Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.997
Filtrar
Más filtros

Intervalo de año de publicación
1.
EMBO Rep ; 25(2): 524-543, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38253688

RESUMEN

Metabolites derived from the intestinal microbiota play an important role in maintaining skeletal muscle growth, function, and metabolism. Here, we found that D-malate (DMA) is produced by mouse intestinal microorganisms and its levels increase during aging. Moreover, we observed that dietary supplementation of 2% DMA inhibits metabolism in mice, resulting in reduced muscle mass, strength, and the number of blood vessels, as well as the skeletal muscle fiber type I/IIb ratio. In vitro assays demonstrate that DMA decreases the proliferation of vascular endothelial cells and suppresses the formation of blood vessels. In vivo, we further demonstrated that boosting angiogenesis by muscular VEGFB injection rescues the inhibitory effects of D-malate on muscle mass and fiber area. By transcriptomics analysis, we identified that the mechanism underlying the effects of DMA depends on the elevated intracellular acetyl-CoA content and increased Cyclin A acetylation rather than redox balance. This study reveals a novel mechanism by which gut microbes impair muscle angiogenesis and may provide a therapeutic target for skeletal muscle dysfunction in cancer or aging.


Asunto(s)
Células Endoteliales , Microbiota , Ratones , Animales , Células Endoteliales/metabolismo , Acetilación , Ciclina A/metabolismo , Angiogénesis , Malatos/metabolismo , Músculo Esquelético/metabolismo , Envejecimiento
2.
Gastroenterology ; 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39004156

RESUMEN

BACKGROUND AND AIMS: The pathophysiology of irritable bowel syndrome (IBS) is multifactorial and includes epithelial barrier dysfunction, a key element at the interface between the gut lumen and the deeper intestinal layers. Beneath the epithelial barrier there is the vascular one representing the last barrier to avoid luminal antigen dissemination The aims of this study were to correlate morpho-functional aspects of epithelial and vascular barriers with symptom perception in IBS. METHODS: Seventy-eight healthy subjects (controls) and 223 patients with IBS were enrolled in the study and phenotyped according to validated questionnaires. Sugar test was used to evaluate in vivo permeability. Immunohistochemistry, western blot, and electron microscopy were used to characterize the vascular barrier. Vascular permeability was evaluated by assessing the mucosal expression of plasmalemma vesicle-associated protein-1 and vascular endothelial cadherin. Caco-2 or human umbilical vein endothelial cell monolayers were incubated with soluble mediators released by mucosal biopsies to highlight the mechanisms involved in permeability alteration. Correlation analyses have been performed among experimental and clinical data. RESULTS: The intestinal epithelial barrier was compromised in patients with IBS throughout the gastrointestinal tract. IBS-soluble mediators increased Caco-2 permeability via a downregulation of tight junction gene expression. Blood vessel density and vascular permeability were increased in the IBS colonic mucosa. IBS mucosal mediators increased permeability in human umbilical vein endothelial cell monolayers through the activation of protease-activated receptor-2 and histone deacetylase 11, resulting in vascular endothelial cadherin downregulation. Permeability changes correlated with intestinal and behavioral symptoms and health-related quality of life of patients with IBS. CONCLUSIONS: Epithelial and vascular barriers are compromised in patients with IBS and contribute to clinical manifestations.

3.
Stem Cells ; 42(8): 736-751, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38826008

RESUMEN

Mesenchymal stromal cells (MSCs) are investigated as cellular therapeutics for inflammatory bowel diseases and associated perianal fistula, although consistent efficacy remains a concern. Determining host factors that modulate MSCs' potency including their secretion of angiogenic and wound-healing factors, immunosuppression, and anti-inflammatory properties are important determinants of their functionality. We investigated the mechanisms that regulate the secretion of angiogenic and wound-healing factors and immune suppression of human bone marrow MSCs. Secretory analysis of MSCs focusing on 18 angiogenic and wound-healing secretory molecules identified the most abundancy of vascular endothelial growth factor A (VEGF-A). MSC viability and secretion of other angiogenic factors are not dependent on VEGF-A secretion which exclude the autocrine role of VEGF-A on MSC's fitness. However, the combination of inflammatory cytokines IFNγ and TNFα reduces MSC's VEGF-A secretion. To identify the effect of intestinal microvasculature on MSCs' potency, coculture analysis was performed between human large intestine microvascular endothelial cells (HLMVECs) and human bone marrow-derived MSCs. HLMVECs do not attenuate MSCs' viability despite blocking their VEGF-A secretion. In addition, HLMVECs neither attenuate MSC's IFNγ mediated upregulation of immunosuppressive enzyme indoleamine 2,3-dioxygenase nor abrogate suppression of T-cell proliferation despite the attenuation of VEGF-A secretion. We found that HLMVECs express copious amounts of endothelial nitric oxide synthase and mechanistic analysis showed that pharmacological blocking reverses HLMVEC-mediated attenuation of MSC's VEGF-A secretion. Together these results suggest that secretion of VEGF-A and immunosuppression are separable functions of MSCs which are regulated by distinct mechanisms in the host.


Asunto(s)
Células Madre Mesenquimatosas , Factor A de Crecimiento Endotelial Vascular , Humanos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/citología , Terapia de Inmunosupresión , Técnicas de Cocultivo , Células Cultivadas
4.
FASEB J ; 38(16): e23879, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39162663

RESUMEN

Both lymphatic vessels and macrophages are key factors influencing the inflammatory response. During the inflammatory response, lymphatic vessels undergo dilation and growth, playing a beneficial role in alleviating inflammation by facilitating the drainage of exudate, inflammatory mediators, and leukocytes. Consequently, the promotion of lymphangiogenesis has emerged as a novel therapeutic approach to treating inflammation. Macrophages play a crucial role in promoting lymphangiogenesis by secreting several pro-lymphatic growth factors, including vascular endothelial growth factor (VEGF)-C, and undergoing transdifferentiation into lymphatic endothelial cell progenitors (LECP), which integrate into newly formed lymphatic vessels. Macrophages exhibit heterogeneity and perform diverse functions based on their phenotypes. The regulation of macrophage polarization is crucial in inflammatory responses. Notably, macrophages promote lymphangiogenesis, while lymphatic vessels, in turn, serve as a conduit for macrophages to drain out inflamed tissue and also affect macrophage polarization. Thus, there is an interactive relationship between them. In this review, we discuss current work on the effects of macrophages on lymphangiogenesis as well as lymphatic vessel recruitment of macrophages and regulation of macrophage polarization. Furthermore, we explore the roles of lymphatic vessels and macrophages in various inflammation-related diseases, emphasizing potential therapeutic targets within the context of lymphatic-macrophage interactions.


Asunto(s)
Inflamación , Linfangiogénesis , Vasos Linfáticos , Macrófagos , Macrófagos/inmunología , Macrófagos/metabolismo , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patología , Humanos , Inflamación/metabolismo , Inflamación/patología , Animales , Linfangiogénesis/fisiología , Factor C de Crecimiento Endotelial Vascular/metabolismo
5.
Circ Res ; 133(4): 333-349, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37462027

RESUMEN

BACKGROUND: Lymphatic vessels are responsible for tissue drainage, and their malfunction is associated with chronic diseases. Lymph uptake occurs via specialized open cell-cell junctions between capillary lymphatic endothelial cells (LECs), whereas closed junctions in collecting LECs prevent lymph leakage. LEC junctions are known to dynamically remodel in development and disease, but how lymphatic permeability is regulated remains poorly understood. METHODS: We used various genetically engineered mouse models in combination with cellular, biochemical, and molecular biology approaches to elucidate the signaling pathways regulating junction morphology and function in lymphatic capillaries. RESULTS: By studying the permeability of intestinal lacteal capillaries to lipoprotein particles known as chylomicrons, we show that ROCK (Rho-associated kinase)-dependent cytoskeletal contractility is a fundamental mechanism of LEC permeability regulation. We show that chylomicron-derived lipids trigger neonatal lacteal junction opening via ROCK-dependent contraction of junction-anchored stress fibers. LEC-specific ROCK deletion abolished junction opening and plasma lipid uptake. Chylomicrons additionally inhibited VEGF (vascular endothelial growth factor)-A signaling. We show that VEGF-A antagonizes LEC junction opening via VEGFR (VEGF receptor) 2 and VEGFR3-dependent PI3K (phosphatidylinositol 3-kinase)/AKT (protein kinase B) activation of the small GTPase RAC1 (Rac family small GTPase 1), thereby restricting RhoA (Ras homolog family member A)/ROCK-mediated cytoskeleton contraction. CONCLUSIONS: Our results reveal that antagonistic inputs into ROCK-dependent cytoskeleton contractions regulate the interconversion of lymphatic junctions in the intestine and in other tissues, providing a tunable mechanism to control the lymphatic barrier.


Asunto(s)
Vasos Linfáticos , Proteínas de Unión al GTP Monoméricas , Ratones , Animales , Factor A de Crecimiento Endotelial Vascular/metabolismo , Células Endoteliales/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Quilomicrones/metabolismo , Vasos Linfáticos/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Permeabilidad Capilar
6.
Circ Res ; 132(11): 1489-1504, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37144413

RESUMEN

BACKGROUND: Dkk3 (Dickkopf-3) is a secreted glycoprotein known for its proapoptotic and angiogenic activity. The role of Dkk3 in cardiovascular homeostasis is largely unknown. Remarkably, the Dkk3 gene maps within a chromosome segment linked to the hypertensive phenotype in spontaneously hypertensive rats (SHR). METHODS: We used Dkk3-/- mice or stroke-resistant (sr) and stroke-prone (sp) SHR to examine the role of Dkk3 in the central and peripheral regulation of blood pressure (BP). We used lentiviral expression vector to rescue Dkk3 in knockout mice or to induce Dkk3 overexpression or silencing in SHR. RESULTS: Genetic deletion of Dkk3 in mice enhanced BP and impaired endothelium-dependent acetylcholine-induced relaxation of resistance arteries. These alterations were rescued by restoring Dkk3 expression either in the periphery or in the central nervous system (CNS). Dkk3 was required for the constitutive expression of VEGF (vascular endothelium growth factor), and the action of Dkk3 on BP and endothelium-dependent vasorelaxation was mediated by VEGF-stimulated phosphatidylinositol-3-kinase pathway, leading to eNOS (endothelial NO synthase) activation both in resistance arteries and the CNS. The regulatory function of Dkk3 on BP was confirmed in SHR stroke-resistant and SHR stroke-prone in which was blunted in both resistance arteries and brainstem. In SHR stroke-resistant, lentiviral expression vector-induced Dkk3 expression in the CNS largely reduced BP, whereas Dkk3 knock-down further enhanced BP. In SHR stroke-prone challenged with a hypersodic diet, lentiviral expression vector-induced Dkk3 expression in the CNS displayed a substantial antihypertensive effect and delayed the occurrence of stroke. CONCLUSIONS: These findings demonstrate that Dkk3 acts as peripheral and central regulator of BP by promoting VEGF expression and activating a VEGF/Akt (protein kinase B)/eNOS hypotensive axis.


Asunto(s)
Hipertensión , Accidente Cerebrovascular , Animales , Ratones , Ratas , Presión Sanguínea , Endotelio Vascular/metabolismo , Hipertensión/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Ratas Endogámicas SHR , Accidente Cerebrovascular/genética , Factor A de Crecimiento Endotelial Vascular , Factores de Crecimiento Endotelial Vascular , Vasodilatación
7.
Arterioscler Thromb Vasc Biol ; 44(5): e145-e167, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38482696

RESUMEN

BACKGROUND: New blood vessel formation requires endothelial cells to transition from a quiescent to an invasive phenotype. Transcriptional changes are vital for this switch, but a comprehensive genome-wide approach focused exclusively on endothelial cell sprout initiation has not been reported. METHODS: Using a model of human endothelial cell sprout initiation, we developed a protocol to physically separate cells that initiate the process of new blood vessel formation (invading cells) from noninvading cells. We used this model to perform multiple transcriptomics analyses from independent donors to monitor endothelial gene expression changes. RESULTS: Single-cell population analyses, single-cell cluster analyses, and bulk RNA sequencing revealed common transcriptomic changes associated with invading cells. We also found that collagenase digestion used to isolate single cells upregulated the Fos proto-oncogene transcription factor. Exclusion of Fos proto-oncogene expressing cells revealed a gene signature consistent with activation of signal transduction, morphogenesis, and immune responses. Many of the genes were previously shown to regulate angiogenesis and included multiple tip cell markers. Upregulation of SNAI1 (snail family transcriptional repressor 1), PTGS2 (prostaglandin synthase 2), and JUNB (JunB proto-oncogene) protein expression was confirmed in invading cells, and silencing JunB and SNAI1 significantly reduced invasion responses. Separate studies investigated rounding 3, also known as RhoE, which has not yet been implicated in angiogenesis. Silencing rounding 3 reduced endothelial invasion distance as well as filopodia length, fitting with a pathfinding role for rounding 3 via regulation of filopodial extensions. Analysis of in vivo retinal angiogenesis in Rnd3 heterozygous mice confirmed a decrease in filopodial length compared with wild-type littermates. CONCLUSIONS: Validation of multiple genes, including rounding 3, revealed a functional role for this gene signature early in the angiogenic process. This study expands the list of genes associated with the acquisition of a tip cell phenotype during endothelial cell sprout initiation.


Asunto(s)
Perfilación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana , Neovascularización Fisiológica , Proteínas Proto-Oncogénicas c-fos , Transcriptoma , Proteínas de Unión al GTP rho , Animales , Humanos , Ratones , Células Cultivadas , Ciclooxigenasa 2/metabolismo , Ciclooxigenasa 2/genética , Células Endoteliales/metabolismo , Perfilación de la Expresión Génica/métodos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Neovascularización Fisiológica/genética , Fenotipo , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Proteínas de Unión al GTP rho/genética , Transducción de Señal , Análisis de la Célula Individual , Factores de Transcripción de la Familia Snail/metabolismo , Factores de Transcripción de la Familia Snail/genética
8.
Arterioscler Thromb Vasc Biol ; 44(2): 366-390, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38126170

RESUMEN

BACKGROUND: Retinal neovascularization is a major cause of vision impairment. Therefore, the purpose of this study is to investigate the mechanisms by which hypoxia triggers the development of abnormal and leaky blood vessels. METHODS: A variety of cellular and molecular approaches as well as tissue-specific knockout mice were used to investigate the role of Cttn (cortactin) in retinal neovascularization and vascular leakage. RESULTS: We found that VEGFA (vascular endothelial growth factor A) stimulates Cttn phosphorylation at Y421, Y453, and Y470 residues in human retinal microvascular endothelial cells. In addition, we observed that while blockade of Cttn phosphorylation at Y470 inhibited VEGFA-induced human retinal microvascular endothelial cell angiogenic events, suppression of Y421 phosphorylation protected endothelial barrier integrity from disruption by VEGFA. In line with these observations, while blockade of Cttn phosphorylation at Y470 negated oxygen-induced retinopathy-induced retinal neovascularization, interference with Y421 phosphorylation prevented VEGFA/oxygen-induced retinopathy-induced vascular leakage. Mechanistically, while phosphorylation at Y470 was required for its interaction with Arp2/3 and CDC6 facilitating actin polymerization and DNA synthesis, respectively, Cttn phosphorylation at Y421 leads to its dissociation from VE-cadherin, resulting in adherens junction disruption. Furthermore, whereas Cttn phosphorylation at Y470 residue was dependent on Lyn, its phosphorylation at Y421 residue required Syk activation. Accordingly, lentivirus-mediated expression of shRNA targeting Lyn or Syk levels inhibited oxygen-induced retinopathy-induced retinal neovascularization and vascular leakage, respectively. CONCLUSIONS: The above observations show for the first time that phosphorylation of Cttn is involved in a site-specific manner in the regulation of retinal neovascularization and vascular leakage. In view of these findings, Cttn could be a novel target for the development of therapeutics against vascular diseases such as retinal neovascularization and vascular leakage.


Asunto(s)
Neovascularización Retiniana , Animales , Humanos , Ratones , Cortactina/genética , Cortactina/metabolismo , Células Endoteliales/metabolismo , Ratones Noqueados , Oxígeno/metabolismo , Fosforilación , Neovascularización Retiniana/genética , Neovascularización Retiniana/metabolismo , Tirosina/efectos adversos , Tirosina/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
9.
J Pathol ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39177649

RESUMEN

WT1 encodes a podocyte transcription factor whose variants can cause an untreatable glomerular disease in early childhood. Although WT1 regulates many podocyte genes, it is poorly understood which of them are initiators in disease and how they subsequently influence other cell-types in the glomerulus. We hypothesised that this could be resolved using single-cell RNA sequencing (scRNA-seq) and ligand-receptor analysis to profile glomerular cell-cell communication during the early stages of disease in mice harbouring an orthologous human mutation in WT1 (Wt1R394W/+). Podocytes were the most dysregulated cell-type in the early stages of Wt1R394W/+ disease, with disrupted angiogenic signalling between podocytes and the endothelium, including the significant downregulation of transcripts for the vascular factors Vegfa and Nrp1. These signalling changes preceded glomerular endothelial cell loss in advancing disease, a feature also observed in biopsy samples from human WT1 glomerulopathies. Addition of conditioned medium from murine Wt1R394W/+ primary podocytes to wild-type glomerular endothelial cells resulted in impaired endothelial looping and reduced vascular complexity. Despite the loss of key angiogenic molecules in Wt1R394W/+ podocytes, the pro-vascular molecule adrenomedullin was upregulated in Wt1R394W/+ podocytes and plasma and its further administration was able to rescue the impaired looping observed when glomerular endothelium was exposed to Wt1R394W/+ podocyte medium. In comparative analyses, adrenomedullin upregulation was part of a common injury signature across multiple murine and human glomerular disease datasets, whilst other gene changes were unique to WT1 disease. Collectively, our study describes a novel role for altered angiogenic signalling in the initiation of WT1 glomerulopathy. We also identify adrenomedullin as a proangiogenic factor, which despite being upregulated in early injury, offers an insufficient protective response due to the wider milieu of dampened vascular signalling that results in endothelial cell loss in later disease. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.

10.
Exp Cell Res ; 440(1): 114103, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38848951

RESUMEN

Elevated homocysteine (Hcy) levels have been recognized as significant risk factor for cardiovascular and cerebrovascular diseases, closely related to endothelial injury. While expression of Ciliary Neurotrophic Factor (CNTF) significantly increases during Hcy-induced vascular endothelial cell injury, the precise molecular pathways through which CNTF operates remain to be clarified. To induce vascular endothelial cell injury, human umbilical vein endothelial cells (HUVECs) were treated with Hcy. Cell viability and apoptosis in HUVECs were assessed using the CCK-8 assay and flow cytometry. Western blot analysis determined the expression levels of the JAK2-STAT3 pathway, inflammation-related factors (IL-1ß, NLRP3, ICAM-1, VCAM-1), and apoptosis-related factors (cleaved Caspase-3 and Bax). Immunofluorescence staining and western blotting were employed to examine CD31 and α-SMA expression. Knockdown of CNTF was achieved using lentiviral interference, and its effects on inflammation and cell injury were evaluated. Chromatin immunoprecipitation (ChIP) and dual luciferase reporter analysis were conducted to investigate the interaction between the MAFK and CNTF promoters. Our results indicated that Hcy induced high expression of CNTF and activated the JAK2-STAT3 signaling pathway, thereby upregulating factors associated with inflammation and cell apoptosis. Inhibiting CNTF alleviated Hcy-induced inflammation and cell injury. MAFK was identified as a transcription factor promoting CNTF transcription, and its overexpression exacerbated inflammation and cell injury in Hcy-treated HUVECs through the CNTF-JAK2-STAT3 axis, which could be reversed by knocking down CNTF. Activation of MAFK leads to CNTF upregulation, which activates the JAK2-STAT3 signaling pathway, regulating inflammation and inducing injury in Hcy-exposed vascular endothelial cells. Targeting CNTF or its upstream regulator MAFK may represent potential therapeutic strategies for mitigating endothelial dysfunction associated with hyperhomocysteinemia and cardiovascular diseases.


Asunto(s)
Apoptosis , Factor Neurotrófico Ciliar , Homocisteína , Células Endoteliales de la Vena Umbilical Humana , Inflamación , Janus Quinasa 2 , Factor de Transcripción STAT3 , Transducción de Señal , Janus Quinasa 2/metabolismo , Humanos , Factor de Transcripción STAT3/metabolismo , Homocisteína/farmacología , Homocisteína/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Inflamación/metabolismo , Inflamación/patología , Factor Neurotrófico Ciliar/metabolismo , Factor Neurotrófico Ciliar/genética , Apoptosis/efectos de los fármacos , Células Cultivadas , Supervivencia Celular/efectos de los fármacos
11.
Cereb Cortex ; 34(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38642107

RESUMEN

Glioma is a systemic disease that can induce micro and macro alternations of whole brain. Isocitrate dehydrogenase and vascular endothelial growth factor are proven prognostic markers and antiangiogenic therapy targets in glioma. The aim of this study was to determine the ability of whole brain morphologic features and radiomics to predict isocitrate dehydrogenase status and vascular endothelial growth factor expression levels. This study recruited 80 glioma patients with isocitrate dehydrogenase wildtype and high vascular endothelial growth factor expression levels, and 102 patients with isocitrate dehydrogenase mutation and low vascular endothelial growth factor expression levels. Virtual brain grafting, combined with Freesurfer, was used to compute morphologic features including cortical thickness, LGI, and subcortical volume in glioma patient. Radiomics features were extracted from multiregional tumor. Pycaret was used to construct the machine learning pipeline. Among the radiomics models, the whole tumor model achieved the best performance (accuracy 0.80, Area Under the Curve 0.86), while, after incorporating whole brain morphologic features, the model had a superior predictive performance (accuracy 0.82, Area Under the Curve 0.88). The features contributed most in predicting model including the right caudate volume, left middle temporal cortical thickness, first-order statistics, shape, and gray-level cooccurrence matrix. Pycaret, based on morphologic features, combined with radiomics, yielded highest accuracy in predicting isocitrate dehydrogenase mutation and vascular endothelial growth factor levels, indicating that morphologic abnormalities induced by glioma were associated with tumor biology.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Factor A de Crecimiento Endotelial Vascular/genética , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Isocitrato Deshidrogenasa/genética , Imagen por Resonancia Magnética , Glioma/diagnóstico por imagen , Glioma/genética , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Mutación , Estudios Retrospectivos
12.
Bioessays ; 45(3): e2200121, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36707486

RESUMEN

The behavior of somatic stem cells is regulated by their niche. Interaction between hematopoietic stem cells (HSCs) and their niches are a representative model to understand stem cell-niche interplay. Here, we provide an overview of crosstalk between HSCs and their niches in bone marrow and extramedullary organs following the life journey of HSCs from emergence, development, maturation until aging. We highlight the unique differences of HSC niches in different life stages within various organs focusing on recent literature to propose new speculations and hypotheses.


Asunto(s)
Médula Ósea , Células Madre Hematopoyéticas , Reacciones Cruzadas , Nicho de Células Madre
13.
Eur Heart J ; 45(4): 255-264, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-37634134

RESUMEN

BACKGROUND AND AIMS: Clinical management of critical limb-threatening ischaemia (CLTI) is focused on prevention and treatment of atherosclerotic arterial occlusions. The role of microvascular pathology in disease progression is still largely unspecified and more importantly not utilized for treatment. The aim of this explorative study was to characterize the role of the microvasculature in CLTI pathology. METHODS: Clinical high-resolution imaging of CLTI patients (n = 50) and muscle samples from amputated CLTI limbs (n = 40) were used to describe microvascular pathology of CLTI at the level of resting muscle blood flow and microvascular structure, respectively. Furthermore, a chronic, low arterial driving pressure-simulating ischaemia model in rabbits (n = 24) was used together with adenoviral vascular endothelial growth factor A gene transfers to study the effect of microvascular alterations on muscle outcome. RESULTS: Resting microvascular blood flow was not depleted but displayed decreased capillary transit time (P < .01) in CLTI muscles. Critical limb-threatening ischaemia muscle microvasculature also exhibited capillary enlargement (P < .001) and further arterialization along worsening of myofibre atrophy and detaching of capillaries from myofibres. Furthermore, CLTI-like capillary transformation was shown to worsen calf muscle force production (P < .05) and tissue outcome (P < .01) under chronic ischaemia in rabbits and in healthy, normal rabbit muscle. CONCLUSIONS: These findings depict a progressive, hypoxia-driven transformation of the microvasculature in CLTI muscles, which pathologically alters blood flow dynamics and aggravates tissue damage under low arterial driving pressure. Hypoxia-driven capillary enlargement can be highly important for CLTI outcomes and should therefore be considered in further development of diagnostics and treatment of CLTI.


Asunto(s)
Enfermedad Arterial Periférica , Humanos , Conejos , Animales , Enfermedad Arterial Periférica/terapia , Factores de Riesgo , Factor A de Crecimiento Endotelial Vascular , Isquemia , Hipoxia , Resultado del Tratamiento , Estudios Retrospectivos , Enfermedad Crónica
14.
Dev Biol ; 497: 1-10, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36841503

RESUMEN

In amniote vertebrates, the definitive dorsal aorta is formed by the fusion of two primordial aortic endothelial tubes. Formation of the definitive dorsal aorta requires extensive cellular migrations and rearrangements of the primordial tubes in order to generate a single vessel located at the embryonic ventral midline. This study examines the role of VEGF signaling in the generation of the definitive dorsal aorta. Through gain- and loss-of-function studies in vivo in the chick embryo, we document a requirement for VEGF signaling in growth and remodeling of the paired primordia. We find that regions of the aorta are differentially sensitive to levels of VEGF signaling, and present evidence that areas of low blood flow are more sensitive to the loss of VEGF signaling. We also find that VEGF signaling regulates the intracellular distribution between membrane and cytoplasm of the cell-cell adhesion molecule VE-cadherin in aortic endothelial cells in vivo. Together, these finding identify mechanisms that likely contribute to the dynamic behavior of endothelial cells during aorta morphogenesis.


Asunto(s)
Células Endoteliales , Factor A de Crecimiento Endotelial Vascular , Embrión de Pollo , Animales , Cadherinas/fisiología , Morfogénesis , Endotelio Vascular
15.
J Biol Chem ; 299(9): 104998, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37394009

RESUMEN

Chlorotoxin (CTX), a scorpion venom-derived 36-residue miniprotein, binds to and is taken up selectively by glioblastoma cells. Previous studies provided controversial results concerning target protein(s) of CTX. These included CLC3 chloride channel, matrix metalloproteinase 2 (MMP-2), regulators of MMP-2, annexin A2, and neuropilin 1 (NRP1). The present study aimed at clarifying which of the proposed binding partners can really interact with CTX using biochemical methods and recombinant proteins. For this purpose, we established two new binding assays based on anchoring the tested proteins to microbeads and quantifying the binding of CTX by flow cytometry. Screening of His-tagged proteins anchored to cobalt-coated beads indicated strong interaction of CTX with MMP-2 and NRP1, whereas binding to annexin A2 was not confirmed. Similar results were obtained with fluorophore-labeled CTX and CTX-displaying phages. Affinity of CTX to MMP-2 and NRP1 was assessed by the "immunoglobulin-coated bead" test, in which the proteins were anchored to beads by specific antibodies. This assay yielded highly reproducible data using both direct titration and displacement approach. The affinities of labeled and unlabeled CTX appeared to be similar for both MMP-2 and NRP1 with estimated KD values of 0.5 to 0.7 µM. Contrary to previous reports, we found that CTX does not inhibit the activity of MMP-2 and that CTX not only with free carboxyl end but also with carboxamide terminal end binds to NRP1. We conclude that the presented robust assays could also be applied for affinity-improving studies of CTX to its genuine targets using phage display libraries.


Asunto(s)
Glioblastoma , Metaloproteinasa 2 de la Matriz , Neuropilina-1 , Venenos de Escorpión , Humanos , Glioblastoma/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Neuropilina-1/metabolismo , Venenos de Escorpión/metabolismo , Línea Celular Tumoral , Unión Proteica
16.
J Cell Biochem ; 125(2): e30515, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38213080

RESUMEN

Vascular endothelial growth factor (VEGF) mediated angiogenesis is crucial for tumor progression. Isoforms of VEGF bind to different VEGF receptors (VEGFRs) to initiate angiogenesis specific cellular signaling. Inhibitors that target both the receptors and ligands are in clinical use to impede angiogenesis. Bevacizumab, a monoclonal antibody (mAb) approved by the Food and Drug Administration (FDA), binds in the VEGF receptor binding domain (RBD) of all soluble isoforms of VEGF and inhibits the VEGF-VEGFR interaction. Bevacizumab is also used in combination with other chemotherapeutic agents for a better therapeutic outcome. Understanding the intricate polymorphic character of VEGFA gene and the influence of missense or nonsynonymous mutations in the form of nonsynonymous polymorphisms (nsSNPs) on RBD of VEGF may aid in increasing the efficacy of this drug. This study has identified 18 potential nsSNPs in VEGFA gene that affect the VEGF RBD structure and alter its binding pattern to bevacizumab. The mutated RBDs, modeled using trRosetta, in addition to the changed pattern of secondary structure, post translational modification and stability compared to the wild type, have shown contrasting binding affinity and molecular interaction pattern with bevacizumab. Molecular docking analysis by ClusPro and visualization using PyMol and PDBsum tools have detected 17 nsSNPs with decreased binding affinity to bevacizumab and therefore may impact the treatment efficacy. Whereas VEGF RBD expressed due to rs1267535717 (R229H) nsSNP of VEGFA has increased affinity to the mAb. This study suggests that genetic characterization of VEGFA before bevacizumab mediated cancer treatment is essential in predicting the appropriate efficacy of the drug, as the treatment efficiency may vary at individual level.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Factor A de Crecimiento Endotelial Vascular , Bevacizumab/farmacología , Bevacizumab/uso terapéutico , Factor A de Crecimiento Endotelial Vascular/metabolismo , Simulación del Acoplamiento Molecular , Anticuerpos Monoclonales/farmacología , Receptores de Factores de Crecimiento Endotelial Vascular/genética , Isoformas de Proteínas , Mutación , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico
17.
Curr Issues Mol Biol ; 46(4): 3278-3293, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38666935

RESUMEN

Protein S (PROS1) is a vitamin K-dependent anticoagulant factor, which also acts as an agonist for the TYRO3, AXL, and MERTK (TAM) tyrosine kinase receptors. PROS1 is produced by the endothelium which also expresses TAM receptors, but little is known about its effects on vascular function and permeability. Transwell permeability assays as well as Western blotting and immunostaining analysis were used to monitor the possible effects of PROS1 on both endothelial cell permeability and on the phosphorylation state of specific signaling proteins. We show that human PROS1, at its circulating concentrations, substantially increases both the basal and VEGFA-induced permeability of endothelial cell (EC) monolayers. PROS1 induces p38 MAPK (Mitogen Activated Protein Kinase), Rho/ROCK (Rho-associated protein kinase) pathway activation, and actin filament remodeling, as well as substantial changes in Vascular Endothelial Cadherin (VEC) distribution and its phosphorylation on Ser665 and Tyr685. It also mediates c-Src and PAK-1 (p21-activated kinase 1) phosphorylation on Tyr416 and Ser144, respectively. Exposure of EC to human PROS1 induces VEC internalization as well as its cleavage into a released fragment of 100 kDa and an intracellular fragment of 35 kDa. Using anti-TAM neutralizing antibodies, we demonstrate that PROS1-induced VEC and c-Src phosphorylation are mediated by both the MERTK and TYRO3 receptors but do not involve the AXL receptor. MERTK and TYRO3 receptors are also responsible for mediating PROS1-induced MLC (Myosin Light Chain) phosphorylation on a site targeted by the Rho/ROCK pathway. Our report provides evidence for the activation of the c-Src/VEC and Rho/ROCK/MLC pathways by PROS1 for the first time and points to a new role for PROS1 as an endogenous vascular permeabilizing factor.

18.
Growth Factors ; : 1-10, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39001597

RESUMEN

Aims: This study aims to explore the potential role of vascular endothelial growth factor-B (VEGF-B) in the pathogenesis of diabetic peripheral neuropathy (DPN). The expression of VEGFRs were reanalysed by using gene arrays of peripheral nerve samples from mouse models of DPN retrieved from the GEO database. 213 T2D patients as well as 31 healthy individuals were recruited. The serum VEGF-B was detected and its relationship with DPN was analysed. The elevated VEGFR1 was the only change of VEGFR gene expression in the peripheral nerve from mouse models of DPN. The level of serum VEGF-B in T2D patients with DPN was higher than that in T2D patients without DPN and healthy people. Analysis of correlation and binary logistic regression confirmed that the increased serum VEGF-B level was an independent risk factor of DPN in T2D patients. VEGF-B-VEGFR1 signaling pathway may be involved in the development of DPN.

19.
Angiogenesis ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060773

RESUMEN

As a vital component of blood vessels, endothelial cells play a key role in maintaining overall physiological function by residing between circulating blood and semi-solid tissue. Various stress stimuli can induce endothelial injury, leading to the onset of corresponding diseases in the body. In recent years, the importance of mitochondria in vascular endothelial injury has become increasingly apparent. Mitochondria, as the primary site of cellular aerobic respiration and the organelle for "energy information transfer," can detect endothelial cell damage by integrating and receiving various external stress signals. The generation of reactive oxygen species (ROS) and mitochondrial dysfunction often determine the evolution of endothelial cell injury towards necrosis or apoptosis. Therefore, mitochondria are closely associated with endothelial cell function, helping to determine the progression of clinical diseases. This article comprehensively reviews the interconnection and pathogenesis of mitochondrial-induced vascular endothelial cell injury in cardiovascular diseases, renal diseases, pulmonary-related diseases, cerebrovascular diseases, and microvascular diseases associated with diabetes. Corresponding therapeutic approaches are also provided. Additionally, strategies for using clinical drugs to treat vascular endothelial injury-based diseases are discussed, aiming to offer new insights and treatment options for the clinical diagnosis of related vascular injuries.

20.
Mol Med ; 30(1): 86, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877399

RESUMEN

BACKGROUND: Despite the advances of therapies, multiple myeloma (MM) remains an incurable hematological cancer that most patients experience relapse. Tumor angiogenesis is strongly correlated with cancer relapse. Human leukocyte antigen G (HLA-G) has been known as a molecule to suppress angiogenesis. We aimed to investigate whether soluble HLA-G (sHLA-G) was involved in the relapse of MM. METHODS: We first investigated the dynamics of serum sHLA-G, vascular endothelial growth factor (VEGF) and interleukin 6 (IL-6) in 57 successfully treated MM patients undergoing remission and relapse. The interactions among these angiogenesis-related targets (sHLA-G, VEGF and IL-6) were examined in vitro. Their expression at different oxygen concentrations was investigated using a xenograft animal model by intra-bone marrow and skin grafts with myeloma cells. RESULTS: We found that HLA-G protein degradation augmented angiogenesis. Soluble HLA-G directly inhibited vasculature formation in vitro. Mechanistically, HLA-G expression was regulated by hypoxia-inducible factor-1α (HIF-1α) in MM cells under hypoxia. We thus developed two mouse models of myeloma xenografts in intra-bone marrow (BM) and underneath the skin, and found a strong correlation between HLA-G and HIF-1α expressions in hypoxic BM, but not in oxygenated tissues. Yet when stimulated with IL-6, both HLA-G and HIF-1α could be targeted to ubiquitin-mediated degradation via PARKIN. CONCLUSION: These results highlight the importance of sHLA-G in angiogenesis at different phases of multiple myeloma. The experimental evidence that sHLA-G as an angiogenesis suppressor in MM may be useful for future development of novel therapies to prevent relapse.


Asunto(s)
Antígenos HLA-G , Interleucina-6 , Mieloma Múltiple , Neovascularización Patológica , Mieloma Múltiple/sangre , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Humanos , Animales , Neovascularización Patológica/metabolismo , Antígenos HLA-G/sangre , Antígenos HLA-G/metabolismo , Ratones , Interleucina-6/sangre , Interleucina-6/metabolismo , Masculino , Femenino , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/sangre , Persona de Mediana Edad , Línea Celular Tumoral , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Anciano , Modelos Animales de Enfermedad , Angiogénesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA