Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Invertebr Pathol ; 205: 108124, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38729295

RESUMEN

The most common viral diseases affecting honey bees (Apis mellifera) in Israel include deformed wing viruses (DWV-A and DWV-B) and acute paralysis viruses (ABPV and IAPV). These viruses are transmitted within and between colonies, both horizontally and vertically. All members of the colony contribute to this transmission, on the other hand individual and social immunity, particularly hygienic behaviour, may affect the outcome of the process. In this study, we evaluated the ontogeny of natural infections of DWV-A, DWV-B, ABPV and IAPV, their prevalence and loads, in workers and drones from high (H) and low (L) hygienic colonies. In parallel, we evaluated the expression of two immune genes: peptidoglycan recognition protein S2(PGRP-S2) and hymenoptaecin. The prevalence of DWV-B and IAPV increased with age and was higher in workers than in drones. ABPV was not detected in drones. The expression of both immune genes was significantly affected by age and sex. Drones from H colonies had higher expression of these genes. The increased expression of immune genes with drones' age, particularly in hygienic colonies, suggest additional value of honey bee breeding for hygienic behaviour for sustainable beekeeping.


Asunto(s)
Proteínas de Insectos , Abejas/virología , Abejas/inmunología , Animales , Proteínas de Insectos/genética , Dicistroviridae , Virus ARN , Proteínas Portadoras/genética , Femenino , Péptidos Catiónicos Antimicrobianos , Masculino
2.
J Insect Sci ; 24(3)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38805650

RESUMEN

Honey bee parasites remain a critical challenge to management and conservation. Because managed honey bees are maintained in colonies kept in apiaries across landscapes, the study of honey bee parasites allows the investigation of spatial principles in parasite ecology and evolution. We used a controlled field experiment to study the relationship between population growth rate and virulence (colony survival) of the parasite Varroa destructor (Anderson and Trueman). We used a nested design of 10 patches (apiaries) of 14 colonies to examine the spatial scale at which Varroa population growth matters for colony survival. We tracked Varroa population size and colony survival across a full year and found that Varroa populations that grow faster in their host colonies during the spring and summer led to larger Varroa populations across the whole apiary (patch) and higher rates of neighboring colony loss. Crucially, this increased colony loss risk manifested at the patch scale, with mortality risk being related to spatial adjacency to colonies with fast-growing Varroa strains rather than with Varroa growth rate in the colony itself. Thus, within-colony population growth predicts whole-apiary virulence, demonstrating the need to consider multiple scales when investigating parasite growth-virulence relationships.


Asunto(s)
Interacciones Huésped-Parásitos , Dinámica Poblacional , Varroidae , Animales , Abejas/parasitología , Varroidae/fisiología , Virulencia , Apicultura
3.
J Insect Sci ; 24(3)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38805645

RESUMEN

Honey bees use grooming to defend against the devastating parasite Varroa destructor Anderson and Trueman. We observed the grooming responses of individual bees from colonies previously chosen for high- and low-grooming behavior using a combination of mite mortality and mite damage. Our aim was to gain insight into specific aspects of grooming behavior to compare if high-grooming bees could discriminate between a standardized stimulus (chalk dust) and a stimulus of live Varroa mites and if bees from high-grooming colonies had greater sensitivity across different body regions than bees from low-grooming colonies. We hypothesized that individuals from high-grooming colonies would be more sensitive to both stimuli than bees from low-grooming colonies across different body regions and that bees would have a greater response to Varroa than a standardized irritant (chalk dust). Individuals from high-grooming colonies responded with longer bouts of intense grooming when either stimulus was applied to the head or thorax, compared to sham-stimulated controls, while bees from low-grooming colonies showed no differences between stimulated and sham-stimulated bees. Further, high-grooming bees from colonies with high mite damage exhibited greater grooming to Varroa than high-grooming colonies with only moderate mite damage rates. This study provides new insights into Varroa-specific aspects of grooming, showing that although a standardized stimulus (chalk dust) may be used to assess general grooming ability in individual bee grooming assays, it does not capture the same range of responses as a stimulus of Varroa. Thus, continuing to use Varroa mites in grooming assays should help select colonies with more precise sensitivity to Varroa.


Asunto(s)
Aseo Animal , Varroidae , Animales , Abejas/parasitología , Abejas/fisiología , Varroidae/fisiología
4.
J Insect Sci ; 24(3)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38805653

RESUMEN

The life cycle of Varroa destructor, the ectoparasitic mite of honey bees (Apis mellifera), includes a dispersal phase, in which mites attach to adult bees for transport and feeding, and a reproductive phase, in which mites invade worker and drone brood cells just prior to pupation to reproduce while their bee hosts complete development. In this study, we wanted to determine whether increased nurse bee visitations of adjacent drone and worker brood cells would increase the likelihood of Varroa mites invading those cells. We also explored whether temporarily restricting the nurses' access to sections of worker brood for 2 or 4 h would subsequently cause higher nurse visitations, and thus, higher Varroa cell invasions. Temporarily precluding larvae from being fed by nurses subsequently led to higher Varroa infestation of those sections in some colonies, but this pattern was not consistent across colonies. Therefore, removing highly infested sections of capped worker brood could be further explored as a potential mechanical/cultural method for mite control. Our results provide more information on how nurse visitations affect the patterns of larval cell invasion by Varroa. Given that the mite's successful reproduction depends on the nurses' ability to visit and feed developing brood, more studies are needed to understand the patterns of Varroa mite invasion of drone and worker cells to better combat this pervasive honey bee parasite.


Asunto(s)
Larva , Varroidae , Animales , Abejas/parasitología , Varroidae/fisiología , Larva/crecimiento & desarrollo , Larva/fisiología , Larva/parasitología , Interacciones Huésped-Parásitos
5.
Sensors (Basel) ; 24(12)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38931612

RESUMEN

Varroa mites, scientifically identified as Varroa destructor, pose a significant threat to beekeeping and cause one of the most destructive diseases affecting honey bee populations. These parasites attach to bees, feeding on their fat tissue, weakening their immune systems, reducing their lifespans, and even causing colony collapse. They also feed during the pre-imaginal stages of the honey bee in brood cells. Given the critical role of honey bees in pollination and the global food supply, controlling Varroa mites is imperative. One of the most common methods used to evaluate the level of Varroa mite infestation in a bee colony is to count all the mites that fall onto sticky boards placed at the bottom of a colony. However, this is usually a manual process that takes a considerable amount of time. This work proposes a deep learning approach for locating and counting Varroa mites using images of the sticky boards taken by smartphone cameras. To this end, a new realistic dataset has been built: it includes images containing numerous artifacts and blurred parts, which makes the task challenging. After testing various architectures (mainly based on two-stage detectors with feature pyramid networks), combination of hyperparameters and some image enhancement techniques, we have obtained a system that achieves a mean average precision (mAP) metric of 0.9073 on the validation set.


Asunto(s)
Aprendizaje Profundo , Programas Informáticos , Varroidae , Animales , Varroidae/patogenicidad , Varroidae/fisiología , Abejas/parasitología , Abejas/fisiología , Infestaciones por Ácaros/parasitología , Apicultura/métodos , Procesamiento de Imagen Asistido por Computador/métodos
6.
Pestic Biochem Physiol ; 197: 105655, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38072530

RESUMEN

The Varroa mite, Varroa destructor, is an ectoparasite that infests honey bees. The extensive use of acaricides, including fluvalinate, has led to the emergence of resistance in Varroa mite populations worldwide. This study's objective is to monitor fluvalinate resistance in field populations of Varroa mites in Korea through both bioassay-based and molecular marker-based methods. To achieve this, a residual contact vial (RCV) bioassay was established for on-site resistance monitoring. A diagnostic dose of 200 ppm was determined based on the bioassay using a putative susceptible population. In the RCV bioassay, early mortality evaluation was effective for accurately discriminating mites with the knockdown resistance (kdr) genotype, while late evaluation was useful for distinguishing mites with additional resistance factors. The RCV bioassay of 14 field mite populations collected in 2021 indicated potential resistance development in four populations. As an alternative approach, quantitative sequencing was employed to assess the frequency of the L925I/M mutation in the voltage-gated sodium channel (VGSC), associated with fluvalinate kdr trait. While the mutation was absent in 2020 Varroa mite populations, it emerged in 2021, increased in frequency in 2022, and became nearly widespread across the country by 2023. This recent emergence and rapid spread of fluvalinate resistance within a span of three years demonstrate the Varroa mite's significant potential for developing resistance. This situation further underscores the urgent need to replace fluvalinate with alternative acaricides. A few novel VGSC mutations potentially involved in resistance were identified. Potential factors driving the rapid expansion of resistance were further discussed.


Asunto(s)
Acaricidas , Ácaros , Piretrinas , Varroidae , Canales de Sodio Activados por Voltaje , Animales , Abejas , Ácaros/genética , Varroidae/genética , Acaricidas/farmacología , Piretrinas/farmacología , Bioensayo , Biomarcadores
7.
J Insect Sci ; 23(6)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38055946

RESUMEN

The ectoparasitic mite, Varroa destructor (Anderson and Trueman), is the leading cause of western honey bee colony, Apis mellifera (L.), mortality in the United States. Due to mounting evidence of resistance to certain approved miticides, beekeepers are struggling to keep their colonies alive. To date, there are varied but limited approved options for V. destructor control. Vaporized oxalic acid (OA) has proven to be an effective treatment against the dispersal phase of V. destructor but has its limitations since the vapor cannot penetrate the protective wax cap of honey bee pupal cells where V. destructor reproduces. In the Southeastern United States, honey bee colonies often maintain brood throughout the year, limiting the usefulness of OA. Prior studies have shown that even repeated applications of OA while brood is present are ineffective at decreasing mite populations. In the summer of 2021, we studied whether incorporating a forced brood break while vaporizing with OA would be an effective treatment against V. destructor. Ninety experimental colonies were divided into 2 blocks, one with a brood break and the other with no brood break. Within the blocks, each colony was randomly assigned 1 of 3 treatments: no OA, 2 g OA, or 3 g OA. The combination of vaporizing with OA and a forced brood break increased mite mortality by 5× and reduced mite populations significantly. These results give beekeepers in mild climates an additional integrated pest management method for controlling V. destructor during the summer season.


Asunto(s)
Acaricidas , Apicultura , Abejas , Ácido Oxálico , Varroidae , Animales , Abejas/efectos de los fármacos , Abejas/parasitología , Himenópteros/efectos de los fármacos , Himenópteros/parasitología , Ácido Oxálico/farmacología , Estaciones del Año , Varroidae/efectos de los fármacos , Volatilización , Acaricidas/farmacología , Apicultura/métodos , Cruzamiento/métodos
8.
Arch Insect Biochem Physiol ; 110(3): e21905, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35393698

RESUMEN

To investigate the acaricide toxicity and resistance mechanisms in the Varroa mite, it is essential to understand the genetic responses of Varroa mites to acaricides, which are usually evaluated by transcriptional profiling based on quantitative real-time polymerase chain reaction (qPCR). In this study, to select reference genes showing consistent expression patterns regardless of the acaricide treatment or the type of tissue, Varroa mites treated with each of the three representative acaricides (coumaphos, fluvalinate, and amitraz) were processed for transcriptomic analysis, from which eight genes (NADH dehydrogenase [NADHD], glyceraldehyde-3-phosphate dehydrogenase [GAPDH], eukaryotic translation elongation factor 1 α 1 [eEF1A1], eukaryotic translation elongation factor 2 [eEF2], ribosomal protein L5 [RpL5], Actin, tubulin α-1D chain [α-tubulin], and Rab1) were selected as candidates. The transcription profiles of these genes, depending on the treatment of the three acaricides or across different tissues (cuticle, legs, gut/fat bodies, and synganglion), were analyzed using qPCR with four validation programs, BestKeeper, geNorm, NormFinder, and RefFinder. Following acaricide treatment, eEF1A1 and NADHD showed the least variation in their expression levels, whereas the expression levels of α-tubulin and RpL5 were the most stable across different tissue groups. Rab1/GAPDH and Actin/eEF2 showed the least stable expression patterns following acaricide treatments and across different tissues, respectively, requiring precautions for use. When vitellogenin gene expression was analyzed by different reference genes, its expression profiles varied significantly depending on the reference genes, highlighting the importance of proper reference gene use. Thus, it is recommended using eEF1A1 and NADHD as reference genes for the comparison of the effects of acaricide on the whole body, whereas α-tubulin and RpL5 are recommended for investigating the tissue-specific expression profiles of target genes.


Asunto(s)
Acaricidas , Varroidae , Acaricidas/farmacología , Actinas/genética , Animales , Perfilación de la Expresión Génica , Reacción en Cadena en Tiempo Real de la Polimerasa , Tubulina (Proteína)/genética , Varroidae/genética
9.
Pestic Biochem Physiol ; 167: 104603, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32527437

RESUMEN

The Varroa mite is a primary driver behind periodical losses of honey bee colonies. These mites require honey bees for food and reproduction and, in turn, elicit physiological deficiencies and diseases that compromise colony health. Current acaricides for Varroa mite control, such as Apistan® (the pyrethroid tau-fluvalinate), CheckMite+® (the organophosphate coumaphos), and Apivar® (the formamidine amitraz) target the nervous system, can have adverse health effects on honey bees, and have limited effectiveness due to reported resistance issues. New target sites are needed to circumvent these obstacles in Varroa mite management, and voltage-gated chloride channels (VGCCs) are promising candidates due to their important role in the maintenance of nerve and muscle excitability in arthropod pests. Toxicological analysis of Varroa mites sensitive to tau-fluvalinate and coumaphos and Varroa mites with reduced sensitivity to these acaricides showed a significant increase in metabolic detoxification enzyme activities for the latter. Acetylcholinesterase activity in the Varroa mites exhibiting reduced mortality to coumaphos was significantly less sensitive to coumaphos-oxon compared to coumaphos-sensitive Varroa mites, which suggests target-site insensitivity to the acaricide. Voltage-gated chloride channel blocker DIDS had significantly greater field efficacy compared to Apistan® and CheckMite+® against Varroa mites from honey bee hives where tau-fluvalinate and coumaphos were observed to be ineffective, respectively. These data suggest that DIDS, and potentially other stilbene chemistries, might serve as candidates for continued field efficacy testing of alternative acaricides in apiaries where Apistan®- and CheckMite+® efficacy has been. reduced or lost for Varroa mites.


Asunto(s)
Acaricidas , Ácaros , Varroidae , Ácido 4,4'-Diisotiocianostilbeno-2,2'-Disulfónico , Animales , Abejas , Canales de Cloruro , Cumafos
10.
J Biol Chem ; 293(49): 19012-19024, 2018 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-30333227

RESUMEN

In insects, γ-aminobutyric acid (GABA) is the major inhibitory neurotransmitter, and GABA-gated ion channels are the target of different classes of insecticides, including fipronil. We report here the cloning of six subunits (four RDL, one LCCH3, and one GRD) that constitute the repertoire of the GABA-gated ion channel family of the Varroa mite (Varroa destructor), a honey bee ectoparasite. We also isolated a truncated GRD subunit with a premature stop codon. We found that when expressed in Xenopus laevis oocytes, three of the four RDL subunits (VdesRDL1, VdesRDL2, and VdesRDL3) formed functional, homomultimeric anionic receptors, whereas GRD and LCCH3 produced heteromultimeric cationic receptors. These receptors displayed specific sensitivities toward GABA and fipronil, and VdesRDL1 was the most resistant to the insecticide. We identified specific residues in the VdesRDL1 pore-lining region that explain its high resistance to fipronil. VdesRDL4 did not form a functional receptor when expressed alone, but it assembled with VdesRDL1 to form a heteromultimeric receptor with properties distinct from those of the VdesRDL1 homomultimeric receptor. Moreover, VdesRDL1 physically interacted with VdesRDL3, generating a heteromultimeric receptor combining properties of both subunits. On the other hand, we did not detect any functional interaction between VdesLCCH3 and the VdesRDL subunits, an observation that differed from what was previously reported for Drosophila melanogaster In conclusion, this study provides insights relevant to improve our understanding of the precise role of GABAergic signaling in insects and new tools for the development of Varroa mite-specific insecticidal agents that do not harm honey bees.


Asunto(s)
Proteínas de Artrópodos/metabolismo , Receptores de GABA/metabolismo , Varroidae/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos/antagonistas & inhibidores , Proteínas de Artrópodos/genética , Antagonistas del GABA/farmacología , Oocitos/metabolismo , Multimerización de Proteína , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Pirazoles/farmacología , Receptores de GABA/genética , Varroidae/genética , Xenopus laevis
11.
Annu Rev Entomol ; 61: 417-32, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26667378

RESUMEN

Varroa destructor is the most important ectoparasite of Apis mellifera. This review addresses the interactions between the varroa mite, its environment, and the honey bee host, mediated by an impressive number of cues and signals, including semiochemicals regulating crucial steps of the mite's life cycle. Although mechanical stimuli, temperature, and humidity play an important role, chemical communication is the most important channel. Kairomones are used at all stages of the mite's life cycle, and the exploitation of bees' brood pheromones is particularly significant given these compounds function as primer and releaser signals that regulate the social organization of the honey bee colony. V. destructor is a major problem for apiculture, and the search for novel control methods is an essential task for researchers. A detailed study of the ecological interactions of V. destructor is a prerequisite for creating strategies to sustainably manage the parasite.


Asunto(s)
Abejas/fisiología , Abejas/parasitología , Interacciones Huésped-Parásitos , Varroidae/fisiología , Animales , Apicultura , Señales (Psicología) , Feromonas/metabolismo
12.
Insects ; 15(6)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38921105

RESUMEN

Resistance against amitraz in Varroa mite populations has become a subject of interest in recent years due to the increasing reports of the reduced field efficacy of amitraz treatments, especially from some beekeepers in France and the United States. The loss of amitraz as a reliable tool to effectively reduce Varroa mite infestation in the field could severely worsen the position of beekeepers in the fight to keep Varroa infestation rates in their colonies at low levels. In this publication, we present data from French apiaries, collected in the years 2020 and 2021. These data include the field efficacy of an authorized amitraz-based Varroa treatment (Apivar® ,Véto-pharma, France) and the results of laboratory sensitivity assays of Varroa mites exposed to the reference LC90 concentration of amitraz. In addition, a total of 240 Varroa mites from Eastern, Central, and Southern regions in France that were previously classified as either "sensitive" or "resistant" to amitraz in a laboratory sensitivity assay were genotyped. The genetic analyses of mite samples are focused on the ß-adrenergic-like octopamine receptor, which is considered as the main target site for amitraz in Varroa mites. Special attention was paid to a single-nucleotide polymorphism (SNP) at position 260 of the ORß-2R-L gene that was previously associated to amitraz resistance in French Varroa mites, Varroa. Our findings confirm that amitraz resistance occurs in patches or "islands of resistance", with a less severe reduction in treatment efficacy compared to pyrethroid resistance or coumaphos resistance in Varroa mites. The results of our genetic analyses of Varroa mites call into question the hypothesis of the SNP at position 260 of the ORß-2R-L gene being directly responsible for amitraz resistance development.

13.
Insects ; 15(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38921134

RESUMEN

Implementation of marker-assisted selection (MAS) in modern beekeeping would improve sustainability, especially in breeding programs aiming for resilience against the parasitic mite Varroa destructor. Selecting honey bee colonies for natural resistance traits, such as brood-intrinsic suppression of varroa mite reproduction, reduces the use of chemical acaricides while respecting local adaptation. In 2019, eight genomic variants associated with varroa non-reproduction in drone brood were discovered in a single colony from the Amsterdam Water Dune population in the Netherlands. Recently, a new study tested the applicability of these eight genetic variants for the same phenotype on a population-wide scale in Flanders, Belgium. As the properties of some variants varied between the two studies, one hypothesized that the difference in genetic ancestry of the sampled colonies may underly these contribution shifts. In order to frame this, we determined the allele frequencies of the eight genetic variants in more than 360 Apis mellifera colonies across the European continent and found that variant type allele frequencies of these variants are primarily related to the A. mellifera subspecies or phylogenetic honey bee lineage. Our results confirm that population-specific genetic markers should always be evaluated in a new population prior to using them in MAS programs.

14.
R Soc Open Sci ; 11(1): 231529, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38204792

RESUMEN

Invasive vectors can induce dramatic changes in disease epidemiology. While viral emergence following geographical range expansion of a vector is well known, the influence a vector can have at the level of the host's pathobiome is less well understood. Taking advantage of the formerly heterogeneous spatial distribution of the ectoparasitic mite Varroa destructor that acts as potent virus vector among honeybees Apis mellifera, we investigated the impact of its recent global spread on the viral community of honeybees in a retrospective study of historical samples. We hypothesized that the vector has had an effect on the epidemiology of several bee viruses, potentially altering their transmissibility and/or virulence, and consequently their prevalence, abundance, or both. To test this, we quantified the prevalence and loads of 14 viruses from honeybee samples collected in mite-free and mite-infested populations in four independent geographical regions. The presence of the mite dramatically increased the prevalence and load of deformed wing virus, a cause of unsustainably high colony losses. In addition, several other viruses became more prevalent or were found at higher load in mite-infested areas, including viruses not known to be actively varroa-transmitted, but which may increase opportunistically in varroa-parasitized bees.

15.
J Econ Entomol ; 116(1): 56-67, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36453974

RESUMEN

Several resistance traits have been proposed to select honey bees (Apis mellifera L.) that can survive in the presence of parasitic mite Varroa destructor (Anderson and Trueman) and enable a more sustainable apiculture. The interest for uncapping-recapping has recently increased following its identification in several naturally surviving honey bee populations, yet the utility of this trait for human-mediated selection is poorly known. Here, we evaluated the repeatability of recapping and its correlations with mite infestation levels, and assessed the expression of the trait in the often neglected drone brood. We also calculated correlations between recapping, mite infertility, and mite fecundity, expressed either at the level of individual brood cells or of the whole colony. Recapping measured in worker brood showed moderate repeatability (ranging between 0.30 and 0.46). Depending on sample, recapping slightly correlated negatively with colony infestation values. Recapping was also measured in drone brood, with values often comparable to recapping in worker brood, but no significant correlations were obtained between castes. At cell level, recapped cells in drone brood (but not in workers) were significantly less infested than nonrecapped cells, whereas in workers (but not in drones), recapped cells hosted mites with significantly lower fecundity. At colony level, with a few exceptions, recapping did not significantly correlate with mite infertility and fecundity, caste, sample, or number of infested cells considered. These results indicate limited possibilities of impeding mite reproduction and possibly mite infestation of honey bee colonies by recapping, which would need to be confirmed on larger, different populations.


Asunto(s)
Himenópteros , Infertilidad , Infestaciones por Ácaros , Varroidae , Humanos , Abejas , Animales , Reproducción
16.
Insects ; 14(2)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36835740

RESUMEN

Honey bees are essential for crop and wild plant pollination. However, many countries have reported high annual colony losses caused by multiple possible stressors. Diseases, particularly those caused by viruses, are a major cause of colony losses. However, little is known about the prevalence of honey bee pathogens, particularly virus prevalence, in Egyptian honey bees. To address this shortfall, we determined the prevalence of widespread bee viruses in honey bee colonies in Egypt-whether it is affected by geography, the season, or infestation with Varroa destructor (varroa) mites. Honey bee worker samples were collected from 18 geographical regions across Egypt during two seasons: winter and summer of 2021. Three apiaries were chosen in each region, and a pooled sample of 150 worker bees was collected from five colonies in each apiary then screened by qPCR for 10 viral targets: acute bee paralysis virus (ABPV), black queen cell virus (BQCV), chronic bee paralysis virus (CBPV), deformed wing virus (DWV) genotypes A (DWV-A), B (DWV-B) and D (Egyptian bee virus), Israeli acute paralysis virus (IAPV), Kashmir bee virus (KBV), sacbrood virus (SBV), and slow bee paralysis virus (SBPV). Our results revealed that DWV-A was the most prevalent virus, followed by BQCV and ABPV; the DWV genotype now spreading across the world, DWV-B, was not detected. There was no difference in varroa infestation rates as well as virus prevalence between winter and summer. However, colonies infected with BQCV had a significantly higher varroa count (adjusted p < 0.05) in the winter season, indicating that there is a seasonal association between the intensity of infestation by varroa and the presence of this virus. We provide data on the current virus prevalence in Egypt, which could assist in the protection of Egypt's beekeeping industry. Moreover, our study aids in the systematic assessment of the global honey bee virome by filling a knowledge gap about the prevalence of honey bee viruses in Egypt.

17.
Biology (Basel) ; 12(3)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36979086

RESUMEN

Climate change causes organisms, including species that act as parasite reservoirs and vectors, to shift their distribution to higher altitudes, affecting wildlife infestation patterns. We studied how ectoparasite distributions varied with altitude using two rodent species, Montemys delectorum and Rhabdomys dilectus, at different elevations (1500-3500 m). The ectoparasites infesting the two rodent species were influenced by the host sex, species, and temperature. We expected host density to predict parasite infestation patterns, because hosts in higher densities should have more parasites due to increased contact between individuals. However, temperature, not host density, affected ectoparasite distribution. Since temperatures decrease with elevation, parasite prevalences and abundances were lower at higher elevations, highlighting that the cold conditions at higher elevations limit reproduction and development-this shows that higher elevation zones are ideal for conservation. The rodents and ectoparasite species described in this study have been reported as vectors of diseases of medical and veterinary importance, necessitating precautions. Moreover, Mount Meru is a refuge for a number of endemic and threatened species on the IUCN Red List. Thus, the parasitic infection can also be an additional risk to these critical species as well as biodiversity in general. Therefore, our study lays the groundwork for future wildlife disease surveillance and biodiversity conservation management actions. The study found a previously uncharacterized mite species in the Mesostigmata group that was previously known to be a parasite of honeybees. Further investigations may shed light into the role of this mite species on Mount Meru.

18.
Biol Futur ; 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38055159

RESUMEN

A 2-year field experiment was performed to test lithium chloride, LiCl, application in a normal beekeeping management system. The effect of LiCl on bee larval mortality, beehive weight (honey production) and Varroa mite mortality were tested. Spectrometric quantification of Li on honey and the larval body were made to test the effectiveness of the presence of LiCl. Li was detected in bee larval bodies and in honey over 2 years, from 2018 to 2019. According to the results, no effect of LiCl on mite mortality or bee larval mortality was detected in the first year of application. By assessing the weight variation of beehives, only one LiCl-treated hive showed a significantly higher weight, whereas no other differences were detected between treatments and control. The same trend seen in 2018 was repeated in 2019, while a total bee larval mortality was observed after the first LiCl application, and still no differences in Varroa mite mortality were observed. According to these results, it was concluded that LiCl has no effect on Varroa mite mortality during normal beekeeping practice; furthermore, the recommended amount of treatment (25 mM) had a lethal effect (i.e., total mortality) on larvae following repeated applications.

19.
Pest Manag Sci ; 78(4): 1686-1697, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34994089

RESUMEN

BACKGROUND: The Varroa mite (Varroa destructor) is an ectoparasite that can affect the health of honey bees (Apis mellifera) and contributes to the loss of colony productivity. The limited availability of Varroacides with different modes of action in Canada has resulted in the development of chemical resistance in mite populations. Therefore, an urgent need to evaluate new potential miticides that are safe for bees and exhibit high efficacy against Varroa exists. In this study, the acute contact toxicity of 26 active ingredients (19 chemical classes), already available on the market, was evaluated on V. destructor and A. mellifera under laboratory conditions using an apiarium bioassay. In this assay, groups of Varroa-infested worker bees were exposed to different dilutions of candidate compounds. In semi-field trials, Varroa-infested honey bees were randomly treated with four vetted candidate compounds from the apiarium assay in mini-colonies. RESULTS: Among tested compounds, fenazaquin (quinazoline class) and fenpyroximate (pyrazole class) had higher mite mortality and lower bee mortality over a 24 h exposure period in apiariums. These two compounds, plus spirotetramat and spirodiclofen, were selected for semi-field evaluation based on the findings of the apiarium bioassay trials and previous laboratory studies. Consistent with the apiarium bioassay, semi-field results showed fenazaquin and fenpyroximate had high efficacy (>80%), reducing Varroa abundance by 80% and 68%, respectively. CONCLUSION: These findings suggest that fenazaquin would be an effective Varroacide, along with fenpyroximate, which was previously registered for in-hive use as Hivastan. Both compounds have the potential to provide beekeepers with an alternative option for managing Varroa mites in honey bee colonies. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Varroidae , Animales , Abejas , Benzoatos , Pirazoles/farmacología , Quinazolinas/farmacología
20.
Pest Manag Sci ; 78(12): 5097-5105, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36103265

RESUMEN

BACKGROUND: Varroa destructor is a parasitic mite of the honey bee, Apis mellifera. Its presence in colonies can lead to a collapse within a few years. The use of acaricides has become essential to manage the hive infestation. However, the repeated and possibly incorrect use of acaricide treatments, as tau-fluvalinate, has led to the development of resistance. The in vitro phenotypic test allows the proportion of susceptible or resistant individuals to be known following an exposure to an active substance. In Varroa mites, resistance to tau-fluvalinate is associated with the presence of mutations at the position 925 of the voltage-gated sodium channel (VGSC). RESULTS: Here, we compared the results obtained with an in vitro phenotypic test against tau-fluvalinate and those obtained with an allelic discrimination assay on 13 treated and untreated Varroa populations in France. The correlation between the phenotype and the genetic profile rate is found to be 0.89 Varroa mites having resistant phenotypic profile have a probability of 63% to present the L925V mutation (resistance detection reliability). However, 97% of the Varroa mites having the susceptible phenotype do not present the L925V mutation (susceptible detection reliability). CONCLUSION: The L925V mutation explains most of the resistance to tau-fluvalinate in V. destructor in the populations tested. However, other mutations or types of resistance may also be involved to explain the survival of Varroa mites in the phenotypic test. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Acaricidas , Varroidae , Canales de Sodio Activados por Voltaje , Abejas , Animales , Varroidae/genética , Reproducibilidad de los Resultados , Canales de Sodio Activados por Voltaje/genética , Mutación , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA