Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 471
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 186(10): 2208-2218.e15, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37098345

RESUMEN

Semliki Forest virus (SFV) is an alphavirus that uses the very-low-density lipoprotein receptor (VLDLR) as a receptor during infection of its vertebrate hosts and insect vectors. Herein, we used cryoelectron microscopy to study the structure of SFV in complex with VLDLR. We found that VLDLR binds multiple E1-DIII sites of SFV through its membrane-distal LDLR class A (LA) repeats. Among the LA repeats of the VLDLR, LA3 has the best binding affinity to SFV. The high-resolution structure shows that LA3 binds SFV E1-DIII through a small surface area of 378 Å2, with the main interactions at the interface involving salt bridges. Compared with the binding of single LA3s, consecutive LA repeats around LA3 promote synergistic binding to SFV, during which the LAs undergo a rotation, allowing simultaneous key interactions at multiple E1-DIII sites on the virion and enabling the binding of VLDLRs from divergent host species to SFV.


Asunto(s)
Receptores de LDL , Virus de los Bosques Semliki , Alphavirus/metabolismo , Microscopía por Crioelectrón , Virus de los Bosques Semliki/metabolismo , Virus de los Bosques Semliki/ultraestructura , Receptores de LDL/metabolismo , Receptores de LDL/ultraestructura , Receptores Virales/metabolismo , Receptores Virales/ultraestructura
2.
Cell ; 185(9): 1539-1548.e5, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35429436

RESUMEN

Virus-like particle (VLP) and live virus assays were used to investigate neutralizing immunity against Delta and Omicron SARS-CoV-2 variants in 259 samples from 128 vaccinated individuals. Following Delta breakthrough infection, titers against WT rose 57-fold and 3.1-fold compared with uninfected boosted and unboosted individuals, respectively, versus only a 5.8-fold increase and 3.1-fold decrease for Omicron breakthrough infection. Among immunocompetent, unboosted patients, Delta breakthrough infections induced 10.8-fold higher titers against WT compared with Omicron (p = 0.037). Decreased antibody responses in Omicron breakthrough infections relative to Delta were potentially related to a higher proportion of asymptomatic or mild breakthrough infections (55.0% versus 28.6%, respectively), which exhibited 12.3-fold lower titers against WT compared with moderate to severe infections (p = 0.020). Following either Delta or Omicron breakthrough infection, limited variant-specific cross-neutralizing immunity was observed. These results suggest that Omicron breakthrough infections are less immunogenic than Delta, thus providing reduced protection against reinfection or infection from future variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/inmunología , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos
3.
Immunity ; 49(4): 695-708.e4, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30291027

RESUMEN

B cells can present antigens to CD4+ T cells, but it is thought that dendritic cells (DCs) are the primary initiators of naive CD4+ T cell responses. Nanoparticles, including virus-like particles (VLPs), are attractive candidates as carriers for vaccines and drug delivery. Using RNA phage Qß-derived VLP (Qß-VLP) as a model antigen, we found that antigen-specific B cells were the dominant antigen-presenting cells that initiated naive CD4+ T cell activation. B cells were sufficient to induce T follicular helper cell development in the absence of DCs. Qß-specific B cells promoted CD4+ T cell proliferation and differentiation via cognate interactions and through Toll-like receptor signaling-mediated cytokine production. Antigen-specific B cells were also involved in initiating CD4+ T cell responses during immunization with inactivated influenza virus. These findings have implications for the rational design of nanoparticles as vaccine candidates, particularly for therapeutic vaccines that aim to break immune tolerance.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Inmunización/métodos , Vacunas contra la Influenza/inmunología , Animales , Presentación de Antígeno/inmunología , Antígenos Virales/química , Antígenos Virales/inmunología , Diferenciación Celular/inmunología , Citocinas/inmunología , Citocinas/metabolismo , Subtipo H1N1 del Virus de la Influenza A/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Nanopartículas/química , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/metabolismo , Receptores Toll-Like/inmunología , Vacunas de Productos Inactivados/inmunología
4.
Proc Natl Acad Sci U S A ; 121(11): e2307812120, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38437549

RESUMEN

A number of endogenous genes in the human genome encode retroviral gag-like proteins, which were domesticated from ancient retroelements. The paraneoplastic Ma antigen (PNMA) family members encode a gag-like capsid domain, but their ability to assemble as capsids and traffic between cells remains mostly uncharacterized. Here, we systematically investigate human PNMA proteins and find that a number of PNMAs are secreted by human cells. We determine that PNMA2 forms icosahedral capsids efficiently but does not naturally encapsidate nucleic acids. We resolve the cryoelectron microscopy (cryo-EM) structure of PNMA2 and leverage the structure to design engineered PNMA2 (ePNMA2) particles with RNA packaging abilities. Recombinantly purified ePNMA2 proteins package mRNA molecules into icosahedral capsids and can function as delivery vehicles in mammalian cell lines, demonstrating the potential for engineered endogenous capsids as a nucleic acid therapy delivery modality.


Asunto(s)
Antígenos de Neoplasias , Cápside , Proteínas del Tejido Nervioso , Animales , Humanos , ARN Mensajero/genética , Microscopía por Crioelectrón , Mamíferos
5.
Immunity ; 46(5): 777-791.e10, 2017 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-28514685

RESUMEN

Most HIV-1-specific neutralizing antibodies isolated to date exhibit unusual characteristics that complicate their elicitation. Neutralizing antibodies that target the V1V2 apex of the HIV-1 envelope (Env) trimer feature unusually long protruding loops, which enable them to penetrate the HIV-1 glycan shield. As antibodies with loops of requisite length are created through uncommon recombination events, an alternative mode of apex binding has been sought. Here, we isolated a lineage of Env apex-directed neutralizing antibodies, N90-VRC38.01-11, by using virus-like particles and conformationally stabilized Env trimers as B cell probes. A crystal structure of N90-VRC38.01 with a scaffolded V1V2 revealed a binding mode involving side-chain-to-side-chain interactions that reduced the distance the antibody loop must traverse the glycan shield, thereby facilitating V1V2 binding via a non-protruding loop. The N90-VRC38 lineage thus identifies a solution for V1V2-apex binding that provides a more conventional B cell pathway for vaccine design.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , Proteína gp120 de Envoltorio del VIH/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Fragmentos de Péptidos/inmunología , Conformación Proteica , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Secuencia de Aminoácidos , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/metabolismo , Linfocitos B/inmunología , Linfocitos B/metabolismo , Sitios de Unión , Regiones Determinantes de Complementariedad/química , Regiones Determinantes de Complementariedad/inmunología , Anticuerpos Anti-VIH/química , Anticuerpos Anti-VIH/metabolismo , Proteína gp120 de Envoltorio del VIH/química , Proteína gp120 de Envoltorio del VIH/metabolismo , Infecciones por VIH/virología , Humanos , Modelos Moleculares , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Filogenia , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Vacunas de Partículas Similares a Virus/química , Vacunas de Partículas Similares a Virus/inmunología , Vacunas de Partículas Similares a Virus/metabolismo
6.
J Virol ; 98(5): e0023924, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38647327

RESUMEN

Dengue virus (DENV) represents a significant global health burden, with 50% of the world's population at risk of infection, and there is an urgent need for next-generation vaccines. Virus-like particle (VLP)-based vaccines, which mimic the antigenic structure of the virus but lack the viral genome, are an attractive approach. Here, we describe a dengue VLP (DENVLP) vaccine which generates a neutralizing antibody response against all four DENV serotypes in 100% of immunized non-human primates for up to 1 year. Additionally, DENVLP vaccination produced no ADE response against any of four DENV serotypes in vitro. DENVLP vaccination reduces viral replication in a non-human primate challenge model. We also show that transfer of purified IgG from immunized monkeys into immunodeficient mice protects against subsequent lethal DENV challenge, indicating a humoral mechanism of protection. These results indicate that this DENVLP vaccine is immunogenic and can be considered for clinical evaluation. Immunization of non-human primates with a tetravalent DENVLP vaccine induces high levels of neutralizing antibodies and reduces the severity of infection for all four dengue serotypes.IMPORTANCEDengue is a viral disease that infects nearly 400 million people worldwide and causes dengue hemorrhagic fever, which is responsible for 10,000 deaths each year. Currently, there is no therapeutic drug licensed to treat dengue infection, which makes the development of an effective vaccine essential. Virus-like particles (VLPs) are a safe and highly immunogenic platform that can be used in young children, immunocompromised individuals, as well as healthy adults. In this study, we describe the development of a dengue VLP vaccine and demonstrate that it induces a robust immune response against the dengue virus for over 1 year in monkeys. The immunity induced by this vaccine reduced live dengue infection in both murine and non-human primate models. These results indicate that our dengue VLP vaccine is a promising vaccine candidate.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas contra el Dengue , Virus del Dengue , Dengue , Vacunas de Partículas Similares a Virus , Animales , Femenino , Ratones , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Dengue/prevención & control , Dengue/inmunología , Dengue/virología , Vacunas contra el Dengue/inmunología , Vacunas contra el Dengue/administración & dosificación , Virus del Dengue/inmunología , Modelos Animales de Enfermedad , Inmunoglobulina G/inmunología , Macaca fascicularis , Macaca mulatta , Serogrupo , Vacunación , Vacunas de Partículas Similares a Virus/inmunología , Vacunas de Partículas Similares a Virus/administración & dosificación , Replicación Viral
7.
Infect Immun ; : e0027024, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023271

RESUMEN

Bordetella pertussis, the bacterium responsible for whooping cough, remains a significant public health challenge despite the existing licensed pertussis vaccines. Current acellular pertussis vaccines, though having favorable reactogenicity and efficacy profiles, involve complex and costly production processes. In addition, acellular vaccines have functional challenges such as short-lasting duration of immunity and limited antigen coverage. Filamentous hemagglutinin (FHA) is an adhesin of B. pertussis that is included in all multivalent pertussis vaccine formulations. Antibodies to FHA have been shown to prevent bacterial attachment to respiratory epithelial cells, and T cell responses to FHA facilitate cell-mediated immunity. In this study, FHA's mature C-terminal domain (MCD) was evaluated as a novel vaccine antigen. MCD was conjugated to virus-like particles via SpyTag-SpyCatcher technology. Prime-boost vaccine studies were performed in mice to characterize immunogenicity and protection against the intranasal B. pertussis challenge. MCD-SpyVLP was more immunogenic than SpyTag-MCD antigen alone, and in Tohama I strain challenge studies, improved protection against challenge was observed in the lungs at day 3 and in the trachea and nasal wash at day 7 post-challenge. Furthermore, a B. pertussis strain encoding genetically inactivated pertussis toxin was used to evaluate MCD-SpyVLP vaccine immunity. Mice vaccinated with MCD-SpyVLP had significantly lower respiratory bacterial burden at both days 3 and 7 post-challenge compared to mock-vaccinated animals. Overall, these data support the use of SpyTag-SpyCatcher VLPs as a platform for use in vaccine development against B. pertussis and other pathogens.

8.
J Virol ; 97(10): e0042623, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37830820

RESUMEN

IMPORTANCE: Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), the virus responsible for coronavirus disease 2019 (COVID-19), has caused a global public health crisis. The E protein, a structural protein found in this virus particle, is also known to be a viroporin. As such, it forms oligomeric ion channels or pores in the host cell membrane. However, the relationship between these two functions is poorly understood. In this study, we showed that the roles of E protein in virus particle and viroporin formation are distinct. This study contributes to the development of drugs that inhibit SARS-CoV-2 virus particle formation. Additionally, we designed a highly sensitive and high-throughput virus-like particle detection system using the HiBiT tag, which is a useful tool for studying the release of SARS-CoV-2.


Asunto(s)
Proteínas de la Envoltura de Coronavirus , SARS-CoV-2 , Humanos , COVID-19 , Lisosomas/metabolismo , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/metabolismo , Proteínas Viroporinas/metabolismo , Proteínas de la Envoltura de Coronavirus/metabolismo , Secuencias de Aminoácidos , Liberación del Virus
9.
Exp Eye Res ; 243: 109899, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636802

RESUMEN

Virus-like particles (VLP) are a promising tool for intracellular gene delivery, yet their potential in ocular gene therapy remains underexplored. In this study, we bridged this knowledge gap by demonstrating the successful generation and application of vesicular stomatitis virus glycoprotein (VSVG)-pseudotyped mouse PEG10 (MmPEG10)-VLP for intraocular mRNA delivery. Our findings revealed that PEG10-VLP can efficiently deliver GFP mRNA to adult retinal pigment epithelial cell line-19 (ARPE-19) cells, leading to transient expression. Moreover, we showed that MmPEG10-VLP can transfer SMAD7 to inhibit epithelial-mesenchymal transition (EMT) in RPE cells effectively. In vivo experiments further substantiated the potential of these vectors, as subretinal delivery into adult mice resulted in efficient transduction of retinal pigment epithelial (RPE) cells and GFP reporter gene expression without significant immune response. However, intravitreal injection did not yield efficient ocular expression. We also evaluated the transduction characteristics of MmPEG10-VLP following intracameral delivery, revealing transient GFP protein expression in corneal endothelial cells without significant immunotoxicities. In summary, our study established that VSVG pseudotyped MmPEG10-based VLP can transduce mitotically inactive RPE cells and corneal endothelial cells in vivo without triggering an inflammatory response, underscoring their potential utility in ocular gene therapy.


Asunto(s)
Técnicas de Transferencia de Gen , ARN Mensajero , Epitelio Pigmentado de la Retina , Animales , Ratones , Epitelio Pigmentado de la Retina/metabolismo , ARN Mensajero/genética , Terapia Genética/métodos , Vectores Genéticos , Ratones Endogámicos C57BL , Humanos , Proteínas Fluorescentes Verdes/genética , Transición Epitelial-Mesenquimal , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo
10.
Protein Expr Purif ; 220: 106502, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38754753

RESUMEN

Adeno-associated Virus (AAV) is a promising vector for gene therapy. However, few studies have focused on producing virus-like particles (VLPs) of AAV in cells, especially in E. coli. In this study, we describe a method to produce empty VP3-only VLPs of AAV2 in E. coli by co-expressing VP3 and assembly-activating protein (AAP) of AAV2. Although the yields of VLPs produced with our method were low, the VLPs were able to self-assemble in E. coli without the need of in vitro capsid assembly. The produced VLPs were characterized by immunological detection and transmission electron microscopy (TEM). In conclusion, this study demonstrated that capsid assembly of AAV2 is possible in E. coli, and E. coli may be a candidate system for production of VLPs of AAV.


Asunto(s)
Proteínas de la Cápside , Dependovirus , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Dependovirus/genética , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/biosíntesis , Virión/genética , Virión/metabolismo , Ensamble de Virus , Vectores Genéticos/metabolismo , Vectores Genéticos/genética , Vectores Genéticos/química , Parvovirinae/genética , Humanos
11.
Int J Mol Sci ; 25(8)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38673914

RESUMEN

Plant viral nanoparticles (VNPs) are attractive to nanomedicine researchers because of their safety, ease of production, resistance, and straightforward functionalization. In this paper, we developed and successfully purified a VNP derived from turnip mosaic virus (TuMV), a well-known plant pathogen, that exhibits a high affinity for immunoglobulins G (IgG) thanks to its functionalization with the Z domain of staphylococcal Protein A via gene fusion. We selected cetuximab as a model IgG to demonstrate the versatility of this novel TuMV VNP by developing a fluorescent nanoplatform to mark tumoral cells from the Cal33 line of a tongue squamous cell carcinoma. Using confocal microscopy, we observed that fluorescent VNP-cetuximab bound selectively to Cal33 and was internalized, revealing the potential of this nanotool in cancer research.


Asunto(s)
Nanopartículas , Humanos , Nanopartículas/química , Línea Celular Tumoral , Potyvirus , Inmunoglobulina G/metabolismo , Cetuximab/farmacología , Cetuximab/química , Proteína Estafilocócica A/química , Proteína Estafilocócica A/metabolismo
12.
J Infect Dis ; 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37781879

RESUMEN

A GII.2 outbreak in an efficacy study of a bivalent virus-like particle (VLP) norovirus vaccine, TAK-214, in healthy US adults provided an opportunity to examine GII.4 homotypic vs. GII.2 heterotypic responses to vaccination and infection. Three serological assays (VLP-binding, histoblood group antigen-blocking, and neutralizing) were performed for each genotype. Results were highly correlated within a genotype but not between genotypes. Although the vaccine provided protection from GII.2-associated disease, little GII.2-specific neutralization occurred after vaccination. Choice of antibody assay can affect assessments of human norovirus vaccine immunogenicity.

13.
J Gen Virol ; 104(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37390009

RESUMEN

Enterovirus A71 (EVA71) causes widespread disease in young children with occasional fatal consequences. In common with other picornaviruses, both empty capsids (ECs) and infectious virions are produced during the viral lifecycle. While initially antigenically indistinguishable from virions, ECs readily convert to an expanded conformation at moderate temperatures. In the closely related poliovirus, these conformational changes result in loss of antigenic sites required to elicit protective immune responses. Whether this is true for EVA71 remains to be determined and is the subject of this investigation.We previously reported the selection of a thermally resistant EVA71 genogroup B2 population using successive rounds of heating and passage. The mutations found in the structural protein-coding region of the selected population conferred increased thermal stability to both virions and naturally produced ECs. Here, we introduced these mutations into a recombinant expression system to produce stabilized virus-like particles (VLPs) in Pichia pastoris.The stabilized VLPs retain the native virion-like antigenic conformation as determined by reactivity with a specific antibody. Structural studies suggest multiple potential mechanisms of antigenic stabilization, however, unlike poliovirus, both native and expanded EVA71 particles elicited antibodies able to directly neutralize virus in vitro. Therefore, anti-EVA71 neutralizing antibodies are elicited by sites which are not canonically associated with the native conformation, but whether antigenic sites specific to the native conformation provide additional protective responses in vivo remains unclear. VLPs are likely to provide cheaper and safer alternatives for vaccine production and these data show that VLP vaccines are comparable with inactivated virus vaccines at inducing neutralising antibodies.


Asunto(s)
Infecciones por Enterovirus , Enterovirus , Poliovirus , Vacunas , Niño , Humanos , Preescolar , Antígenos Virales/genética , Poliovirus/genética , Anticuerpos Antivirales
14.
J Virol ; 96(13): e0056622, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35703545

RESUMEN

The family of human papillomaviruses (HPV) includes over 400 genotypes. Genus α genotypes generally infect the anogenital mucosa, and a subset of these HPV are a necessary, but not sufficient, cause of cervical cancer. Of the 13 high-risk (HR) and 11 intermediate-risk (IR) HPV associated with cervical cancer, genotypes 16 and 18 cause 50% and 20% of cases, respectively, whereas HPV16 dominates in other anogenital and oropharyngeal cancers. A plethora of ßHPVs are associated with cutaneous squamous cell carcinoma (CSCC), especially in sun-exposed skin sites of epidermodysplasia verruciformis (EV), AIDS, and immunosuppressed patients. Licensed L1 virus-like particle (VLP) vaccines, such as Gardasil 9, target a subset of αHPV but no ßHPV. To comprehensively target both α- and ßHPVs, we developed a two-component VLP vaccine, RG2-VLP, in which L2 protective epitopes derived from a conserved αHPV epitope (amino acids 17 to 36 of HPV16 L2) and a consensus ßHPV sequence in the same region are displayed within the DE loop of HPV16 and HPV18 L1 VLP, respectively. Unlike vaccination with Gardasil 9, vaccination of wild-type and EV model mice (Tmc6Δ/Δ or Tmc8Δ/Δ) with RG2-VLP induced robust L2-specific antibody titers and protected against ß-type HPV5. RG2-VLP protected rabbits against 17 αHPV, including those not covered by Gardasil 9. HPV16- and HPV18-specific neutralizing antibody responses were similar between RG2-VLP- and Gardasil 9-vaccinated animals. However, only transfer of RG2-VLP antiserum effectively protected naive mice from challenge with all ßHPVs tested. Taken together, these observations suggest RG2-VLP's potential as a broad-spectrum vaccine to prevent αHPV-driven anogenital, oropharyngeal, and ßHPV-associated cutaneous cancers. IMPORTANCE Licensed preventive HPV vaccines are composed of VLPs derived by expression of major capsid protein L1. They confer protection generally restricted to infection by the αHPVs targeted by the up-to-9-valent vaccine, and their associated anogenital cancers and genital warts, but do not target ßHPV that are associated with CSCC in EV and immunocompromised patients. We describe the development of a two-antigen vaccine protective in animal models against known oncogenic αHPVs as well as diverse ßHPVs by incorporation into HPV16 and HPV18 L1 VLP of 20-amino-acid conserved protective epitopes derived from minor capsid protein L2.


Asunto(s)
Alphapapillomavirus , Carcinoma de Células Escamosas , Papillomaviridae , Infecciones por Papillomavirus , Vacunas contra Papillomavirus , Vacunas de Partículas Similares a Virus , Alphapapillomavirus/inmunología , Animales , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Proteínas de la Cápside/inmunología , Carcinoma de Células Escamosas/prevención & control , Epítopos/inmunología , Femenino , Papillomavirus Humano 16/inmunología , Humanos , Ratones , Ratones Endogámicos BALB C , Papillomaviridae/inmunología , Infecciones por Papillomavirus/complicaciones , Infecciones por Papillomavirus/inmunología , Infecciones por Papillomavirus/prevención & control , Vacunas contra Papillomavirus/inmunología , Conejos , Vacunas de Partículas Similares a Virus/inmunología
15.
J Virol ; 96(6): e0202621, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35107375

RESUMEN

Ebola virus (EBOV) and Marburg virus (MARV) continue to emerge and cause severe hemorrhagic disease in humans. A comprehensive understanding of the filovirus-host interplay will be crucial for identifying and developing antiviral strategies. The filoviral VP40 matrix protein drives virion assembly and egress, in part by recruiting specific WW domain-containing host interactors via its conserved PPxY late (L) domain motif to positively regulate virus egress and spread. In contrast to these positive regulators of virus budding, a growing list of WW domain-containing interactors that negatively regulate virus egress and spread have been identified, including BAG3, YAP/TAZ, and WWOX. In addition to host WW domain regulators of virus budding, host PPxY-containing proteins also contribute to regulating this late stage of filovirus replication. For example, angiomotin (AMOT) is a multi-PPxY-containing host protein that functionally interacts with many of the same WW domain-containing proteins that regulate virus egress and spread. In this report, we demonstrate that host WWOX, which negatively regulates egress of VP40 virus-like particles (VLPs) and recombinant vesicular stomatitis virus (VSV) M40 virus, interacts with and suppresses the expression of AMOT. We found that WWOX disrupts AMOT's scaffold-like tubular distribution and reduces AMOT localization at the plasma membrane via lysosomal degradation. In sum, our findings reveal an indirect and novel mechanism by which modular PPxY-WW domain interactions between AMOT and WWOX regulate PPxY-mediated egress of filovirus VP40 VLPs. A better understanding of this modular network and competitive nature of protein-protein interactions will help to identify new antiviral targets and therapeutic strategies. IMPORTANCE Filoviruses (Ebola virus [EBOV] and Marburg virus [MARV]) are zoonotic, emerging pathogens that cause outbreaks of severe hemorrhagic fever in humans. A fundamental understanding of the virus-host interface is critical for understanding the biology of these viruses and for developing future strategies for therapeutic intervention. Here, we reveal a novel mechanism by which host proteins WWOX and AMOTp130 interact with each other and with the filovirus matrix protein VP40 to regulate VP40-mediated egress of virus-like particles (VLPs). Our results highlight the biological impact of competitive interplay of modular virus-host interactions on both the virus life cycle and the host cell.


Asunto(s)
Ebolavirus , Marburgvirus , Oxidorreductasa que Contiene Dominios WW , Angiomotinas/metabolismo , Ebolavirus/fisiología , Humanos , Marburgvirus/metabolismo , Proteínas de la Matriz Viral/metabolismo , Liberación del Virus/fisiología , Oxidorreductasa que Contiene Dominios WW/metabolismo
16.
J Med Virol ; 95(8): e29050, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37635425

RESUMEN

A novel virus-like particle (VLP)-based multivalent recombinant human papillomavirus (HPV) vaccine was developed and evaluated in human, including 14 HPV-type specific VLP antigens (HPV6, 11, 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, and 59). The pseudovirus-based neutralizing assay (PBNA) method is widely used for immunogenicity assessment of HPV vaccine in clinical trials. However, as many as 14 antigen-specific antibody levels need be determined, PBNA is, for many reasons, challenging and time-consuming. In this study, we developed a Luminex immunological assay (LIA) and a competitive Luminex immunological assay (cLIA). These methods increase the throughput, reproducibility and precision, as well as reduce the complexity. All assay parameters showed good characteristics in the validation of both methods, benefiting from highly purified and structurally correct VLPs, high specific antibodies, standard VLP-microspheres and PE-mAbs conjugating process, adequate assay development and stable system. Validation data support the use of both methods for immunogenicity assessment in clinical trials. LIA showed higher sensitivity than cLIA, and due to limited epitopes of mAb, cLIA detected lower antibody responses, and therefore, fewer antibodies. This work not only supports clinical trials of 14-valent HPV vaccines more efficiently and reliably, but also provides a set of validation strategies and usable standards for general vaccine immunogenicity testing.


Asunto(s)
Infecciones por Papillomavirus , Vacunas contra Papillomavirus , Humanos , Virus del Papiloma Humano , Infecciones por Papillomavirus/prevención & control , Reproducibilidad de los Resultados , Vacunas Combinadas , Anticuerpos Monoclonales , Antígenos Virales
17.
J Med Virol ; 95(2): e28503, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36655751

RESUMEN

The hepatitis B virus core antigen (HBcAg) tolerates insertion of foreign epitopes and maintains its ability to self-assemble into virus-like particles (VLPs). We constructed a ∆HBcAg-based VLP vaccine expressing three predicted severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B and T cell epitopes and determined its immunogenicity and protective efficacy. The recombinant ∆HBcAg-SARS-CoV-2 protein was expressed in Escherichia coli, purified, and shown to form VLPs. K18-hACE2 transgenic C57BL/6 mice were immunized intramuscularly with ∆HBcAg VLP control (n = 15) or ∆HBcAg-SARS-CoV-2 VLP vaccine (n = 15). One week after the 2nd booster and before virus challenge, five ∆HBcAg-SARS-CoV-2 vaccinated mice were euthanized to evaluate epitope-specific immune responses. There is a statistically significant increase in epitope-specific Immunoglobulin G (IgG) response, and statistically higher interleukin 6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) expression levels in ∆HBcAg-SARS-CoV-2 VLP-vaccinated mice compared to ∆HBcAg VLP controls. While not statistically significant, the ∆HBcAg-SARS-CoV-2 VLP mice had numerically more memory CD8+ T-cells, and 3/5 mice also had numerically higher levels of interferon gamma (IFN-γ) and tumor necrosis factor (TNF). After challenge with SARS-CoV-2, ∆HBcAg-SARS-CoV-2 immunized mice had numerically lower viral RNA loads in the lung, and slightly higher survival, but the differences are not statistically significant. These results indicate that the ∆HBcAg-SARS-CoV-2 VLP vaccine elicits epitope-specific humoral and cell-mediated immune responses but they were insufficient against SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Vacunas de Partículas Similares a Virus , Ratones , Animales , Antígenos del Núcleo de la Hepatitis B/genética , Virus de la Hepatitis B/genética , Epítopos de Linfocito T , SARS-CoV-2 , Ratones Endogámicos C57BL , Inmunidad Celular , Proteínas Recombinantes
18.
Biotechnol Bioeng ; 120(9): 2672-2684, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37148527

RESUMEN

Virus-like particles-based vaccines have been gaining interest in recent years. The manufacturing of these particles includes their production by cell culture followed by their purification to meet the requirements of its final use. The presence of host cell extracellular vesicles represents a challenge for better virus-like particles purification, because both share similar characteristics which hinders their separation. The present study aims to compare some of the most used downstream processing technologies for capture and purification of virus-like particles. Four steps of the purification process were studied, including a clarification step by depth filtration and filtration, an intermediate step by tangential flow filtration or multimodal chromatography, a capture step by ion exchange, heparin affinity and hydrophobic interaction chromatography and finally, a polishing step by size exclusion chromatography. In each step, the yields were evaluated by percentage of recovery of the particles of interest, purity, and elimination of main contaminants. Finally, a complete purification train was implemented using the best results obtained in each step. A final concentration of 1.40 × 1010 virus-like particles (VLPs)/mL with a purity of 64% after the polishing step was achieved, with host cell DNA and protein levels complaining with regulatory standards, and an overall recovery of 38%. This work has resulted in the development of a purification process for HIV-1 Gag-eGFP virus-like particles suitable for scale-up.


Asunto(s)
VIH-1 , Vacunas de Partículas Similares a Virus , Vacunas de Partículas Similares a Virus/genética , Cromatografía en Gel , Filtración/métodos , Técnicas de Cultivo de Célula
19.
Microb Cell Fact ; 22(1): 39, 2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36841778

RESUMEN

BACKGROUND: Virus-like particles are an interesting vector platform for vaccine development. Particularly, Hepatitis B virus core antigen has been used as a promising VLP platform. It is highly expressed in different recombinant expression systems, such as E. coli, and self-assembled in vitro. It effectively improves the immunogenicity of foreign antigenic epitopes on its surface. Various foreign antigens from bacteria, viruses, and protozoa can be genetically inserted into such nanoparticles. The effective immunogenicity due to VLP vaccines has been reported. However, no research has been performed on the SARS-CoV2 vaccine within this unique platform through genetic engineering. Considering the high yield of target proteins, low cost of production, and feasibility of scaling up, E. coli is an outstanding expression platform to develop such vaccines. Therefore, in this investigation, we planned to study and develop a unique HBc VLP-based vaccine against SARS-Cov2 utilizing the E. coli expression system due to its importance. RESULTS: Insertion of the selected epitope was done into the major immunodominant region (MIR) of truncated (149 residues) hepatitis B core capsid protein. The chimeric protein was constructed in PET28a+ and expressed through the bacterial E. coli BL21 expression system. However, the protein was expressed in inclusion body forms and extracted following urea denaturation from the insoluble phase. Following the extraction, the vaccine protein was purified using Ni2 + iminodiacetic acid (IDA) affinity chromatography. SDS-PAGE and western blotting were used to confirm the protein expression. Regarding the denaturation step, the unavoidable refolding process was carried out, so that the chimeric VLP reassembled in native conformation. Based on the transmission electron microscopy (TEM) analysis, the HBC VLP was successfully assembled. Confirming the assembled chimeric VLP, we explored the immunogenic effectivity of the vaccine through mice immunization with two-dose vaccination with and without adjuvant. The utilization of adjuvant was suggested to assess the effect of adjuvant on improving the immune elicitation of chimeric VLP-based vaccine. Immunization analysis based on anti-spike specific IgG antibody showed a significant increase in antibody production in harvested serum from immunized mice with HBc-VLP harboring antigenic epitope compared to HBc-VLP- and PBS-injected mice. CONCLUSIONS: The results approved the successful production and the effectiveness of the vaccine in terms of humoral IgG antibody production. Therefore, this platform can be considered a promising strategy for developing safe and reasonable vaccines; however, more complementary immunological evaluations are needed.


Asunto(s)
COVID-19 , Hepatitis B , Vacunas de Partículas Similares a Virus , Ratones , Animales , Epítopos , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/metabolismo , ARN Viral/metabolismo , Inmunidad Humoral , Escherichia coli/genética , SARS-CoV-2 , Adyuvantes Inmunológicos/metabolismo , Ratones Endogámicos BALB C
20.
J Pharmacol Sci ; 151(3): 156-161, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36828618

RESUMEN

The outbreak of the SARS-2-CoV infection has become a global outbreak and continues to cause many deaths. In addition, the risk of pandemics continues to increase due to environmental changes and the globalization of human exchange and logistics. On the other hand, our preparedness for emerging infectious diseases caused by such unknown viruses is inadequate, and dealing with viral infections is one of the most important issues that need to be addressed immediately. Vaccine based disease control is considered an ideal countermeasure for infectious diseases, as it is expected to provide maximum efficacy at minimum cost. Although new nucleic acid-based vaccines are leading the way in the prevention of COVID-19, the mainstream of vaccines is still inactivated or live attenuated vaccines that use the pathogen virus itself. Subunit vaccines, in which specific virus-derived proteins are produced as recombinant proteins and used as vaccine antigens, have been developed, but production and development of many antigens that are difficult to mass-produce as recombinant proteins, such as the spike protein antigen of COVID-19 has not progressed. This paper describes the development of recombinant protein vaccines using the silkworm, which has an advantage in the production of such difficult-to-express vaccine antigens, especially virus-like particles.


Asunto(s)
Bombyx , COVID-19 , Vacunas Virales , Animales , Humanos , Antivirales , Proteínas Recombinantes , Baculoviridae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA