Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Cell ; 186(10): 2219-2237.e29, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37172566

RESUMEN

The Commander complex is required for endosomal recycling of diverse transmembrane cargos and is mutated in Ritscher-Schinzel syndrome. It comprises two sub-assemblies: Retriever composed of VPS35L, VPS26C, and VPS29; and the CCC complex which contains twelve subunits: COMMD1-COMMD10 and the coiled-coil domain-containing (CCDC) proteins CCDC22 and CCDC93. Combining X-ray crystallography, electron cryomicroscopy, and in silico predictions, we have assembled a complete structural model of Commander. Retriever is distantly related to the endosomal Retromer complex but has unique features preventing the shared VPS29 subunit from interacting with Retromer-associated factors. The COMMD proteins form a distinctive hetero-decameric ring stabilized by extensive interactions with CCDC22 and CCDC93. These adopt a coiled-coil structure that connects the CCC and Retriever assemblies and recruits a 16th subunit, DENND10, to form the complete Commander complex. The structure allows mapping of disease-causing mutations and reveals the molecular features required for the function of this evolutionarily conserved trafficking machinery.


Asunto(s)
Anomalías Múltiples , Anomalías Craneofaciales , Complejos Multiproteicos , Humanos , Endosomas/metabolismo , Transporte de Proteínas , Proteínas/metabolismo , Complejos Multiproteicos/metabolismo
2.
J Cell Sci ; 135(10)2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35510502

RESUMEN

The mammalian retromer consists of subunits VPS26 (either VPS26A or VPS26B), VPS29 and VPS35, and a loosely associated sorting nexin (SNX) heterodimer or a variety of other SNX proteins. Despite involvement in yeast and mammalian cell trafficking, the role of retromer in development is poorly understood, and its impact on primary ciliogenesis remains unknown. Using CRISPR/Cas9 editing, we demonstrate that vps-26-knockout worms have reduced brood sizes, impaired vulval development and decreased body length, all of which have been linked to ciliogenesis defects. Although preliminary studies did not identify worm ciliary defects, and impaired development limited additional ciliogenesis studies, we turned to mammalian cells to investigate the role of retromer in ciliogenesis. VPS35 localized to the primary cilium of mammalian cells, and depletion of VPS26, VPS35, VPS29, SNX1, SNX2, SNX5 or SNX27 led to decreased ciliogenesis. Retromer also coimmunoprecipitated with the centriolar protein, CP110 (also known as CCP110), and was required for its removal from the mother centriole. Herein, we characterize new roles for retromer in C. elegans development and in the regulation of ciliogenesis in mammalian cells, suggesting a novel role for retromer in CP110 removal from the mother centriole.


Asunto(s)
Endosomas , Proteínas de Transporte Vesicular , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Endosomas/metabolismo , Mamíferos/metabolismo , Transporte de Proteínas , Nexinas de Clasificación/genética , Nexinas de Clasificación/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
3.
Genomics ; 113(4): 2839-2846, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34119599

RESUMEN

BACKGROUND: In our previous studies, we demonstrated that the accumulation of carotenoids in QN Orange scallops might be regulated by the vacuolar protein sorting 29 (VPS29) gene. VPS genes are involved in pigments accumulation (including carotenoids) in some species and VPS29 is known as the core component of the membrane transport complex Retromer. However, the possible mechanism of carotenoids accumulation underlying the VPS29 remains unexplored. This study aimed to further elucidate the roles of VPS29 in the carotenoid deposition. RESULTS: Transcriptomic analyses revealed four differentially expressed genes related to carotenoid accumulation, including three down-regulated genes, low-density lipoprotein receptor domain class, scavenger receptor, Niemann Pick C1-like 1, and one up-regulated gene, ATP binding cassette transporter in RNAi group. Results from metabonomic analyses indicated increased profiles of retinol and decreased fatty acids between the RNAi and the control group. CONCLUSIONS: It thus speculated that VPS may be related to the accumulation of carotenoids as RNAi of VPS 29 seemed to result in a reduction in pectenolone through the blockage in the absorption of carotenoids and an accelerated cleavage of carotenoids into retinol.


Asunto(s)
Citrus sinensis , Pectinidae , Animales , Carotenoides/metabolismo , Citrus sinensis/genética , Citrus sinensis/metabolismo , Músculo Esquelético/metabolismo , Pectinidae/genética , Pectinidae/metabolismo , Transcriptoma
4.
Traffic ; 20(7): 465-478, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30993794

RESUMEN

Endosomes are dynamic intracellular compartments that control the sorting of a constant stream of different transmembrane cargos either for ESCRT-mediated degradation or for egress and recycling to compartments such as the Golgi and the plasma membrane. The recycling of cargos occurs within tubulovesicular membrane domains and is facilitated by peripheral membrane protein machineries that control both membrane remodelling and selection of specific transmembrane cargos. One of the primary sorting machineries is the Retromer complex, which controls the recycling of a large array of different cargo molecules in cooperation with various sorting nexin (SNX) adaptor proteins. Recently a Retromer-like complex was also identified that controls plasma membrane recycling of cargos including integrins and lipoprotein receptors. Termed "Retriever," this complex uses a different SNX family member SNX17 for cargo recognition, and cooperates with the COMMD/CCDC93/CCDC22 (CCC) complex to form a larger assembly called "Commander" to mediate endosomal trafficking. In this review we focus on recent advances that have begun to provide a molecular understanding of these two distantly related transport machineries.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Endosomas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Complejos de Clasificación Endosomal Requeridos para el Transporte/química , Humanos , Nexinas de Clasificación/química , Nexinas de Clasificación/metabolismo
5.
New Phytol ; 219(4): 1388-1405, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29897620

RESUMEN

The polar transport of auxin controls many aspects of plant development. However, the molecular mechanisms underlying auxin tranport regulation remain to be further elucidated. We identified a mutant named as usl1 (unflattened and small leaves) in a genetic screen in Arabidopsis thaliana. The usl1 displayed multiple aspects of developmental defects in leaves, embryogenesis, cotyledons, silique phyllotaxy and lateral roots in addition to abnormal leaves. USL1 encodes a protein orthologous to the yeast vacuolar protein sorting (Vps) 38p and human UV RADIATION RESISTANCE-ASSOCIATED GENE (UVRAG). Cell biology, Co-IP/MS and yeast two-hybrid were used to identify the function of USL1. USL1 colocalizes at the subcellular level with VPS29, a key factor of the retromer complex that controls auxin transport. The morphology of the VPS29-associated late endosomes (LE) is altered from small dots in the wild-type to aberrant enlarged circles in the usl1 mutants. The usl1 mutant synergistically interacts with vps29. We also found that USL1 forms a complex with AtVPS30 and AtVPS34. We propose that USL1 controls multiple aspects of plant development by affecting late endosome morphology and by regulating the PIN1 polarity. Our findings provide a new layer of the understanding on the mechanisms of plant development regulation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Endosomas/metabolismo , Desarrollo de la Planta , Proteínas de Transporte Vesicular/metabolismo , Arabidopsis/genética , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Endocitosis , Endosomas/ultraestructura , Regulación de la Expresión Génica de las Plantas , Pleiotropía Genética , Genoma de Planta , Proteínas de Transporte de Membrana , Modelos Biológicos , Mutación/genética , Especificidad de Órganos/genética , Fenotipo , Fosfatidilinositol 3-Quinasas/metabolismo , Desarrollo de la Planta/genética , Unión Proteica , Transcriptoma/genética , Proteínas de Transporte Vesicular/genética
6.
Mov Disord ; 30(4): 580-4, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25475142

RESUMEN

BACKGROUND: A pathogenic mutation (VPS35 p.D620N) within the retromer complex has been shown to segregate with late-onset Parkinson's disease (PD). Several studies have subsequently detected the mutation in patients with PD and not in controls. METHODS: Mutation screening of the coding regions of the retromer cargo recognition complex genes (VPS26A/B, VPS29, and VPS35) was carried out in patients with PD (n = 396), atypical parkinsonism (n = 229), and in 368 controls. RESULTS: Overall, we identified five rare nonsynonymous mutations in VPS26A and one in VPS35; none were observed in VPS26B or VPS29. Three VPS26A variants (p.K93E, p.M112V, and p.K297X), identified in patients with atypical parkinsonism, were not observed in controls from this study (n = 368) or from publically available data sets (n = 4,426). CONCLUSION: Our results support the hypothesis that rare variants in the retromer complex genes may be involved in the development of parkinsonism, although further studies are warranted before any solid conclusions can be drawn.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Variación Genética/genética , Trastornos Parkinsonianos/genética , Proteínas de Transporte Vesicular/genética , Adulto , Anciano , Anciano de 80 o más Años , Análisis Mutacional de ADN , Femenino , Humanos , Cooperación Internacional , Masculino , Persona de Mediana Edad , Adulto Joven
7.
Res Sq ; 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37397996

RESUMEN

The recycling of membrane proteins from endosomes to the cell surface is vital for cell signaling and survival. Retriever, a trimeric complex of VPS35L, VPS26C and VPS29, together with the CCC complex comprising CCDC22, CCDC93, and COMMD proteins, plays a crucial role in this process. The precise mechanisms underlying Retriever assembly and its interaction with CCC have remained elusive. Here, we present the first high-resolution structure of Retriever determined using cryogenic electron microscopy. The structure reveals a unique assembly mechanism, distinguishing it from its remotely related paralog, Retromer. By combining AlphaFold predictions and biochemical, cellular, and proteomic analyses, we further elucidate the structural organization of the entire Retriever-CCC complex and uncover how cancer-associated mutations disrupt complex formation and impair membrane protein homeostasis. These findings provide a fundamental framework for understanding the biological and pathological implications associated with Retriever-CCC-mediated endosomal recycling.

8.
bioRxiv ; 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37333304

RESUMEN

The recycling of membrane proteins from endosomes to the cell surface is vital for cell signaling and survival. Retriever, a trimeric complex of VPS35L, VPS26C and VPS29, together with the CCC complex comprising CCDC22, CCDC93, and COMMD proteins, plays a crucial role in this process. The precise mechanisms underlying Retriever assembly and its interaction with CCC have remained elusive. Here, we present the first high-resolution structure of Retriever determined using cryogenic electron microscopy. The structure reveals a unique assembly mechanism, distinguishing it from its remotely related paralog, Retromer. By combining AlphaFold predictions and biochemical, cellular, and proteomic analyses, we further elucidate the structural organization of the entire Retriever-CCC complex and uncover how cancer-associated mutations disrupt complex formation and impair membrane protein homeostasis. These findings provide a fundamental framework for understanding the biological and pathological implications associated with Retriever-CCC-mediated endosomal recycling.

9.
mBio ; 13(2): e0300221, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35229640

RESUMEN

Emerging zoonotic viral pathogens threaten global health, and there is an urgent need to discover host and viral determinants influencing infection. We performed a loss-of-function genome-wide CRISPR screen in a human lung cell line using HCoV-OC43, a human betacoronavirus. One candidate gene, VPS29, a component of the retromer complex, was required for infection by HCoV-OC43, SARS-CoV-2, other endemic- and pandemic-threat coronaviruses, as well as ebolavirus. Notably, we observed a heightened requirement for VPS29 by the recently described Omicron variant of SARS-CoV-2 compared to the ancestral variant. However, VPS29 deficiency had no effect on certain other viruses that enter cells via endosomes and had an opposing, enhancing effect on influenza A virus infection. Deficiency in VPS29 or other retromer components caused changes in endosome morphology and acidity and attenuated the activity of endosomal proteases. These changes in endosome properties caused incoming coronavirus, but not influenza virus particles, to become entrapped therein. Overall, these data show how host regulation of endosome characteristics can influence cellular susceptibility to viral infection and identify a host pathway that could serve as a pharmaceutical target for intervention in zoonotic viral diseases. IMPORTANCE These data identify a host pathway by which VPS29 and associated factors control the endosomal environment in a manner that influences susceptibility to viral infection. This pathway could serve as a pharmaceutical target for intervention in zoonotic viral diseases, including those caused by coronaviruses, influenza viruses, and filoviruses, all of which are pandemic threats. Our findings show how host regulation of endosome characteristics can influence viral susceptibility in both a positive and negative manner.


Asunto(s)
COVID-19 , Coronavirus Humano OC43 , Virus de la Influenza A , Humanos , Virus de la Influenza A/fisiología , Preparaciones Farmacéuticas , SARS-CoV-2 , Proteínas de Transporte Vesicular , Internalización del Virus
10.
Elife ; 92020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32286230

RESUMEN

Retromer, including Vps35, Vps26, and Vps29, is a protein complex responsible for recycling proteins within the endolysosomal pathway. Although implicated in both Parkinson's and Alzheimer's disease, our understanding of retromer function in the adult brain remains limited, in part because Vps35 and Vps26 are essential for development. In Drosophila, we find that Vps29 is dispensable for embryogenesis but required for retromer function in aging adults, including for synaptic transmission, survival, and locomotion. Unexpectedly, in Vps29 mutants, Vps35 and Vps26 proteins are normally expressed and associated, but retromer is mislocalized from neuropil to soma with the Rab7 GTPase. Further, Vps29 phenotypes are suppressed by reducing Rab7 or overexpressing the GTPase activating protein, TBC1D5. With aging, retromer insufficiency triggers progressive endolysosomal dysfunction, with ultrastructural evidence of impaired substrate clearance and lysosomal stress. Our results reveal the role of Vps29 in retromer localization and function, highlighting requirements for brain homeostasis in aging.


Asunto(s)
Envejecimiento/metabolismo , Encéfalo/metabolismo , Endosomas/metabolismo , Lisosomas/metabolismo , Transmisión Sináptica/fisiología , Proteínas de Transporte Vesicular/metabolismo , Animales , Drosophila , Proteínas de Drosophila/metabolismo
11.
Protoplasma ; 257(6): 1725-1729, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32780164

RESUMEN

Eukaryotic organisms share many common features in terms of endomembrane trafficking. This fact has helped plant scientists to propose testable hypotheses on how plant intracellular membrane trafficking is achieved and regulated based on knowledge from yeast and mammals. However, when a new compartment has been identified in a plant cell that has a vesicle tethering complex located at a position which is completely different to its counterpart in yeast and mammalian cells, caution is demanded when interpreting possible interactions with other trafficking elements. This is exemplified by the recently discovered EMAC (ER and microtubule-associated compartment). It has been postulated that this compartment is the recipient of vacuolar sorting receptors (VSRs) transported retrogradely via "retromer vesicles" from a post-Golgi location. Unfortunately, this suggestion was based entirely on our knowledge of retromer from yeast and mammalian cells, and did not take into account the available literature on the composition, localization, and function of the plant retromer. It also lacked reference to recent contradictory findings on VSR trafficking. In this short article, we have tried to rectify this situation, pointing out that plant retromer may not function as a pentameric complex of two subunits: the retromer core and the sorting nexins.


Asunto(s)
Transporte Biológico/fisiología , Aparato de Golgi/química , Nexinas de Clasificación/química , Vacuolas/química
12.
FEBS Lett ; 589(13): 1430-6, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-25937119

RESUMEN

Retromer is a complex of proteins that functions in the endosome-to-Golgi retrieval cargo transport pathway. VPS35 works as the central subunit of retromer to recognize the cargos and binds with VPS29 and VPS26 via distinct domains. We show that deficiency of VPS35 or VPS29 accompanies degradation of other subunits, whereas VPS26 deficiency had no effect on VPS29 and VPS35 levels. Although VPS35 forms VPS26-VPS35 and VPS29-VPS35 sub-complexes with similar efficiency in vitro, VPS26-VPS35 was more easily degradable by the ubiquitin-proteasome-system than VPS29-VPS35. These results indicate that VPS29 and VPS35 form a biologically stable sub-complex in vivo.


Asunto(s)
Endosomas/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Red trans-Golgi/metabolismo , Western Blotting , Endosomas/ultraestructura , Células HeLa , Humanos , Microscopía Confocal , Microscopía Electrónica , Complejos Multiproteicos/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Transporte de Proteínas/genética , Proteolisis , Interferencia de ARN , Ubiquitina/metabolismo , Proteínas de Transporte Vesicular/genética , Red trans-Golgi/ultraestructura
13.
Mol Plant ; 6(6): 1849-62, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23770835

RESUMEN

Intracellular protein routing is mediated by vesicular transport which is tightly regulated in eukaryotes. The protein and lipid homeostasis depends on coordinated delivery of de novo synthesized or recycled cargoes to the plasma membrane by exocytosis and their subsequent removal by rerouting them for recycling or degradation. Here, we report the characterization of protein affected trafficking 3 (pat3) mutant that we identified by an epifluorescence-based forward genetic screen for mutants defective in subcellular distribution of Arabidopsis auxin transporter PIN1-GFP. While pat3 displays largely normal plant morphology and development in nutrient-rich conditions, it shows strong ectopic intracellular accumulations of different plasma membrane cargoes in structures that resemble prevacuolar compartments (PVC) with an aberrant morphology. Genetic mapping revealed that pat3 is defective in vacuolar protein sorting 35A (VPS35A), a putative subunit of the retromer complex that mediates retrograde trafficking between the PVC and trans-Golgi network. Similarly, a mutant defective in another retromer subunit, vps29, shows comparable subcellular defects in PVC morphology and protein accumulation. Thus, our data provide evidence that the retromer components VPS35A and VPS29 are essential for normal PVC morphology and normal trafficking of plasma membrane proteins in plants. In addition, we show that, out of the three VPS35 retromer subunits present in Arabidopsis thaliana genome, the VPS35 homolog A plays a prevailing role in trafficking to the lytic vacuole, presenting another level of complexity in the retromer-dependent vacuolar sorting.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Compartimento Celular , Vacuolas/metabolismo , Proteínas de Transporte Vesicular/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Endocitosis , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/fisiología , Datos de Secuencia Molecular , Mutación , Transporte de Proteínas , Proteínas de Transporte Vesicular/metabolismo
14.
Commun Integr Biol ; 4(5): 619-22, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22046480

RESUMEN

The retromer complex is conserved across all eukaryotic species and functions in physiologically important sorting processes at the endosomal membrane. A key component of retromer is the VPS29 protein that, although structurally similar to phospho-diesterases, has been convincingly shown in the recent study by Swarbrick et al. (PLoS One 6:e20420, 2011) to be a rigid scaffold that interacts with various proteins that function with retromer in endosomal protein sorting. A widely held view, based on initial observations in Saccharomyces cerevisiae, is that retromer functions as a stable heteropentamer. This is, however, contrary to experimental data presented in Swarbrick et al. (and in other studies) that indicate that retromer in higher eukaryotes is a looser association of two subcomplexes that respectively mediate cargo-selection and membrane tubulation. Here we present an analysis of evolutionary variation of the VPS29 protein and discuss why the retromer complex as first characterized in S. cerevisiae is not representative of retromer in other eukaryotic taxa.

15.
Plant Signal Behav ; 2(6): 556-8, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19704558

RESUMEN

In animals, sorting of membrane proteins following their internalization from the plasma membrane (PM) by endocytosis occurs through a series of different endosomal compartments. In plants, how and where these sorting events take place is still poorly understood and our current view of the endocytic pathway still largely relies on analogies made from the animal system. However, extensive differences seem to exist between animal and plant endosomal functions, as exemplified by the role of the trans-Golgi network (TGN) as an early endosomal compartment in plants or the functional diversification of conserved sorting complexes. By using the Arabidopsis root tip as a reference model, we and other have begun to shed light on the complexity of the plant endocytic pathways. Notably, we have recently characterized the functions of an endosomal compartment, the SNX1-endosomes, also referred to as the prevacuolar compartment (PVC) or multivesicular bodies (MVB), in the sorting of different cargo proteins, including two related auxin-efflux carriers, PIN1 and PIN2. We have shown that routing decisions take place at this endosomal level, such as the sorting of PIN2 toward the lytic vacuole for degradation or PIN1 toward the PM for recycling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA