Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Environ Manage ; 359: 120962, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38677229

RESUMEN

Low-water-level regulation has been effectively implemented in the restoration of urban river sediments in Guangzhou City, China. Further investigation is needed to understand the microbial mechanisms involved in pollutant degradation in low-water-level environments. This study examined sediment samples from nine rivers, including low-water-level rivers (LW), tidal waterways (TW), and enclosed rivers (ER). Metagenomic high-throughput sequencing and the Diting pipeline were utilized to investigate the microbial mechanisms involved in sediment C/N/S geochemical cycling during low-water-level regulation. The results reveal that the degree of pollution in LW sediment is lower compared to TW and ER sediment. LW sediment exhibits a higher capacity for pollutant degradation and elimination of black, odorous substances due to its stronger microbial methane oxidation, nitrification, denitrification, anammox, and oxidation of sulfide, sulfite, and thiosulfate. Conversely, TW and ER sediment showcase greater microbial methanogenesis, anaerobic fermentation, and sulfide generation abilities, leading to the persistence of black, odorous substances. Factors such as grit and silt content, nitrate, and ammonia concentrations impacted microbial metabolic pathways. Low-water-level regulation improved the micro-environment for functional microbes, facilitating pollutant removal and preventing black odorous substance accumulation. These findings provide insights into the microbial mechanisms underlying low-water-level regulation technology for sediment restoration in urban rivers.


Asunto(s)
Sedimentos Geológicos , Ríos , Sedimentos Geológicos/microbiología , Nitrógeno/análisis , Carbono , China
2.
Environ Res ; 231(Pt 2): 116182, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37201708

RESUMEN

The focus of urban water environment renovation has shifted to high nitrate (NO3-) load. Nitrate input and nitrogen conversion are responsible for the continuous increase in nitrate levels in urban rivers. This study utilized nitrate stable isotopes (δ15N-NO3- and δ18O-NO3-) to investigate NO3- sources and transformation processes in Suzhou Creek, located in Shanghai. The results demonstrated that NO3- was the most common form of dissolved inorganic nitrogen (DIN), accounting for 66 ± 14% of total DIN with a mean value of 1.86 ± 0.85 mg L-1. The δ15N-NO3- and δ18O-NO3- values ranged from 5.72 to 12.42‰ (mean value: 8.38 ± 1.54‰) and -5.01 to 10.39‰ (mean value: 0.58 ± 1.76‰), respectively. Based on isotopic evidence, the river received a significant amount of nitrate through direct exogenous input and sewage ammonium nitrification, while nitrate removal (denitrification) was insignificant, resulting in nitrate accumulation. Analysis using the MixSIAR model revealed that treated wastewater (68.3 ± 9.7%), soil nitrogen (15.7 ± 4.8%) and nitrogen fertilizer (15.5 ± 4.9%) were the main sources of NO3- in rivers. Despite the fact that Shanghai's urban domestic sewage recovery rate has reached 92%, reducing nitrate concentrations in treated wastewater is crucial for addressing nitrogen pollution in urban rivers. Additional efforts are needed to upgrade urban sewage treatment during low flow periods and/or in the main stream, and to control non-point sources of nitrate, such as soil nitrogen and nitrogen fertilizer, during high flow periods and/or tributaries. This research provides insights into NO3- sources and transformations, and serves as a scientific basis for controlling NO3- in urban rivers.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Nitratos/análisis , Ríos , Aguas del Alcantarillado , Fertilizantes/análisis , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , China , Isótopos de Nitrógeno/análisis , Nitrógeno/análisis , Suelo
3.
J Environ Manage ; 326(Pt B): 116737, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36403459

RESUMEN

Dissolved organic matter (DOM), known as a key to the aquatic carbon cycle, is influenced by abiotic and biotic factors. However, the compositional variation and these factors' effects on fluorescence DOM (FDOM) in urban rivers undergoing different anthropogenic pressure are poorly investigated. Herein, using fluorescence excitation-emission matrix and parallel factor analysis (EEM-PARAFAC), four FDOM components (C1, C2, C3, and C4) were identified in a less urbanized north river (NR) and a more urbanized west river (WR) of Jiulong River Watershed in Fujian province, China. C1, C2, and C4 were related to humic-like substances (HLS) and C3 to protein-like substances (PLS). HLS (63.9% in WR and 36.4% in NR) and PLS (62.7% in WR and 37.3% in NR) exhibited higher fluorescence in the more urbanized river. We also found higher PLS in winter, but higher HLS in summer for both rivers. Although the coefficient of variation indicated a difference in FDOM components stability to some extent between the two rivers, the typhoon event that occurred in summer had a stronger disruptive impact on the CDOM and FDOM of a more urbanized river than that of a less urbanized river. We explore abiotic and biotic factors' effects on FDOM using the partial least squares path model (PLS-PM). PLS-PM results revealed higher significant influences of biotic factors on FDOM in the more urbanized river. This study enhances our understanding of FDOM dynamics of rivers with different anthropogenic pressure together with the abiotic and biotic factors driving them.


Asunto(s)
Materia Orgánica Disuelta , Ríos , Sustancias Húmicas/análisis , Análisis Factorial , Estaciones del Año , China , Espectrometría de Fluorescencia
4.
Glob Chang Biol ; 28(24): 7270-7285, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36176238

RESUMEN

Streams and rivers are important sources of nitrous oxide (N2 O), a powerful greenhouse gas. Estimating global riverine N2 O emissions is critical for the assessment of anthropogenic N2 O emission inventories. The indirect N2 O emission factor (EF5r ) model, one of the bottom-up approaches, adopts a fixed EF5r value to estimate riverine N2 O emissions based on IPCC methodology. However, the estimates have considerable uncertainty due to the large spatiotemporal variations in EF5r values. Factors regulating EF5r are poorly understood at the global scale. Here, we combine 4-year in situ observations across rivers of different land use types in China, with a global meta-analysis over six continents, to explore the spatiotemporal variations and controls on EF5r values. Our results show that the EF5r values in China and other regions with high N loads are lower than those for regions with lower N loads. Although the global mean EF5r value is comparable to the IPCC default value, the global EF5r values are highly skewed with large variations, indicating that adopting region-specific EF5r values rather than revising the fixed default value is more appropriate for the estimation of regional and global riverine N2 O emissions. The ratio of dissolved organic carbon to nitrate (DOC/NO3 - ) and NO3 - concentration are identified as the dominant predictors of region-specific EF5r values at both regional and global scales because stoichiometry and nutrients strictly regulate denitrification and N2 O production efficiency in rivers. A multiple linear regression model using DOC/NO3 - and NO3 - is proposed to predict region-specific EF5r values. The good fit of the model associated with easily obtained water quality variables allows its widespread application. This study fills a key knowledge gap in predicting region-specific EF5r values at the global scale and provides a pathway to estimate global riverine N2 O emissions more accurately based on IPCC methodology.


Asunto(s)
Nitratos , Óxido Nitroso , Óxido Nitroso/análisis , Nitratos/análisis , Materia Orgánica Disuelta , Monitoreo del Ambiente , Ríos
5.
Environ Res ; 204(Pt D): 112371, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34774512

RESUMEN

The importance of suspended particulate matter (SPM) in nitrogen removal from aquatic environments has been acknowledged in recent years by recognizing the role of attached microbes. However, the succession of attached microbes on suspended particles and their role in nitrogen removal under specific surface microenvironment are still unknown. In this study, the causation among characteristics of SPM, composition and diversity of particle-attached microbial communities, and abundances of nitrogen-related genes in urban rivers was firstly quantitatively established by combing spectroscopy, 16 S rRNA amplicon sequencing, absolute gene quantification and supervised integrated machine learning. SPM in urban rivers, coated with organic layers, was mainly composed of silt and clay (87.59-96.87%) with D50 (medium particle size) of 8.636-30.130 µm. In terms of material composition of SPM, primary mineral was quartz and the four most abundant elements were O, Si, C, Al. The principal functional groups on SPM were hydroxyl and amide. Furthermore, samples with low, medium and high levels of ammoxidation potential were classified into three groups, among which significant differences of microbial communities were found. Samples were also separated into three groups with low, medium and high levels of denitrification potential and significant differences occurred among groups. The particle size, content of functional groups and concentration of SPM were identified as the most significant factors related with microbial communities, playing an important role in succession of particle-attached microbes. In addition, the path model revealed the significantly positive effect of organic matter and particle size on the microbial communities and potential nitrogen removal. The content of hydroxyl and temperature were identified as the most effective predicting factors for ammoxidation potential and denitrification potential respectively by Random Forests Regression models, which had good predictive performances for potential of ammoxidation (R2 = 0.71) and denitrification (R2 = 0.61). These results provide a basis for quickly assessing the ability of nitrogen removal in urban rivers.


Asunto(s)
Microbiota , Ríos , Desnitrificación , Nitrógeno , Material Particulado/análisis , Ríos/química
6.
Ecotoxicol Environ Saf ; 230: 113120, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34959016

RESUMEN

Organic ultraviolet absorbents (OUVAs) in the environment have been of increasing concern because of their potential hazards. However, the OUVAs in waters is far from being well studied and little is known about their occurrence in small urban rivers. This study investigated the concentrations and distribution of eleven OUVAs in the sediments from five small urban rivers of Tianjin, China, and found total concentrations in the range of 11.6-189 ng/g dry weight. Relative to other rivers and lakes, no high concentrations of sediment OUVAs were observed in the small rivers. Benzophenone, homosalate and octocrylene were the dominant OUVAs, representing medians of 13.3%, 12.4% and 12.3% of the total concentrations, respectively. Our observed composition profiles of these chemicals were different from those found in most of other waters. The sediment OUVAs may originate more from industrial activities than the use of cosmetics and personal care products in this area. The risk to aquatic organisms from exposure to the sediment OUVAs in these small urban rivers was considered low, except for benzophenone. However, more researches are needed to investigate the pollution and associated risks of these chemicals in urban rivers due to the complexity of their toxicity to aquatic organisms.

7.
World J Microbiol Biotechnol ; 38(4): 64, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35226210

RESUMEN

Ammonia-oxidizing bacteria (AOB) attached to aquatic particles are important participants in ammonia oxidation within hypereutrophic urban river systems. To explore the effects of aquatic nitrogen pollution on particle-attached AOB in urban river, we utilized laboratory mesocosms to investigate the responses of abundances and community structure of particle-attached AOB to ammonium (NH4+) and glycine (C2H5NO2) amendments. The abundance and community structure of particle-attached AOB were determined with quantitative real-time polymerase chain reaction (qRT-PCR) analysis and high-throughput sequencing based on the AOB amoA gene, respectively. Most of the bacterial amoA sequences from different treatments were affiliated with uncultured Nitrosomonadaceae bacterium, uncultured Nitrosomonadales bacterium, and uncultured Nitrosomonas sp., which are closely associated with organic pollution. The species richness and diversity of particle-attached AOB communities increased with increasing NH4+ and glycine concentrations. Treatment effects contributed significantly to the variance in particle-attached AOB communities. Although, glycine was completely transformed to ammonium within a few days and ammonium amendments would change the community structure of particle-attached AOB, the effect of glycine on the particle-attached AOB community was regulated by both the resulting ammonium concentration, as well as organic matter availability to the heterotrophic bacteria. Results suggested that high anthropogenic nitrogen loadings appeared to promote higher particle-attached AOB richness and diversity in the hypereutrophic urban river, but the effect of organic nitrogen on the particle-attached AOB community was different from the effect of inorganic nitrogen. This study informs ammonia oxidization mechanisms in the hypereutrophic urban rivers, which contributes to remediation/restoration strategies.


Asunto(s)
Amoníaco , Nitrógeno , Archaea/genética , Bacterias/genética , Agua Dulce , Humanos , Oxidación-Reducción , Filogenia
8.
Environ Monit Assess ; 194(2): 65, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-34993616

RESUMEN

Microplastics (MPs) are small (< 5 mm) plastic particles that are widely found in marine, freshwater, terrestrial and atmospheric environments. Due to their prevalence and persistence, MPs are considered an emerging contaminant of environmental concern. The separation and quantitation of MPs from freshwater sediments is a challenging and critical issue. It is necessary to identify the fate and sources of MPs in the environment, minimise their release and adverse effects. Compared to marine sediments, standardised methods for extracting and estimating the amount of MPs in freshwater sediments are relatively limited. The present study focuses on MP recovery efficiency of four commonly used salt solutions (NaCl, NaI, CaCl2 and ZnCl2) for isolating MPs during the density separation step from freshwater sediment. Known combinations of artificial MP particles (PS, PE, PVC, PET, PP and HDPE) were spiked into standard river sediment. Extraction using NaI, ZnCl2 and NaCl solutions resulted in higher recovery rates from 37 to 97% compared to the CaCl2 solution (28-83%) and varied between polymer types. Low-density MPs (PE, HDPE, PP and PS) were more effectively recovered (> 87%) than the denser polymers (PET and PVC: 37 to 88.8%) using NaCl, NaI and ZnCl2 solutions. However, the effective flotation of ZnCl2 and NaI solutions is relatively expensive and unsafe to the environment, especially in the context of developing countries. Therefore, considering the efficiency, cost and environmental criteria, NaCl solution was selected. The protocol was then tested by extracting MPs from nine riverine sediment samples from the Red River Delta. Sediments collected from urban rivers were highly polluted by MPs (26,000 MPs items·kg-1 DW) compared to sediments located downstream. Using a NaCl solution was found to be effective in this case study and might also be used in long-term and large-scale MP monitoring programmes in Vietnam.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Sedimentos Geológicos , Plásticos , Contaminantes Químicos del Agua/análisis
9.
Environ Monit Assess ; 195(1): 122, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36400901

RESUMEN

This study is devoted to assessing the potential for accumulating heavy metals (Fe, Mn, Cu, Zn) of nine species of aquatic and coastal plants growing in the water area of the Okhta River (St. Petersburg, Russian Federation). The list of studied species included the following: hornwort (Ceratophyllum demersum L.), water soldier (Stratiotes aloides L.), yellow water-lily (Nuphar lutea (L.) Sm.), arrowhead (Sagittaria sagittifolia L.), broadleaf cattail (Typha latifolia L.), water arum (Calla palustris L.), acute sedge (Carex acuta L.), reed canary grass (Phalaris arundinacea L.), and meadowsweet (Filipendula ulmaria (L.) Maxim.). The values of the bioconcentration factor for particular plant tissues were calculated. It has been established that the concentrations of metals in plant tissues can be thousands and tens of thousands of times higher than their content in water. At the same time, the ability of plants to accumulate metals varies greatly and depends on a number of factors, such as environmental conditions, the growing season, the type and ecological group of the plant.The study also attempts to determine the spatial and temporal dynamics of the content of heavy metals in higher aquatic plants. The main difficulties in data interpretation are indicated. The data obtained show the different significance of the study macrophyte species both for bioindication purposes and for use in wastewater treatment. The possibility of using such species as Sagittaria sagittifolia L., Typha latifolia L., Ceratophyllum demersum L., and Calla palustris L. for bioremediation is substantiated.


Asunto(s)
Metales Pesados , Typhaceae , Biodegradación Ambiental , Monitoreo del Ambiente , Metales Pesados/análisis , Plantas , Agua
10.
Environ Res ; 197: 111158, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33887272

RESUMEN

Comprehensive and updated information about polychlorinated biphenyls (PCBs) and brominated flame retardants (BFRs) in surface sediments from Hanoi, the capital city of Vietnam, is rather scarce. In this study, concentrations and profiles of 209 PCBs, 41 polybrominated diphenyl ethers (PBDEs), 2,2',4,4',5,5'-hexabromobiphenyl (BB-153), hexabromocyclododecane (HBCD), pentabromoethylbenzene (PBEB), 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), and decabromodiphenyl ethane (DBDPE) were determined in sediment samples collected from the Red River and some inner-city rivers of Hanoi. Concentrations (ng/g dry weight, median and range) of pollutants decreased in the order: DBDPE (28; not detected ND - 59) ≈ PCBs (27; 1.7-50) > PBDEs (23; 0.20-61) > HBCD (1.2; ND - 5.2) > BTBPE (0.46; ND - 3.6) > BB-153 (0.004; ND - 0.014) > PBEB (ND). Pollutant levels in the inner-city river sediments were about one to two orders of magnitude higher than those measured in the Red River main stream sediments. Tri-to hexa-CBs are major homologs but detailed profiles vary between individual samples, reflecting source and/or seasonal variations. CB-11 and CB-209 were found at higher proportions in sediments than in technical PCB mixtures, suggesting their novel sources from pigments. Deca-BDE and DBDPE are the most predominant BFRs with an increasing trend predicted for DBDPE. A preliminary ecological risk assessment was conducted for these pollutants in sediments. Total PCBs and deca-BDE in a few inner-city river sediments may exhibit adverse effects on benthic organisms, but no serious risk was estimated in general.


Asunto(s)
Retardadores de Llama , Bifenilos Policlorados , Monitoreo del Ambiente , Retardadores de Llama/análisis , Éteres Difenilos Halogenados/análisis , Vietnam
11.
Environ Res ; 197: 111022, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33744272

RESUMEN

Multiple sources contribute to nitrogen(N) and phosphorus (P) pollution in lowland urban rivers, and apportioning the sources of N and P pollution is essential for improving the ecological health of urban environments. Three urban polders in Jiaxing were selected to investigate the temporal variations of N and P pollutants in lowland urban river waters under dry and wet conditions. Moreover, the main potential sources of N and P pollution were identified through the correlations of pollutants and components of dissolved organic matter (DOM) derived from excitation-emission matrix (EEM) and parallel factor analysis (PARAFAC). The results indicate that the main pollution sources identified with PCA method were consistent with the potential sources revealed by DOM's EEM-PARAFAC components. Furthermore, absolute principal components score combined with multivariate linear regression (APCS-MLR) was conducted. The results illustrated that domestic wastewater contributes more than 70% of N pollution and river-bottom sediments contribute more than 50% of P pollution under dry conditions. On the contrary, discharged water from the stormwater outlets contributes more than 41% of P and 75% of N under wet conditions. Specifically, about 48% of them come from domestic wastewater, and about 38% come from urban surface runoff. This study highlights the effectiveness of DOM components derived from EEM-PARAFAC in identifying the sources of N and P pollution and the PCA-APCS-MLR in apportioning the contributions of each potential pollution source in lowland urban rivers.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Químicos del Agua , China , Análisis Factorial , Modelos Lineales , Ríos , Espectrometría de Fluorescencia , Contaminantes Químicos del Agua/análisis
12.
Environ Monit Assess ; 193(12): 847, 2021 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-34839394

RESUMEN

Pharmaceutical and personal care products (PPCPs) recently defined as emerging pollutants that widespread in surface water all around the world. This study investigated the distribution, and ecological risk of PPCPs in urban rivers of Hanoi, Vietnam, and Metro Manila, the Philippines. Of the 56 investigated PPCPs, 48 and 33 compounds were detected in the river water in Hanoi and in Metro Manila, respectively. The individual PPCP concentrations ranged from a few ng L-1 to thousands of ng L-1. The total concentration of PPCPs detected in water samples ranged from 7.5 to 20,789 ng L-1 in Hanoi and 118 to 3,394 ng L-1 in Manila. The predominant antibiotics was sulfamethoxazole detected in 27/28 samples with a maximum concentration up to 2,778 ng L-1 in Hanoi and presented in all samples with a maximum concentration up to 261 ng L-1 in Metro Manila. In Hanoi, the level of PPCPs in urban canals of Kim Nguu and To Lich Rivers was as high as that detected in domestic wastewater. The PPCP concentrations in tributaries and mainstream were lower than those found in urban canals. In rivers of both sites, PPCPs tended to increase along the stream. The concentration ratio of the labile marker caffeine to recalcitrant marker carbamazepine indicated that untreated domestic wastewater is the significant source of PPCPs in river water in Hanoi and Metro Manila. The ecological risk estimated by the risk quotient of the obtained maximum residue of PPCPs in investigated river water predicted a high risk of PPCPs to the aquatic organism in both Hanoi and Manila.


Asunto(s)
Cosméticos , Preparaciones Farmacéuticas , Contaminantes Químicos del Agua , China , Cosméticos/análisis , Monitoreo del Ambiente , Filipinas , Ríos , Contaminantes Químicos del Agua/análisis
13.
Environ Eng Sci ; 31(12): 653-663, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25469076

RESUMEN

This article explores the applicability of fluorescence and absorbance spectroscopy for estimating organic pollution in polluted rivers. The relationship between absorbance, fluorescence intensity, dissolved organic carbon, biochemical oxygen demand (BOD), chemical oxygen demand (COD), and other water quality parameters were used to characterize and identify the origin and the spatial variability of the organic pollution in a highly polluted watershed. Analyses were performed for the Iguassu River, located in southern Brazil, with area about 2,700 km2 and ∼3 million inhabitants. Samples were collect at six monitoring sites covering 107 km of the main river. BOD, COD, nitrogen, and phosphorus concentration indicates a high input of sewage to the river. Specific absorbance at 254 and 285 nm (SUVA254 and A285/COD) did not show significant variation between sites monitored, indicating the presence of both dissolved compounds found in domestic effluents and humic and fulvic compounds derived from allochthonous organic matter. Correlations between BOD and tryptophan-like fluorescence peak (peak T2, r=0.7560, and peak T1, r=0.6949) and tyrosine-like fluorescence peak (peak B, r=0.7321) indicated the presence of labile organic matter and thus confirmed the presence of sewage in the river. Results showed that fluorescence and absorbance spectroscopy provide useful information on pollution in rivers from critical watersheds and together are a robust method that is simpler and more rapid than traditional methods employed by regulatory agencies.

14.
Environ Technol ; : 1-14, 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39034618

RESUMEN

An ecological revetment is a new type that combines natural vegetation with civil engineering technology to establish functions, such as flood control, drainage, ecology, and landscape. Various types of ecological and other bank protection lead to different bank protection effects. Urban river ecological bank protection can effectively prevent bank collapse and promote mutual infiltration between river water and soil and is important for maintaining the balance of the river ecosystem and enhancing the ecological service function of river bank protection. To scientifically and accurately evaluate the ecological protection of riverbanks, this study screened 16 evaluation indicators based on four aspects: structural stability, ecological functionality, landscape suitability, and socio-economic status. A comprehensive evaluation index system for urban river ecological protection was constructed and an urban river ecological protection evaluation model based on the AHP - TOPSIS method was established. The model was used to evaluate the ecological protection of the rivers in the study area. The results revealed that the evaluation value, 0.830, of the self-embedded retaining wall exhibited the best performance among the current slope protection types. In addition, structural stability is a crucial factor in river ecological revetments, and the evaluation results were consistent with the revetment type selected in actual engineering. Therefore, the evaluation system constructed in this study is reasonable and reliable and has strong generalizability. This study provides theoretical guidance for selecting ecological protection banks for future river management projects and has specific references important for academic research and the development of environmental protection banks.

15.
Huan Jing Ke Xue ; 45(3): 1457-1467, 2024 Mar 08.
Artículo en Zh | MEDLINE | ID: mdl-38471861

RESUMEN

Urban rivers are the main receptors and transporters of microplastic pollution. Understanding the occurrence and environmental risk of microplastics in urban rivers can provide theoretical basis for further control of microplastic pollution. The Sishui River, a tributary of the Yellow River, was selected as the research object. A total of nine water samples were collected from sewage outlets of the Sishui River (Xingyang section). The microplastics in the collected samples were characterized by their sizes, shapes, and colors using a microscope. It was found that microplastics were mostly in the form of transparent fibers and fragments in the water body of sewage outlets, of which the size below 500 µm was relatively high. In addition, PET and PE polymers were identified as the main types using a laser infrared imager. The correlation analysis showed that there was a significant correlation between the PET and PE, indicating that they were similar in origin. The results of the environmental risk assessment showed that the type of microplastics was the main factor affecting the assessment results, whereas the risk values of six sewage samples containing PVC were high. However, the value of pollution load index revealed a low risk level of pollutants in the study area.

16.
Water Res ; 251: 121144, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38277822

RESUMEN

Urban rivers are hotspots of N2O production and emission. Interconnected river-lake networks are constructed to improve the water quality and hydrodynamic conditions of urban rivers in many cities of China. However, the impact of the river-lake connectivity project on N2O production and emission remains unclear. This study investigated dissolved N2O and emission of the river-lake network in Wuhan City, China from March 2021 to December 2021. The results showed that river-lake connection greatly decreased riverine Nitrogen (N) concentration and increased dissolved oxygen (DO) concentration compare to traditional urban rivers. N2O emissions from the urban river interconnected with lakes (LUR: 67.3 ± 92.6 µmol/m2/d) were much lower than those from the traditional urban rivers (UR: 467.3 ± 1075.7 µmol/m2/d) and agricultural rivers (AR: 20.4 ± 15.3µmol/m2/d). Regression tree analysis suggested that the N2O concentrations were extremely high when hypoxia exists (DO < 1.6 mg/L), and TDN was the primary factor regulating N2O concentrations when hypoxia does not occur. Thus, we ascribe the low N2O emission in the LUR and AR to the lower N contents and higher DO concentrations. The microbial process of N2O production and consumption were quantitatively estimated by isotopic models. The mean proportion of denitrification derived N2O (fbD) was 63.5 %, 55.6 %, 42.3 % and 42.7 % in the UR, LUR, lakes and AR, suggested denitrification dominated N2O production in the urban rivers, but nitrification dominated N2O production in the lakes and AR. The positive correlation between logN2O and fbD suggested that denitrification is the key process to regulate the N2O production and emission. The abundance of denitrification genes (nirS and nirK) was much higher than that of nitrification genes (amoA and amoB), also evidenced that denitrification was the main N2O source. Therefore, river-lake interconnected projects changed the nutrients level and hypoxic condition, leading to the inhibition of denitrification and nitrification, and ultimately resulting in a decrease of N2O production and emission. These results advance the knowledge on the microbial processes that regulate N2O emissions in inland waters and illustrate the integrated management of water quality and N2O emission.


Asunto(s)
Desnitrificación , Ríos , Humanos , Lagos , Óxido Nitroso , Nitrificación , Hipoxia
17.
Mar Pollut Bull ; 199: 115973, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38171161

RESUMEN

Microplastics (MPs) are emerging as global environmental pollutants, significantly influencing the safety of city rivers. This study investigated six sampling sites in the Qinhuai River of Nanjing, which explored the distribution and characteristics of MPs and the microbial structure in 2023. The studied river contained various levels of MPs with average concentrations of 667.68 items/L, whose abundance firstly decreased midstream and then increased downstream. The MPs abundance upstream was higher in surface water column, microplastics midstream and downstream accumulated more in deep water column. Black and blue are prevalent in the color distribution, while the polymers of PC, PP and PS changed with increasing depth, with a proportion of 74 % âˆ¼ 97 % in the dominant shapes of granules. Furthermore, the water with higher MPs may stimulate the growth of MPs-related bacteria in sediments, including the genus of Pseudoxanthomonas and Dechloromonas. Our research will provide constructive support for enhancing urban river management strategies.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Plásticos , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Agua , China , Sedimentos Geológicos/química
18.
Environ Sci Pollut Res Int ; 31(18): 26355-26377, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38530521

RESUMEN

Urban rivers are affected at different levels by the intensification of human activities, representing a serious threat to the maintenance of terrestrial life and sustainable urban development. Consequently, great efforts have been dedicated to the ecological restoration of urban rivers around the world, as a solution to recovering the environmental functionality of these environments. In this sense, the present work aimed to investigate the effectiveness of interventions carried out aimed at the recovery of urban rivers, through a systematic review of the literature between 2010 and 2022, using the search term "rivers recovery." The results showed that there have been notable advances in the implementation of river recovery programs in urban areas around the world between the years analyzed. The ecosystems studied were affected, for the most part, by the increase in the supply of nutrients from domestic and industrial effluents, in addition to having highly urbanized surroundings and with several changes in land use patterns. The preparation of this literature review made it possible to demonstrate that the effectiveness of river recovery is extremely complex, since river recovery projects are developed for different reasons, as well as being carried out in different ways according to the intended objective.


Asunto(s)
Ríos , Ríos/química , Ecosistema , Restauración y Remediación Ambiental/métodos , Humanos , Conservación de los Recursos Naturales
19.
Environ Sci Pollut Res Int ; 31(15): 22362-22379, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38409380

RESUMEN

Urban rivers are significantly impacted by anthropogenic pressure. This study presents the updated assessment of the concentrations of 11 metals and other variables (pH, total organic carbon (TOC) and nutrients (total nitrogen, total phosphorus, and total silica)) in the sediments of four urban rivers in inner Hanoi city, Vietnam, during the period 2020-2022. The mean concentrations of Fe, Zn, As, and Cr were higher than the permissible values of the Vietnam National technical regulation on the surface sediment quality. Moreover, Zn and Cr were at the severe effect level of the US EPA guidelines for sediment quality. The calculation of pollution indices (Igeo and EF) demonstrated that Mn, Ni, and Fe were from natural sources whereas other metals were from both anthropogenic and natural sources. The ecological risk index revealed that metals in Hanoi riverine sediments were classified at considerable ecological risk. High values of metals, TOC, and nutrients in the sediments of these urban rivers mostly originate from the accumulation of untreated urban wastewater that is enhanced by low river discharge. Our results may provide scientific base for better management decisions to ensure environmental protection and sustainable development of Hanoi city.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Metales Pesados/análisis , Vietnam , Ríos , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos , Monitoreo del Ambiente/métodos , Asia , Medición de Riesgo , China
20.
Ecol Evol ; 14(2): e10845, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38327686

RESUMEN

Our aim was to examine temporal change in alpha and beta diversity of freshwater fish communities in rivers that have urbanized over the same period to understand the influence of changes in land use and river connectivity on community change. We used biological (2001-2018), land use (2000-2015), and connectivity data (1987-2017) from Toronto, Ontario, Canada. We used linear mixed effects models to determine the strength of upstream land use, connectivity, and their changes over time to explain temporal change in alpha and beta diversity indices. We examined beta diversity using the temporal beta diversity index (TBI) to assess site-specific community change. The TBI was partitioned into gains and losses, and species-specific changes in abundance were assessed using paired t-tests. There were more gains than losses across the study sites as measured by TBI. We found little to no significant differences in species-specific abundances at aggregated spatial scales (study region, watershed, stream order). We found different relationships between landscape and connectivity variables with the biodiversity indices tested; however, almost all estimated confidence intervals overlapped with zero and had low goodness-of-fit. More fish biodiversity gains than losses were found across the study region, as measured by TBI. We found TBI to be a useful indicator of change as it identifies key sites to further investigate. We found two high value TBI sites gained non-native species, and one site shifted from a cool-water to warm-water species dominated community, both of which have management implications. Upstream catchment land use and connectivity had poor explanatory power for change in the measured biodiversity indices. Ultimately, such spatial-temporal datasets are invaluable and can reveal trends in biodiversity useful for environmental management when considering competing interests involved with urban sprawl in the ongoing "Decade on Restoration."

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA