , Poliestirenos/farmacocinética , Animales , Clorpromazina/farmacología , Cromatografía en Gel , Citocalasina D/farmacología , Absorción Intestinal/efectos de los fármacos , Intestino Delgado/ultraestructura , Masculino , Microscopía Confocal , Microscopía Electrónica de Transmisión , Poliestirenos/administración & dosificación , Ratas , Acetato de Tetradecanoilforbol/farmacología
17.
Proc Natl Acad Sci U S A ; 110(43): 17247-52, 2013 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-24101456

RESUMEN

Size, surface charge, and material compositions are known to influence cell uptake of nanoparticles. However, the effect of particle geometry, i.e., the interplay between nanoscale shape and size, is less understood. Here we show that when shape is decoupled from volume, charge, and material composition, under typical in vitro conditions, mammalian epithelial and immune cells preferentially internalize disc-shaped, negatively charged hydrophilic nanoparticles of high aspect ratios compared with nanorods and lower aspect-ratio nanodiscs. Endothelial cells also prefer nanodiscs, however those of intermediate aspect ratio. Interestingly, unlike nanospheres, larger-sized hydrogel nanodiscs and nanorods are internalized more efficiently than their smallest counterparts. Kinetics, efficiency, and mechanisms of uptake are all shape-dependent and cell type-specific. Although macropinocytosis is used by both epithelial and endothelial cells, epithelial cells uniquely internalize these nanoparticles using the caveolae-mediated pathway. Human umbilical vein endothelial cells, on the other hand, use clathrin-mediated uptake for all shapes and show significantly higher uptake efficiency compared with epithelial cells. Using results from both upright and inverted cultures, we propose that nanoparticle internalization is a complex manifestation of three shape- and size-dependent parameters: particle surface-to-cell membrane contact area, i.e., particle-cell adhesion, strain energy for membrane deformation, and sedimentation or local particle concentration at the cell membrane. These studies provide a fundamental understanding on how nanoparticle uptake in different mammalian cells is influenced by the nanoscale geometry and is critical for designing improved nanocarriers and predicting nanomaterial toxicity.


Asunto(s)
Endocitosis , Hidrogeles/metabolismo , Nanopartículas/metabolismo , Nanosferas/metabolismo , Caveolas/metabolismo , Línea Celular , Membrana Celular/metabolismo , Células Cultivadas , Clatrina/metabolismo , Células Endoteliales/metabolismo , Células Epiteliales/metabolismo , Células HEK293 , Células HeLa , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Hidrogeles/química , Hidrogeles/farmacocinética , Cinética , Microscopía Confocal , Microscopía Electrónica de Rastreo , Microscopía Fluorescente , Nanopartículas/química , Nanopartículas/ultraestructura , Nanosferas/química , Nanosferas/ultraestructura , Tamaño de la Partícula , Pinocitosis
18.
Nano Lett ; 15(7): 4364-73, 2015 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-26042553

RESUMEN

Antisense oligonucleotides (ASOs) have the potential to revolutionize medicine due to their ability to manipulate gene function for therapeutic purposes. ASOs are chemically modified and/or incorporated within nanoparticles to enhance their stability and cellular uptake, however, a major challenge is the poor understanding of their uptake mechanisms, which would facilitate improved ASO designs with enhanced activity and reduced toxicity. Here, we study the uptake mechanism of three therapeutically relevant ASOs (peptide-conjugated phosphorodiamidate morpholino (PPMO), 2'Omethyl phosphorothioate (2'OMe), and phosphorothioated tricyclo DNA (tcDNA) that have been optimized to induce exon skipping in models of Duchenne muscular dystrophy (DMD). We show that PPMO and tcDNA have high propensity to spontaneously self-assemble into nanoparticles. PPMO forms micelles of defined size and their net charge (zeta potential) is dependent on the medium and concentration. In biomimetic conditions and at low concentrations, PPMO obtains net negative charge and its uptake is mediated by class A scavenger receptor subtypes (SCARAs) as shown by competitive inhibition and RNAi silencing experiments in vitro. In vivo, the activity of PPMO was significantly decreased in SCARA1 knockout mice compared to wild-type animals. Additionally, we show that SCARA1 is involved in the uptake of tcDNA and 2'OMe as shown by competitive inhibition and colocalization experiments. Surface plasmon resonance binding analysis to SCARA1 demonstrated that PPMO and tcDNA have higher binding profiles to the receptor compared to 2'OMe. These results demonstrate receptor-mediated uptake for a range of therapeutic ASO chemistries, a mechanism that is dependent on their self-assembly into nanoparticles.


Asunto(s)
Nanopartículas/química , Oligonucleótidos Antisentido/química , Oligonucleótidos Antisentido/farmacocinética , Receptores Depuradores de Clase A/metabolismo , Animales , Secuencia de Bases , Línea Celular , Exones , Terapia Genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Micelas , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/uso terapéutico , Receptores Depuradores de Clase A/genética
19.
Molecules ; 21(12)2016 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-27916905

RESUMEN

Drug delivery by nanovectors involves numerous processes, one of the most important being its release from the carrier. This point still remains unclear. The current work focuses on this point using poly(ethyleneglycol-b-ε-caprolactone) micelles containing either pheophorbide-a (Pheo-a) as a fluorescent probe and a phototoxic agent or fluorescent copolymers. This study showed that the cellular uptake and the phototoxicity of loaded Pheo-a are ten times higher than those of the free drug and revealed a very low cellular penetration of the fluorescence-labeled micelles. Neither loaded nor free Pheo-a displayed the same cellular localization as the labeled micelles. These results imply that the drug entered the cells without its carrier and probably without a disruption, as suggested by their stability in cell culture medium. These data allowed us to propose that Pheo-a directly migrates from the micelle to the cell without disruption of the vector. This mechanism will be discussed.


Asunto(s)
Portadores de Fármacos/química , Lactonas/química , Polietilenglicoles/química , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Clorofila/análogos & derivados , Clorofila/química , Clorofila/metabolismo , Clorofila/farmacología , Portadores de Fármacos/metabolismo , Portadores de Fármacos/farmacología , Evaluación Preclínica de Medicamentos , Liberación de Fármacos , Células HCT116 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Lactonas/metabolismo , Lactonas/farmacología , Micelas , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/metabolismo , Fármacos Fotosensibilizantes/farmacología , Polietilenglicoles/metabolismo , Polietilenglicoles/farmacología
20.
Acta Endocrinol (Buchar) ; 12(3): 249-256, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-31149097

RESUMEN

CONTEXT: Despite CT being generally used in thymic pathology, in the case of regions with the same tissue density, only functional radioisotopic imaging can hint towards malignity. OBJECTIVES: To assess the usefulness of 99mTc MIBI scintigraphy for diagnosis and treatment planning in thymoma, in relation with the radiotracer uptake mechanism. PATIENTS AND METHODS: 99mTc MIBI thymic scans for 19 patients diagnosed with thymic disorders were assessed using tumor uptake ratio (UR). Specimens of thymectomies were examined and cytological assessments were correlated with the UR. RESULTS: The UR of all surgical patients was higher than 1.2, with a 1.5 cutoff between lymphoid hyperplasia and thymoma. The UR values were correlated with the histopathologic diagnosis (Pearson correlation 0.91, significant at p<0.01). The highest UR was 3.24, found in the case of an AB thymoma where the rate lymphocytes/epithelial cells (L/E) was 1.6. In B1 thymoma UR was 1.14 and L/E was 2.46. CONCLUSION: Phenotype differences between thymoma types correlate with 99mTc MIBI cellular uptake: lower rate L/E corresponds to higher UR, higher malignity potential and invasiveness. A thymic 99mTc MIBI UR higher than 1.5, corresponding to a CT tumoral image, is suggestive for a thymoma, requiring surgical treatment first.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA