Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell Mol Life Sci ; 81(1): 286, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970652

RESUMEN

Paralog factors are considered to ensure the robustness of biological processes by providing redundant activity in cells where they are co-expressed. However, the specific contribution of each factor is frequently underestimated. In the developing spinal cord, multiple families of transcription factors successively contribute to differentiate an initially homogenous population of neural progenitors into a myriad of neuronal subsets with distinct molecular, morphological, and functional characteristics. The LIM-homeodomain transcription factors Lhx3, Lhx4, Isl1 and Isl2 promote the segregation and differentiation of spinal motor neurons and V2 interneurons. Based on their high sequence identity and their similar distribution, the Lhx3 and Lhx4 paralogs are considered to contribute similarly to these processes. However, the specific contribution of Lhx4 has never been studied. Here, we provide evidence that Lhx3 and Lhx4 are present in the same cell populations during spinal cord development. Similarly to Lhx3, Lhx4 can form multiproteic complexes with Isl1 or Isl2 and the nuclear LIM interactor NLI. Lhx4 can stimulate a V2-specific enhancer more efficiently than Lhx3 and surpasses Lhx3 in promoting the differentiation of V2a interneurons in chicken embryo electroporation experiments. Finally, Lhx4 inactivation in mice results in alterations of differentiation of the V2a subpopulation, but not of motor neuron production, suggesting that Lhx4 plays unique roles in V2a differentiation that are not compensated by the presence of Lhx3. Thus, Lhx4 could be the major LIM-HD factor involved in V2a interneuron differentiation during spinal cord development and should be considered for in vitro differentiation of spinal neuronal populations.


Asunto(s)
Diferenciación Celular , Interneuronas , Proteínas con Homeodominio LIM , Médula Espinal , Factores de Transcripción , Animales , Proteínas con Homeodominio LIM/metabolismo , Proteínas con Homeodominio LIM/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Interneuronas/metabolismo , Interneuronas/citología , Médula Espinal/citología , Médula Espinal/metabolismo , Médula Espinal/embriología , Embrión de Pollo , Ratones , Neuronas Motoras/metabolismo , Neuronas Motoras/citología , Humanos , Regulación del Desarrollo de la Expresión Génica
2.
Genesis ; 59(7-8): e23435, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34080769

RESUMEN

In the spinal cord, ventral interneurons regulate the activity of motor neurons, thereby controlling motor activities including locomotion. Interneurons arise during embryonic development from distinct progenitor domains orderly distributed along the dorso-ventral axis of the neural tube. The p2 progenitor domain generates at least five V2 interneuron populations. However, identification and characterization of all V2 populations remain currently incomplete and the mechanisms that control their development remain only partly understood. In this study, we report the generation of a Vsx1-CreERT2 BAC transgenic mouse line that drives CreERT2 recombinase expression mimicking endogenous Vsx1 expression pattern in the developing spinal cord. We showed that the Vsx1-CreERT2 transgene can mediate recombination in V2 precursors with a high efficacy and specificity. Lineage tracing demonstrated that all the V2 interneurons in the mouse developing spinal cord derive from cells expressing Vsx1. Finally, we confirmed that V2 precursors generate additional V2 populations that are not characterized yet. Thus, the Vsx1-CreERT2 line described here is a useful genetic tool for lineage tracing and for functional studies of the mouse spinal V2 interneurons.


Asunto(s)
Proteínas del Ojo/genética , Marcación de Gen/métodos , Proteínas de Homeodominio/genética , Interneuronas/metabolismo , Neurogénesis , Médula Espinal/metabolismo , Animales , Linaje de la Célula , Proteínas del Ojo/metabolismo , Proteínas de Homeodominio/metabolismo , Integrasas/genética , Integrasas/metabolismo , Interneuronas/citología , Ratones , Ratones Endogámicos C57BL , Médula Espinal/citología , Médula Espinal/embriología , Tamoxifeno/farmacología , Activación Transcripcional/efectos de los fármacos , Transgenes
3.
Cell Mol Life Sci ; 77(20): 4117-4131, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31822965

RESUMEN

Paralog factors are usually described as consolidating biological systems by displaying redundant functionality in the same cells. Here, we report that paralogs can also cooperate in distinct cell populations at successive stages of differentiation. In mouse embryonic spinal cord, motor neurons and V2 interneurons differentiate from adjacent progenitor domains that share identical developmental determinants. Therefore, additional strategies secure respective cell fate. In particular, Hb9 promotes motor neuron identity while inhibiting V2 differentiation, whereas Chx10 stimulates V2a differentiation while repressing motor neuron fate. However, Chx10 is not present at the onset of V2 differentiation and in other V2 populations. In the present study, we show that Vsx1, the single paralog of Chx10, which is produced earlier than Chx10 in V2 precursors, can inhibit motor neuron differentiation and promote V2 interneuron production. However, the single absence of Vsx1 does not impact on V2 fate consolidation, suggesting that lack of Vsx1 may be compensated by other factors. Nevertheless, Vsx1 cooperates with Chx10 to prevent motor neuron differentiation in early V2 precursors although these two paralog factors are not produced in the same cells. Hence, this study uncovers an original situation, namely labor division, wherein paralog genes cooperate at successive steps of neuronal development.


Asunto(s)
Proteínas del Ojo/genética , Proteínas de Homeodominio/genética , Interneuronas/fisiología , Neuronas Motoras/fisiología , Médula Espinal/fisiología , Factores de Transcripción/genética , Animales , Diferenciación Celular/genética , Línea Celular , Regulación del Desarrollo de la Expresión Génica/genética , Células HEK293 , Humanos , Ratones
4.
Dev Biol ; 413(1): 86-103, 2016 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-26187199

RESUMEN

During development of the CNS, stem and progenitor cell proliferation, cell fate designation, and patterning decisions are tightly regulated by interdependent networks of key transcriptional regulators. In a genetic approach we analyzed divergent functionality of the PAI and RED sub-domains of the Pax6 Paired domain (PD) during progenitor zone formation, motor and interneuron development, and peripheral connectivity at distinct levels within the neural tube: within the hindbrain, mutation of the PAI sub-domain severely affected patterning of the p3 and pMN domains and establishment of the corresponding motor neurons. Exit point designation of hypoglossal axons was disturbed in embryos harboring either mutations in the PD sub-domains or containing a functional Pax6 Null allele. At brachial spinal levels, we propose a selective involvement of the PAI sub-domain during patterning of ventral p2 and pMN domains, critically disturbing generation of specific motor neuron subtypes and increasing V2 interneuron numbers. Our findings present a novel aspect of how Pax6 not only utilizes its modular structure to perform distinct functions via its paired and homeodomain. Individual sub-domains can exert distinct functions, generating a new level of complexity for transcriptional regulation by one single transcription factor not only in dorso-ventral, but also rostro-caudal neural tube patterning.


Asunto(s)
Proteínas del Ojo/genética , Proteínas de Homeodominio/genética , Tubo Neural/embriología , Factores de Transcripción Paired Box/genética , Sistema Nervioso Periférico/embriología , Proteínas Represoras/genética , Alelos , Animales , Axones/metabolismo , Axones/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Tipificación del Cuerpo , Linaje de la Célula , Proliferación Celular , Proteínas de Unión al ADN/genética , Proteínas del Ojo/fisiología , Regulación del Desarrollo de la Expresión Génica , Genotipo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/fisiología , Inmunohistoquímica , Hibridación in Situ , Interneuronas/metabolismo , Ratones , Neuronas Motoras/metabolismo , Mutación , Proteínas del Tejido Nervioso/genética , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/fisiología , Fenotipo , Estructura Terciaria de Proteína , Proteínas Represoras/fisiología , Rombencéfalo/metabolismo , Células Madre/citología , Factores de Transcripción/genética
5.
J Neurosci ; 34(47): 15816-31, 2014 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-25411508

RESUMEN

Specification of spinal cord neurons depends on gene regulation networks that impose distinct fates in neural progenitor cells (NPCs). Olig2 is a key transcription factor in these networks by inducing motor neuron (MN) specification and inhibiting interneuron identity. Despite the critical role of Olig2 in nervous system development and cancer progression, the upstream molecular mechanisms that control Olig2 gene transcription are not well understood. Here we demonstrate that Prox1, a transcription repressor and downstream target of proneural genes, suppresses Olig2 expression and therefore controls ventral spinal cord patterning. In particular, Prox1 is strongly expressed in V2 interneuron progenitors and largely excluded from Olig2+ MN progenitors (pMN). Gain- and loss-of-function studies in mouse NPCs and chick neural tube show that Prox1 is sufficient and necessary for the suppression of Olig2 expression and proper control of MN versus V2 interneuron identity. Mechanistically, Prox1 interacts with the regulatory elements of Olig2 gene locus in vivo and it is critical for proper Olig2 transcription regulation. Specifically, chromatin immunoprecipitation analysis in the mouse neural tube showed that endogenous Prox1 directly binds to the proximal promoter of the Olig2 gene locus, as well as to the K23 enhancer, which drives Olig2 expression in the pMN domain. Moreover, plasmid-based transcriptional assays in mouse NPCs suggest that Prox1 suppresses the activity of Olig2 gene promoter and K23 enhancer. These observations indicate that Prox1 controls binary fate decisions between MNs and V2 interneurons in NPCs via direct repression of Olig2 gene regulatory elements.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/biosíntesis , Proteínas de Homeodominio/fisiología , Proteínas del Tejido Nervioso/biosíntesis , Neuronas/fisiología , Médula Espinal/fisiología , Proteínas Supresoras de Tumor/fisiología , Animales , Embrión de Pollo , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/fisiología , Interneuronas/fisiología , Ratones , Ratones Transgénicos , Neuronas Motoras/fisiología , Células-Madre Neurales/fisiología , Factor de Transcripción 2 de los Oligodendrocitos , Médula Espinal/citología , Médula Espinal/crecimiento & desarrollo
6.
Front Cell Neurosci ; 13: 184, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31231191

RESUMEN

Acquisition of proper neuronal identity and position is critical for the formation of neural circuits. In the embryonic spinal cord, cardinal populations of interneurons diversify into specialized subsets and migrate to defined locations within the spinal parenchyma. However, the factors that control interneuron diversification and migration remain poorly characterized. Here, we show that the Onecut transcription factors are necessary for proper diversification and distribution of the V2 interneurons in the developing spinal cord. Furthermore, we uncover that these proteins restrict and moderate the expression of spinal isoforms of Pou2f2, a transcription factor known to regulate B-cell differentiation. By gain- or loss-of-function experiments, we show that Pou2f2 contribute to regulate the position of V2 populations in the developing spinal cord. Thus, we uncovered a genetic pathway that regulates the diversification and the distribution of V2 interneurons during embryonic development.

7.
Front Mol Neurosci ; 9: 145, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28082864

RESUMEN

Spinal ventral interneurons regulate the activity of motor neurons, thereby controlling motor activities. Interneurons arise during embryonic development from distinct progenitor domains distributed orderly along the dorso-ventral axis of the neural tube. A single ventral progenitor population named p2 generates at least five V2 interneuron subsets. Whether the diversification of V2 precursors into multiple subsets occurs within the p2 progenitor domain or involves a later compartment of early-born V2 interneurons remains unsolved. Here, we provide evidence that the p2 domain produces an intermediate V2 precursor compartment characterized by the transient expression of the transcriptional repressor Vsx1. These cells display an original repertoire of cellular markers distinct from that of any V2 interneuron population. They have exited the cell cycle but have not initiated neuronal differentiation. They coexpress Vsx1 and Foxn4, suggesting that they can generate the known V2 interneuron populations as well as possible additional V2 subsets. Unlike V2 interneurons, the generation of Vsx1-positive precursors does not depend on the Notch signaling pathway but expression of Vsx1 in these cells requires Pax6. Hence, the p2 progenitor domain generates an intermediate V2 precursor compartment, characterized by the presence of the transcriptional repressor Vsx1, that contributes to V2 interneuron development.

8.
Dev Neurobiol ; 75(7): 721-37, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25369423

RESUMEN

Motor activities are controlled by neural networks in the ventral spinal cord and consist in motor neurons and a set of distinct cardinal classes of spinal interneurons. These interneurons arise from distinct progenitor domains (p0-p3) delineated according to a transcriptional code. Neural progenitors of each domain express a unique combination of transcription factors (TFs) that largely contribute to determine the fate of four classes of interneurons (V0-V3) and motor neurons. In p2 domain, at least four subtypes of interneurons namely V2a, V2b, V2c, and Pax6(+) V2 are generated. Although genetic and molecular mechanisms that specify V2a and V2b are dependent on complex interplay between several TFs including Nkx6.1, Irx3, Gata2, Foxn4, and Ascl1, and signaling pathways such as Notch and TGF-ß, the sequence order of the activation of these regulators and their respective contribution are not completely elucidated yet. Here, we provide evidence by loss- or gain-of-function experiments that Gata2 is necessary for the normal development of both V2a and V2b neurons. We demonstrate that Nkx6.1 and Dll4 positively regulate the activation of Gata2 and Foxn4 in p2 progenitors. Gata2 also participates in the maintenance of p2 domain by repressing motor neuron differentiation and exerting a feedback control on patterning genes. Finally, Gata2 promotes the selective activation of V2b program at the expense of V2a fate. Thus our results provide new insights on the hierarchy and complex interactions between regulators of V2 genetic program.


Asunto(s)
Proteínas Aviares/metabolismo , Factor de Transcripción GATA2/metabolismo , Interneuronas/fisiología , Médula Espinal/embriología , Médula Espinal/fisiología , Proteínas Adaptadoras Transductoras de Señales , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Unión al Calcio , Embrión de Pollo , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Factores de Transcripción Forkhead/metabolismo , Factor de Transcripción GATA2/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Interneuronas/citología , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Noqueados , Ratones Transgénicos , Neuronas Motoras/citología , Neuronas Motoras/fisiología , Neurogénesis/fisiología , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/genética , Factores de Transcripción Paired Box/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Médula Espinal/citología , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
9.
Gene Expr Patterns ; 13(8): 328-34, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23816521

RESUMEN

The embryonic spinal cord in mice is organized into eleven progenitor domains. Cells in each domain first produce neurons and then switch to specifying glia. Five of these domains known as p3, pMN, p2, p1 and p0 are located in the ventral spinal cord and each expresses a unique code of transcription factors (TFs) that define the molecular profile of progenitor cells. This code is largely responsible for determining the subtype specification of neurons generated from each domain. Pax6 codes for a homedomain-containing TF that plays a central role in defining the molecular boundaries between the two ventral-most domains, p3 and pMN. Using fate mapping and gene expression studies we show that PAX6, in addition to each patterning function, is expressed in a group of late born interneurons that derive from the p2 and p0 domains. The p2-derived neurons represent a subset of late born V2b interneurons and their specification depends on Notch signaling. The V0 neurons represent V0v ventral neurons expressing Pax2. Our data demonstrate that interneuron diversity in the ventral spinal cord is more complex than originally appreciated and point to the existence of additional mechanisms that determine interneuron diversity, particularly in the p2 domain.


Asunto(s)
Proteínas del Ojo/metabolismo , Proteínas de Homeodominio/metabolismo , Interneuronas/metabolismo , Factores de Transcripción Paired Box/metabolismo , Proteínas Represoras/metabolismo , Médula Espinal/citología , Animales , Tipificación del Cuerpo , Linaje de la Célula , Proteínas del Ojo/genética , Femenino , Factor de Transcripción GATA3/metabolismo , Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Masculino , Ratones , Ratones Transgénicos , Células-Madre Neurales/metabolismo , Factor de Transcripción PAX2/metabolismo , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/genética , Receptores Notch/metabolismo , Proteínas Represoras/genética , Transducción de Señal , Médula Espinal/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA