Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 905
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Development ; 150(6)2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36960827

RESUMEN

The blood-brain barrier (BBB) is a vascular endothelial cell boundary that partitions the circulation from the central nervous system to promote normal brain health. We have a limited understanding of how the BBB is formed during development and maintained in adulthood. We used quantitative transcriptional profiling to investigate whether specific adhesion molecules are involved in BBB functions, with an emphasis on understanding how astrocytes interact with endothelial cells. Our results reveal a striking enrichment of multiple genes encoding laminin subunits as well as the laminin receptor gene Itga7, which encodes the alpha7 integrin subunit, in astrocytes. Genetic ablation of Itga7 in mice led to aberrant BBB permeability and progressive neurological pathologies. Itga7-/- mice also showed a reduction in laminin protein expression in parenchymal basement membranes. Blood vessels in the Itga7-/- brain showed separation from surrounding astrocytes and had reduced expression of the tight junction proteins claudin 5 and ZO-1. We propose that the alpha7 integrin subunit in astrocytes via adhesion to laminins promotes endothelial cell junction integrity, all of which is required to properly form and maintain a functional BBB.


Asunto(s)
Astrocitos , Barrera Hematoencefálica , Ratones , Animales , Barrera Hematoencefálica/metabolismo , Laminina/metabolismo , Células Endoteliales/metabolismo , Integrinas/metabolismo , Uniones Estrechas/metabolismo
2.
Circ Res ; 134(7): 858-871, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38362769

RESUMEN

BACKGROUND: Vascular large conductance Ca2+-activated K+ (BK) channel, composed of the α-subunit (BK-α) and the ß1-subunit (BK-ß1), is a key determinant of coronary vasorelaxation and its function is impaired in diabetic vessels. However, our knowledge of diabetic BK channel dysregulation is incomplete. The Sorbs2 (Sorbin homology [SoHo] and Src homology 3 [SH3] domains-containing protein 2), is ubiquitously expressed in arteries, but its role in vascular pathophysiology is unknown. METHODS: The role of Sorbs2 in regulating vascular BK channel activity was determined using patch-clamp recordings, molecular biological techniques, and in silico analysis. RESULTS: Sorbs2 is not only a cytoskeletal protein but also an RNA-binding protein that binds to BK channel proteins and BK-α mRNA, regulating BK channel expression and function in coronary smooth muscle cells. Molecular biological studies reveal that the SH3 domain of Sorbs2 is necessary for Sorbs2 interaction with BK-α subunits, while both the SH3 and SoHo domains of Sorbs2 interact with BK-ß1 subunits. Deletion of the SH3 or SoHo domains abolishes the Sorbs2 effect on the BK-α/BK-ß1 channel current density. Additionally, Sorbs2 is a target gene of the Nrf2 (nuclear factor erythroid-2-related factor 2), which binds to the promoter of Sorbs2 and regulates Sorbs2 expression in coronary smooth muscle cells. In vivo studies demonstrate that Sorbs2 knockout mice at 4 months of age display a significant decrease in BK channel expression and function, accompanied by impaired BK channel Ca2+-sensitivity and BK channel-mediated vasodilation in coronary arteries, without altering their body weights and blood glucose levels. Importantly, Sorbs2 expression is significantly downregulated in the coronary arteries of db/db type 2 diabetic mice. CONCLUSIONS: Sorbs2, a downstream target of Nrf2, plays an important role in regulating BK channel expression and function in vascular smooth muscle cells. Vascular Sorbs2 is downregulated in diabetes. Genetic knockout of Sorbs2 manifests coronary BK channelopathy and vasculopathy observed in diabetic mice, independent of obesity and glucotoxicity.


Asunto(s)
Canalopatías , Diabetes Mellitus Experimental , Ratones , Animales , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Canalopatías/metabolismo , Subunidades beta de los Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Subunidades beta de los Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Músculo Liso Vascular/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Vasos Coronarios/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo
3.
Circ Res ; 134(11): 1495-1511, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38686580

RESUMEN

BACKGROUND: Abdominal aortic aneurysm (AAA) is a catastrophic disease with little effective therapy, likely due to the limited understanding of the mechanisms underlying AAA development and progression. ATF3 (activating transcription factor 3) has been increasingly recognized as a key regulator of cardiovascular diseases. However, the role of ATF3 in AAA development and progression remains elusive. METHODS: Genome-wide RNA sequencing analysis was performed on the aorta isolated from saline or Ang II (angiotensin II)-induced AAA mice, and ATF3 was identified as the potential key gene for AAA development. To examine the role of ATF3 in AAA development, vascular smooth muscle cell-specific ATF3 knockdown or overexpressed mice by recombinant adeno-associated virus serotype 9 vectors carrying ATF3, or shRNA-ATF3 with SM22α (smooth muscle protein 22-α) promoter were used in Ang II-induced AAA mice. In human and murine vascular smooth muscle cells, gain or loss of function experiments were performed to investigate the role of ATF3 in vascular smooth muscle cell proliferation and apoptosis. RESULTS: In both Ang II-induced AAA mice and patients with AAA, the expression of ATF3 was reduced in aneurysm tissues but increased in aortic lesion tissues. The deficiency of ATF3 in vascular smooth muscle cell promoted AAA formation in Ang II-induced AAA mice. PDGFRB (platelet-derived growth factor receptor ß) was identified as the target of ATF3, which mediated vascular smooth muscle cell proliferation in response to TNF-alpha (tumor necrosis factor-α) at the early stage of AAA. ATF3 suppressed the mitochondria-dependent apoptosis at the advanced stage by upregulating its direct target BCL2. Our chromatin immunoprecipitation results also demonstrated that the recruitment of NFκB1 and P300/BAF/H3K27ac complex to the ATF3 promoter induces ATF3 transcription via enhancer activation. NFKB1 inhibitor (andrographolide) inhibits the expression of ATF3 by blocking the recruiters NFKB1 and ATF3-enhancer to the ATF3-promoter region, ultimately leading to AAA development. CONCLUSIONS: Our results demonstrate a previously unrecognized role of ATF3 in AAA development and progression, and ATF3 may serve as a novel therapeutic and prognostic marker for AAA.


Asunto(s)
Factor de Transcripción Activador 3 , Aneurisma de la Aorta Abdominal , Músculo Liso Vascular , Miocitos del Músculo Liso , Factor de Transcripción Activador 3/genética , Factor de Transcripción Activador 3/metabolismo , Animales , Aneurisma de la Aorta Abdominal/metabolismo , Aneurisma de la Aorta Abdominal/patología , Aneurisma de la Aorta Abdominal/genética , Aneurisma de la Aorta Abdominal/inducido químicamente , Humanos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Ratones , Masculino , Ratones Endogámicos C57BL , Apoptosis , Células Cultivadas , Angiotensina II , Proliferación Celular , Aorta Abdominal/patología , Aorta Abdominal/metabolismo , Modelos Animales de Enfermedad
4.
J Biol Chem ; 300(5): 107260, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582447

RESUMEN

Thoracic aortic dissection (TAD) is a highly dangerous cardiovascular disorder caused by weakening of the aortic wall, resulting in a sudden tear of the internal face. Progressive loss of the contractile apparatus in vascular smooth muscle cells (VSMCs) is a major event in TAD. Exploring the endogenous regulators essential for the contractile phenotype of VSMCs may aid the development of strategies to prevent TAD. Krüppel-like factor 15 (KLF15) overexpression was reported to inhibit TAD formation; however, the mechanisms by which KLF15 prevents TAD formation and whether KLF15 regulates the contractile phenotype of VSMCs in TAD are not well understood. Therefore, we investigated these unknown aspects of KLF15 function. We found that KLF15 expression was reduced in human TAD samples and ß-aminopropionitrile monofumarate-induced TAD mouse model. Klf15KO mice are susceptible to both ß-aminopropionitrile monofumarate- and angiotensin II-induced TAD. KLF15 deficiency results in reduced VSMC contractility and exacerbated vascular inflammation and extracellular matrix degradation. Mechanistically, KLF15 interacts with myocardin-related transcription factor B (MRTFB), a potent serum response factor coactivator that drives contractile gene expression. KLF15 silencing represses the MRTFB-induced activation of contractile genes in VSMCs. Thus, KLF15 cooperates with MRTFB to promote the expression of contractile genes in VSMCs, and its dysfunction may exacerbate TAD. These findings indicate that KLF15 may be a novel therapeutic target for the treatment of TAD.


Asunto(s)
Aneurisma de la Aorta Torácica , Disección de la Aorta Torácica , Factores de Transcripción de Tipo Kruppel , Miocitos del Músculo Liso , Factores de Transcripción , Animales , Humanos , Masculino , Ratones , Angiotensina II/metabolismo , Angiotensina II/farmacología , Aneurisma de la Aorta Torácica/metabolismo , Aneurisma de la Aorta Torácica/genética , Aneurisma de la Aorta Torácica/patología , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Contracción Muscular/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Fenotipo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
5.
FASEB J ; 38(7): e23592, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38581243

RESUMEN

Vascular calcification is an actively regulated biological process resembling bone formation, and osteogenic differentiation of vascular smooth muscle cells (VSMCs) plays a crucial role in this process. 1-Palmitoyl-2-(5'-oxo-valeroyl)-sn-glycero-3-phosphocholine (POVPC), an oxidized phospholipid, is found in atherosclerotic plaques and has been shown to induce oxidative stress. However, the effects of POVPC on osteogenic differentiation and calcification of VSMCs have yet to be studied. In the present study, we investigated the role of POVPC in vascular calcification using in vitro and ex vivo models. POVPC increased mineralization of VSMCs and arterial rings, as shown by alizarin red staining. In addition, POVPC treatment increased expression of osteogenic markers Runx2 and BMP2, indicating that POVPC promotes osteogenic transition of VSMCs. Moreover, POVPC increased oxidative stress and impaired mitochondria function of VSMCs, as shown by increased ROS levels, impairment of mitochondrial membrane potential, and decreased ATP levels. Notably, ferroptosis triggered by POVPC was confirmed by increased levels of intracellular ROS, lipid ROS, and MDA, which were decreased by ferrostatin-1, a ferroptosis inhibitor. Furthermore, ferrostatin-1 attenuated POVPC-induced calcification of VSMCs. Taken together, our study for the first time demonstrates that POVPC promotes vascular calcification via activation of VSMC ferroptosis. Reducing the levels of POVPC or inhibiting ferroptosis might provide a novel strategy to treat vascular calcification.


Asunto(s)
Ciclohexilaminas , Ferroptosis , Fenilendiaminas , Calcificación Vascular , Humanos , Músculo Liso Vascular/metabolismo , Fosfolípidos/metabolismo , Fosforilcolina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Osteogénesis , Calcificación Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Células Cultivadas
6.
FASEB J ; 38(9): e23645, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38703043

RESUMEN

Inflammation assumes a pivotal role in the aortic remodeling of aortic dissection (AD). Asiatic acid (AA), a triterpene compound, is recognized for its strong anti-inflammatory properties. Yet, its effects on ß-aminopropionitrile (BAPN)-triggered AD have not been clearly established. The objective is to determine whether AA attenuates adverse aortic remodeling in BAPN-induced AD and clarify potential molecular mechanisms. In vitro studies, RAW264.7 cells pretreated with AA were challenged with lipopolysaccharide (LPS), and then the vascular smooth muscle cells (VSMCs)-macrophage coculture system was established to explore intercellular interactions. To induce AD, male C57BL/6J mice at three weeks of age were administered BAPN at a dosage of 1 g/kg/d for four weeks. To decipher the mechanism underlying the effects of AA, RNA sequencing analysis was conducted, with subsequent validation of these pathways through cellular experiments. AA exhibited significant suppression of M1 macrophage polarization. In the cell coculture system, AA facilitated the transformation of VSMCs into a contractile phenotype. In the mouse model of AD, AA strikingly prevented the BAPN-induced increases in inflammation cell infiltration and extracellular matrix degradation. Mechanistically, RNA sequencing analysis revealed a substantial upregulation of CX3CL1 expression in BAPN group but downregulation in AA-treated group. Additionally, it was observed that the upregulation of CX3CL1 negated the beneficial impact of AA on the polarization of macrophages and the phenotypic transformation of VSMCs. Crucially, our findings revealed that AA is capable of downregulating CX3CL1 expression, accomplishing this by obstructing the nuclear translocation of NF-κB p65. The findings indicate that AA holds promise as a prospective treatment for adverse aortic remodeling by suppressing the activity of NF-κB p65/CX3CL1 signaling pathway.


Asunto(s)
Disección Aórtica , Quimiocina CX3CL1 , Ratones Endogámicos C57BL , Triterpenos Pentacíclicos , Transducción de Señal , Factor de Transcripción ReIA , Remodelación Vascular , Animales , Ratones , Masculino , Disección Aórtica/metabolismo , Disección Aórtica/patología , Disección Aórtica/tratamiento farmacológico , Triterpenos Pentacíclicos/farmacología , Remodelación Vascular/efectos de los fármacos , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos , Factor de Transcripción ReIA/metabolismo , Quimiocina CX3CL1/metabolismo , Quimiocina CX3CL1/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Aminopropionitrilo/farmacología , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos
7.
FASEB J ; 38(15): e23850, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39091212

RESUMEN

Atherosclerosis is a leading cause of cardiovascular diseases (CVDs), often resulting in major adverse cardiovascular events (MACEs), such as myocardial infarction and stroke due to the rupture or erosion of vulnerable plaques. Ferroptosis, an iron-dependent form of cell death, has been implicated in the development of atherosclerosis. Despite its involvement in CVDs, the specific role of ferroptosis in atherosclerotic plaque stability remains unclear. In this study, we confirmed the presence of ferroptosis in unstable atherosclerotic plaques and demonstrated that the ferroptosis inhibitor ferrostatin-1 (Fer-1) stabilizes atherosclerotic plaques in apolipoprotein E knockout (Apoe-/-) mice. Using bioinformatic analysis combining RNA sequencing (RNA-seq) with single-cell RNA sequencing (scRNA-seq), we identified Yes-associated protein 1 (YAP1) as a potential key regulator of ferroptosis in vascular smooth muscle cells (VSMCs) of unstable plaques. In vitro, we found that YAP1 protects against oxidized low-density lipoprotein (oxLDL)-induced ferroptosis in VSMCs. Mechanistically, YAP1 exerts its anti-ferroptosis effects by regulating the expression of glutaminase 1 (GLS1) to promote the synthesis of glutamate (Glu) and glutathione (GSH). These findings establish a novel mechanism where the inhibition of ferroptosis promotes the stabilization of atherosclerotic plaques through the YAP1/GLS1 axis, attenuating VSMC ferroptosis. Thus, targeting the YAP1/GLS1 axis to suppress VSMC ferroptosis may represent a novel strategy for preventing and treating unstable atherosclerotic plaques.


Asunto(s)
Ferroptosis , Músculo Liso Vascular , Placa Aterosclerótica , Proteínas Señalizadoras YAP , Animales , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Ratones , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patología , Proteínas Señalizadoras YAP/metabolismo , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Humanos , Masculino , Ratones Endogámicos C57BL , Aterosclerosis/metabolismo , Aterosclerosis/patología , Aterosclerosis/genética , Ratones Noqueados , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Fenilendiaminas/farmacología , Ciclohexilaminas/farmacología , Apolipoproteínas E/metabolismo , Apolipoproteínas E/genética
8.
FASEB J ; 38(13): e23707, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38995239

RESUMEN

Abdominal aortic aneurysm (AAA) is a life-threatening disease characterized by extensive membrane destruction in the vascular wall that is closely associated with vascular smooth muscle cell (VSMC) phenotypic switching. A thorough understanding of the changes in regulatory factors during VSMC phenotypic switching is essential for managing AAA therapy. In this study, we revealed the impact of NRF2 on the modulation of VSMC phenotype and the development of AAA based on single-cell RNA sequencing analysis. By utilizing a murine model of VSMC-specific knockout of nuclear factor E2-related factor 2 (NRF2), we observed that the absence of NRF2 in VSMCs exacerbated AAA formation in an angiotensin II-induced AAA model. The downregulation of NRF2 promoted VSMC phenotypic switching, leading to an enhanced inflammatory response. Through genome-wide transcriptome analysis and loss- or gain-of-function experiments, we discovered that NRF2 upregulated the expression of VSMC contractile phenotype-specific genes by facilitating microRNA-145 (miR-145) expression. Our data identified NRF2 as a novel regulator involved in maintaining the VSMC contractile phenotype while also influencing AAA formation through an miR-145-dependent regulatory mechanism.


Asunto(s)
Aneurisma de la Aorta Abdominal , MicroARNs , Músculo Liso Vascular , Miocitos del Músculo Liso , Factor 2 Relacionado con NF-E2 , Fenotipo , Aneurisma de la Aorta Abdominal/metabolismo , Aneurisma de la Aorta Abdominal/genética , Aneurisma de la Aorta Abdominal/patología , Aneurisma de la Aorta Abdominal/inducido químicamente , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Masculino , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Ratones Noqueados , Análisis de la Célula Individual , Ratones Endogámicos C57BL , Angiotensina II/farmacología , Análisis de Secuencia de ARN , Modelos Animales de Enfermedad
9.
Circ Res ; 132(1): 52-71, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36448450

RESUMEN

BACKGROUND: The osteochondrogenic switch of vascular smooth muscle cells (VSMCs) is a pivotal cellular process in atherosclerotic calcification. However, the exact molecular mechanism of the osteochondrogenic transition of VSMCs remains to be elucidated. Here, we explore the regulatory role of TXNIP (thioredoxin-interacting protein) in the phenotypical transitioning of VSMCs toward osteochondrogenic cells responsible for atherosclerotic calcification. METHODS: The atherosclerotic phenotypes of Txnip-/- mice were analyzed in combination with single-cell RNA-sequencing. The atherosclerotic phenotypes of Tagln-Cre; Txnipflox/flox mice (smooth muscle cell-specific Txnip ablation model), and the mice transplanted with the bone marrow of Txnip-/- mice were analyzed. Public single-cell RNA-sequencing dataset (GSE159677) was reanalyzed to define the gene expression of TXNIP in human calcified atherosclerotic plaques. The effect of TXNIP suppression on the osteochondrogenic phenotypic changes in primary aortic VSMCs was analyzed. RESULTS: Atherosclerotic lesions of Txnip-/- mice presented significantly increased calcification and deposition of collagen content. Subsequent single-cell RNA-sequencing analysis identified the modulated VSMC and osteochondrogenic clusters, which were VSMC-derived populations. The osteochondrogenic cluster was markedly expanded in Txnip-/- mice. The pathway analysis of the VSMC-derived cells revealed enrichment of bone- and cartilage-formation-related pathways and bone morphogenetic protein signaling in Txnip-/- mice. Reanalyzing public single-cell RNA-sequencing dataset revealed that TXNIP was downregulated in the modulated VSMC and osteochondrogenic clusters of human calcified atherosclerotic lesions. Tagln-Cre; Txnipflox/flox mice recapitulated the calcification and collagen-rich atherosclerotic phenotypes of Txnip-/- mice, whereas the hematopoietic deficiency of TXNIP did not affect the lesion phenotype. Suppression of TXNIP in cultured VSMCs accelerates osteodifferentiation and upregulates bone morphogenetic protein signaling. Treatment with the bone morphogenetic protein signaling inhibitor K02288 abrogated the effect of TXNIP suppression on osteodifferentiation. CONCLUSIONS: Our results suggest that TXNIP is a novel regulator of atherosclerotic calcification by suppressing bone morphogenetic protein signaling to inhibit the transition of VSMCs toward an osteochondrogenic phenotype.


Asunto(s)
Aterosclerosis , Calcinosis , Placa Aterosclerótica , Calcificación Vascular , Ratones , Humanos , Animales , Músculo Liso Vascular/metabolismo , Células Cultivadas , Aterosclerosis/metabolismo , Placa Aterosclerótica/patología , Calcinosis/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Miocitos del Músculo Liso/metabolismo , ARN/metabolismo , Calcificación Vascular/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Tiorredoxinas/metabolismo
10.
J Pathol ; 263(1): 47-60, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38389501

RESUMEN

Liver kinase B1 (Lkb1), encoded by serine/threonine kinase (Stk11), is a serine/threonine kinase and tumor suppressor that is strongly implicated in Peutz-Jeghers syndrome (PJS). Numerous studies have shown that mesenchymal-specific Lkb1 is sufficient for the development of PJS-like polyps in mice. However, the cellular origin and components of these Lkb1-associated polyps and underlying mechanisms remain elusive. In this study, we generated tamoxifen-inducible Lkb1flox/flox;Myh11-Cre/ERT2 and Lkb1flox/flox;PDGFRα-Cre/ERT2 mice, performed single-cell RNA sequencing (scRNA-seq) and imaging-based lineage tracing, and aimed to investigate the cellular complexity of gastrointestinal polyps associated with PJS. We found that Lkb1flox/+;Myh11-Cre/ERT2 mice developed gastrointestinal polyps starting at 9 months after tamoxifen treatment. scRNA-seq revealed aberrant stem cell-like characteristics of epithelial cells from polyp tissues of Lkb1flox/+;Myh11-Cre/ERT2 mice. The Lkb1-associated polyps were further characterized by a branching smooth muscle core, abundant extracellular matrix deposition, and high immune cell infiltration. In addition, the Spp1-Cd44 or Spp1-Itga8/Itgb1 axes were identified as important interactions among epithelial, mesenchymal, and immune compartments in Lkb1-associated polyps. These characteristics of gastrointestinal polyps were also demonstrated in another mouse model, tamoxifen-inducible Lkb1flox/flox;PDGFRα-Cre/ERT2 mice, which developed obvious gastrointestinal polyps as early as 2-3 months after tamoxifen treatment. Our findings further confirm the critical role of mesenchymal Lkb1/Stk11 in gastrointestinal polyposis and provide novel insight into the cellular complexity of Lkb1-associated polyp biology. © 2024 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Síndrome de Peutz-Jeghers , Animales , Ratones , Síndrome de Peutz-Jeghers/genética , Síndrome de Peutz-Jeghers/patología , Proteínas Serina-Treonina Quinasas/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Análisis de Secuencia de ARN , Serina , Tamoxifeno/farmacología
11.
Exp Cell Res ; 442(2): 114260, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39303839

RESUMEN

Vascular smooth muscle cell (VSMC) excessive proliferation and migration are considered the main pathological process in in-stent restenosis (ISR) following vascular intervention. Certain long noncoding RNAs play vital roles in this process. Therefore, this study aimed to explore novel regulators for ISR and further uncover the mechanism. Using a rat abdominal aorta stent implantation model, we observed that NONRATT000538.2 (NR538.2) served as a positive regulator for VSMC proliferation and migration. By manipulating NR538.2 expression via adenoviral overexpression or siRNA knockdown, we noted that NR538.2 promoted VSMC phenotypic switching, thereby inducing proliferation and migration. Significantly, the local delivery of siRNA of NR538.2 via adeno-associated virus vector suppressed balloon injury-induced neointima formation. Our study demonstrated for the first time that NR538.2 positively influenced VSMC proliferation during ISR.


Asunto(s)
Movimiento Celular , Proliferación Celular , Músculo Liso Vascular , Miocitos del Músculo Liso , Neointima , Fenotipo , Ratas Sprague-Dawley , Animales , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Ratas , Movimiento Celular/genética , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Masculino , Neointima/patología , Neointima/metabolismo , Stents/efectos adversos , ARN Largo no Codificante/genética , Reestenosis Coronaria/patología , Reestenosis Coronaria/genética , Células Cultivadas
12.
Cell Mol Life Sci ; 81(1): 175, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38597937

RESUMEN

Phenotypic transformation of vascular smooth muscle cells (VSMCs) plays a crucial role in abdominal aortic aneurysm (AAA) formation. CARMN, a highly conserved, VSMC-enriched long noncoding RNA (lncRNA), is integral in orchestrating various vascular pathologies by modulating the phenotypic dynamics of VSMCs. The influence of CARMN on AAA formation, particularly its mechanisms, remains enigmatic. Our research, employing single-cell and bulk RNA sequencing, has uncovered a significant suppression of CARMN in AAA specimens, which correlates strongly with the contractile function of VSMCs. This reduced expression of CARMN was consistent in both 7- and 14-day porcine pancreatic elastase (PPE)-induced mouse models of AAA and in human clinical cases. Functional analyses disclosed that the diminution of CARMN exacerbated PPE-precipitated AAA formation, whereas its augmentation conferred protection against such formation. Mechanistically, we found CARMN's capacity to bind with SRF, thereby amplifying its role in driving the transcription of VSMC marker genes. In addition, our findings indicate an enhancement in CAMRN transcription, facilitated by the binding of NRF2 to its promoter region. Our study indicated that CARMN plays a protective role in preventing AAA formation and restrains the phenotypic transformation of VSMC through its interaction with SRF. Additionally, we observed that the expression of CARMN is augmented by NRF2 binding to its promoter region. These findings suggest the potential of CARMN as a viable therapeutic target in the treatment of AAA.


Asunto(s)
Aneurisma de la Aorta Abdominal , ARN Largo no Codificante , Humanos , Ratones , Animales , Porcinos , ARN Largo no Codificante/genética , Músculo Liso Vascular , Factor 2 Relacionado con NF-E2/genética , Aneurisma de la Aorta Abdominal/inducido químicamente , Aneurisma de la Aorta Abdominal/genética , Modelos Animales de Enfermedad
13.
Proc Natl Acad Sci U S A ; 119(16): e2117435119, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35412911

RESUMEN

Elevation of intracellular Ca2+ concentration ([Ca2+]i) activates Ca2+/calmodulin-dependent kinases (CaMK) and promotes gene transcription. This signaling pathway is referred to as excitation­transcription (E-T) coupling. Although vascular myocytes can exhibit E-T coupling, the molecular mechanisms and physiological/pathological roles are unknown. Multiscale analysis spanning from single molecules to whole organisms has revealed essential steps in mouse vascular myocyte E-T coupling. Upon a depolarizing stimulus, Ca2+ influx through Cav1.2 voltage-dependent Ca2+ channels activates CaMKK2 and CaMK1a, resulting in intranuclear CREB phosphorylation. Within caveolae, the formation of a molecular complex of Cav1.2/CaMKK2/CaMK1a is promoted in vascular myocytes. Live imaging using a genetically encoded Ca2+ indicator revealed direct activation of CaMKK2 by Ca2+ influx through Cav1.2 localized to caveolae. CaMK1a is phosphorylated by CaMKK2 at caveolae and translocated to the nucleus upon membrane depolarization. In addition, sustained depolarization of a mesenteric artery preparation induced genes related to chemotaxis, leukocyte adhesion, and inflammation, and these changes were reversed by inhibitors of Cav1.2, CaMKK2, and CaMK, or disruption of caveolae. In the context of pathophysiology, when the mesenteric artery was loaded by high pressure in vivo, we observed CREB phosphorylation in myocytes, macrophage accumulation at adventitia, and an increase in thickness and cross-sectional area of the tunica media. These changes were reduced in caveolin1-knockout mice or in mice treated with the CaMKK2 inhibitor STO609. In summary, E-T coupling depends on Cav1.2/CaMKK2/CaMK1a localized to caveolae, and this complex converts [Ca2+]i changes into gene transcription. This ultimately leads to macrophage accumulation and media remodeling for adaptation to increased circumferential stretch.


Asunto(s)
Canales de Calcio Tipo L , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina , Caveolas , Transcripción Genética , Remodelación Vascular , Animales , Calcio/metabolismo , Canales de Calcio Tipo L/metabolismo , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/metabolismo , Caveolas/metabolismo , Caveolina 1/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Acoplamiento Excitación-Contracción , Ratones , Ratones Noqueados , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/fisiología , Neuronas/metabolismo , Fosforilación
14.
J Mol Cell Cardiol ; 187: 51-64, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38171043

RESUMEN

Senescence of vascular smooth muscle cells (VSMCs) is a key contributor to plaque vulnerability in atherosclerosis (AS), which is affected by endoplasmic reticulum (ER) stress and reactive oxygen species (ROS) production. However, the crosstalk between ER stress and ROS production in the pathogenesis of VSMC senescence remains to be elucidated. ER-associated degradation (ERAD) is a complex process that clears unfolded or misfolded proteins to maintain ER homeostasis. HRD1 is the major E3 ligase in mammalian ERAD machineries that catalyzes ubiquitin conjugation to the unfolded or misfolded proteins for degradation. Our results showed that HRD1 protein levels were reduced in human AS plaques and aortic roots from ApoE-/- mice fed with high-fat diet (HFD), along with the increased ER stress response. Exposure to cholesterol in VSMCs activated inflammatory signaling and induced senescence, while reduced HRD1 protein expression. CRISPR Cas9-mediated HRD1 knockout (KO) exacerbated cholesterol- and thapsigargin-induced cell senescence. Inhibiting ER stress with 4-PBA (4-Phenylbutyric acid) partially reversed the ROS production and cell senescence induced by HRD1 deficiency in VSMCs, suggesting that ER stress alone could be sufficient to induce ROS production and senescence in VSMCs. Besides, HRD1 deficiency led to mitochondrial dysfunction, and reducing ROS production from impaired mitochondria partly reversed HRD1 deficiency-induced cell senescence. Finally, we showed that the overexpression of HDR1 reversed cholesterol-induced ER stress, ROS production, and cellular senescence in VSMCs. Our findings indicate that HRD1 protects against senescence by maintaining ER homeostasis and mitochondrial functionality. Thus, targeting HRD1 function may help to mitigate VSMC senescence and prevent vascular aging related diseases. TRIAL REGISTRATION: A real-world study based on the discussion of primary and secondary prevention strategies for coronary heart disease, URL:https://www.clinicaltrials.gov, the trial registration number is [2022]-02-121-01.


Asunto(s)
Aterosclerosis , Músculo Liso Vascular , Animales , Humanos , Ratones , Aterosclerosis/metabolismo , Senescencia Celular , Estrés del Retículo Endoplásmico/fisiología , Degradación Asociada con el Retículo Endoplásmico , Mamíferos/metabolismo , Músculo Liso Vascular/metabolismo , Proteínas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
15.
J Mol Cell Cardiol ; 187: 65-79, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38181546

RESUMEN

BACKGROUND: Vascular calcification (VC) is a prevalent independent risk factor for adverse cardiovascular events and is associated with diabetes, hypertension, chronic kidney disease, and atherosclerosis. However, the mechanisms regulating the osteogenic differentiation of vascular smooth muscle cells (VSMC) are not fully understood. METHODS: Using hydrogels of tuneable stiffness and lysyl oxidase-mediated stiffening of human saphenous vein ex vivo, we investigated the role of substrate stiffness in the regulation of VSMC calcification. RESULTS: We demonstrate that increased substrate stiffness enhances VSMC osteogenic differentiation and VSMC calcification. We show that the effects of substrate stiffness are mediated via a reduction in the level of actin monomer within the nucleus. We show that in cells interacting with soft substrate, elevated levels of nuclear actin monomer repress osteogenic differentiation and calcification by repressing YAP-mediated activation of both TEA Domain transcription factor (TEAD) and RUNX Family Transcription factor 2 (RUNX2). CONCLUSION: This work highlights for the first time the role of nuclear actin in mediating substrate stiffness-dependent VSMC calcification and the dual role of YAP-TEAD and YAP-RUNX2 transcriptional complexes.


Asunto(s)
Actinas , Calcificación Vascular , Humanos , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Músculo Liso Vascular , Osteogénesis , Células Cultivadas , Miocitos del Músculo Liso
16.
J Mol Cell Cardiol ; 192: 1-12, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38718921

RESUMEN

Thoracic aortic dissection (TAD) is characterized by extracellular matrix (ECM) dysregulation. Aberrations in the ECM stiffness can lead to changes in cellular functions. However, the mechanism by which ECM softening regulates vascular smooth muscle cell (VSMCs) phenotype switching remains unclear. To understand this mechanism, we cultured VSMCs in a soft extracellular matrix and discovered that the expression of microRNA (miR)-143/145, mediated by activation of the AKT signalling pathway, decreased significantly. Furthermore, overexpression of miR-143/145 reduced BAPN-induced aortic softening, switching the VSMC synthetic phenotype and the incidence of TAD in mice. Additionally, high-throughput sequencing of immunoprecipitated RNA indicated that the TEA domain transcription factor 1 (TEAD1) is a common target gene of miR-143/145, which was subsequently verified using a luciferase reporter assay. TEAD1 is upregulated in soft ECM hydrogels in vitro, whereas the switch to a synthetic phenotype in VSMCs decreases after TEAD1 knockdown. Finally, we verified that miR-143/145 levels are associated with disease severity and prognosis in patients with thoracic aortic dissection. ECM softening, as a result of promoting the VSMCs switch to a synthetic phenotype by downregulating miR-143/145, is an early trigger of TAD and provides a therapeutic target for this fatal disease. miR-143/145 plays a role in the early detection of aortic dissection and its severity and prognosis, which can offer information for future risk stratification of patients with dissection.


Asunto(s)
Disección Aórtica , Matriz Extracelular , MicroARNs , Músculo Liso Vascular , Miocitos del Músculo Liso , Fenotipo , MicroARNs/genética , MicroARNs/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Disección Aórtica/genética , Disección Aórtica/metabolismo , Disección Aórtica/patología , Animales , Matriz Extracelular/metabolismo , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Humanos , Ratones , Masculino , Regulación hacia Abajo/genética , Factores de Transcripción de Dominio TEA , Transducción de Señal , Proteínas Proto-Oncogénicas c-akt/metabolismo , Regulación de la Expresión Génica , Femenino , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
17.
J Mol Cell Cardiol ; 189: 38-51, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387723

RESUMEN

Acute aortic dissection (AAD) progresses rapidly and is associated with high mortality; therefore, there remains an urgent need for pharmacological agents that can protect against AAD. Herein, we examined the therapeutic effects of cannabidiol (CBD) in AAD by establishing a suitable mouse model. In addition, we performed human AAD single-cell RNA sequencing and mouse AAD bulk RNA sequencing to elucidate the potential underlying mechanism of CBD. Pathological assays and in vitro studies were performed to verify the results of the bioinformatic analysis and explore the pharmacological function of CBD. In a ß-aminopropionitrile (BAPN)-induced AAD mouse model, CBD reduced AAD-associated morbidity and mortality, alleviated abnormal enlargement of the ascending aorta and aortic arch, and suppressed macrophage infiltration and vascular smooth muscle cell (VSMC) apoptosis. Bioinformatic analysis revealed that the pro-apoptotic gene PMAIP1 was highly expressed in human and mouse AAD samples, and CBD could inhibit Pmaip1 expression in AAD mice. Using human aortic VSMCs (HAVSMCs) co-cultured with M1 macrophages, we revealed that CBD alleviated HAVSMCs mitochondrial-dependent apoptosis by suppressing the BAPN-induced overexpression of PMAIP1 in M1 macrophages. PMAIP1 potentially mediates HAVSMCs apoptosis by regulating Bax and Bcl2 expression. Accordingly, CBD reduced AAD-associated morbidity and mortality and mitigated the progression of AAD in a mouse model. The CBD-induced effects were potentially mediated by suppressing macrophage infiltration and PMAIP1 (primarily expressed in macrophages)-induced VSMC apoptosis. Our findings offer novel insights into M1 macrophages and HAVSMCs interaction during AAD progression, highlighting the potential of CBD as a therapeutic candidate for AAD treatment.


Asunto(s)
Disección Aórtica , Cannabidiol , Animales , Humanos , Ratones , Aminopropionitrilo/farmacología , Disección Aórtica/tratamiento farmacológico , Apoptosis , Proteínas Reguladoras de la Apoptosis/metabolismo , Cannabidiol/farmacología , Cannabidiol/metabolismo , Macrófagos/metabolismo , Músculo Liso Vascular/patología
18.
J Mol Cell Cardiol ; 190: 62-75, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583797

RESUMEN

Intimal hyperplasia is a complicated pathophysiological phenomenon attributable to in-stent restenosis, and the underlying mechanism remains unclear. Interleukin enhancer-binding factor 3 (ILF3), a double-stranded RNA-binding protein involved in regulating mRNA stability, has been recently demonstrated to assume a crucial role in cardiovascular disease; nevertheless, its impact on intimal hyperplasia remains unknown. In current study, we used samples of human restenotic arteries and rodent models of intimal hyperplasia, we found that vascular smooth muscle cell (VSMC) ILF3 expression was markedly elevated in human restenotic arteries and murine ligated carotid arteries. SMC-specific ILF3 knockout mice significantly suppressed injury induced neointimal formation. In vitro, platelet-derived growth factor type BB (PDGF-BB) treatment elevated the level of VSMC ILF3 in a dose- and time-dependent manner. ILF3 silencing markedly inhibited PDGF-BB-induced phenotype switching, proliferation, and migration in VSMCs. Transcriptome sequencing and RNA immunoprecipitation sequencing depicted that ILF3 maintained its stability upon binding to the mRNA of the high-mobility group box 1 protein (HMGB1), thereby exerting an inhibitory effect on the transcription of dual specificity phosphatase 16 (DUSP16) through enhanced phosphorylation of signal transducer and activator of transcription 3 (STAT3). Therefore, the results both in vitro and in vivo indicated that the loss of ILF3 in VSMC ameliorated neointimal hyperplasia by regulating the STAT3/DUSP16 axis through the degradation of HMGB1 mRNA. Our findings revealed that vascular injury activates VSMC ILF3, which in turn promotes intima formation. Consequently, targeting specific VSMC ILF3 may present a potential therapeutic strategy for ameliorating cardiovascular restenosis.


Asunto(s)
Proteína HMGB1 , Hiperplasia , Ratones Noqueados , Músculo Liso Vascular , Miocitos del Músculo Liso , Proteínas del Factor Nuclear 90 , Estabilidad del ARN , Factor de Transcripción STAT3 , Túnica Íntima , Animales , Humanos , Masculino , Ratones , Movimiento Celular , Proliferación Celular , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Neointima/metabolismo , Neointima/patología , Proteínas del Factor Nuclear 90/metabolismo , Proteínas del Factor Nuclear 90/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Factor de Transcripción STAT3/metabolismo , Túnica Íntima/metabolismo , Túnica Íntima/patología
19.
Physiol Genomics ; 56(2): 158-166, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38047310

RESUMEN

PANoptosis is an inflammatory programmed cell death (PCD) regulated by multifaceted PANoptosome complexes with major features of pyroptosis, apoptosis, and/or necroptosis that cannot be accounted for by any of these PCD pathways alone. The aim of this study was to investigate the role of PANoptosis on the occurrence and development of abdominal aortic aneurysm (AAA). Clinical samples of patients with AAA, angiotensin II (ANG II)-induced AAA mouse model, and ANG II-induced vascular smooth muscle cells (VSMCs) in vitro model were used for investigation on PANoptosis features. The expressions of ZBP1, AIM2, and other markers related to pyroptosis, apoptosis, and necroptosis elevated obviously in aortic wall tissues of patients with AAA, mice with AAA, and ANG II-treated VSMCs. ANG II treatment increased inflammatory cytokines levels in VSMCs. The stimulation of tumor necrosis factor-α (TNF-α) or interleukin-1ß (IL-1ß) alone promoted VSMCs death, and the effect of TNF-α combined with IL-1ß is more obvious. The expressions of ZBP1, AIM2, and related markers of pyroptosis, apoptosis, and necroptosis were increased by TNF-α and IL-1ß combined treatment. Inhibition of TNF-α and/or IL-1ß in mice with AAA improved the AAA pathology, reduced the loss of VSMCs, decreased the expression of ZBP1 and AIM2, and markers associated with pyroptosis, apoptosis, and necroptosis. PANoptosis features were observed in aortic wall tissues of patients with AAA, mice with AAA, and ANG II-treated VSMCs. The inhibition of TNF-α and IL-1ß can alleviate PANoptosis in mice with AAA, which provides a new strategy for the prevention and treatment of AAA.NEW & NOTEWORTHY Early detection, diagnosis, and treatment are very important to improve the quality of life and prognosis of patients with abdominal aortic aneurysm (AAA). Based on the findings of apoptosis, necroptosis, and pyroptosis (PANoptosis) in AAA clinical samples, this study further explored the molecular mechanism in vivo and in vitro. Specifically, inhibition of tumor necrosis factor-α and interleukin-1ß can reduce PANoptosis in vascular smooth muscle cell and thus alleviate the process of AAA.


Asunto(s)
Aneurisma de la Aorta Abdominal , Factor de Necrosis Tumoral alfa , Humanos , Ratones , Animales , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-1beta/metabolismo , Músculo Liso Vascular/metabolismo , Calidad de Vida , Aneurisma de la Aorta Abdominal/inducido químicamente , Aneurisma de la Aorta Abdominal/metabolismo , Aneurisma de la Aorta Abdominal/patología , Miocitos del Músculo Liso/metabolismo , Angiotensina II/farmacología , Modelos Animales de Enfermedad
20.
Mol Med ; 30(1): 154, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39300372

RESUMEN

BACKGROUND: Thoracic aortic dissection (TAD) is an irreversible cardiovascular disorder with high mortality and morbidity. However, the molecular mechanisms remain elusive. Thus, identifying an effective therapeutic target to prevent TAD is especially critical. The purpose of this study is to elucidate the potential mechanism of inflammation and vascular smooth muscle cell (VSMCs) phenotypic switch in ß-aminopropionitrile fumarate (BAPN)-induced TAD. METHODS: A mouse model of TAD induced by BAPN and IL-1ß -stimulated HVSMCs in vivo and in vitro models, respectively. ACE2 Knockdown mice treated with BAPN or without, and the TAD mouse model was treated with or without AAV-ACE2. Transthoracic ultrasound was conducted for assessment the maximum internal diameter of the thoracic aorta arch. RNA sequencing analysis was performed to recapitulate transcriptome profile changes. Western blot were used to detect the expression of MMP2, MMP9, ACE2, SIRT3, OPN, SM22α and other inflammatory markers. The circulating levels of ACE2 was measured by ELISA assay. Histological changes of thoracic aorta tissues were assessed by H&E, EVG and IHC analysis. RESULTS: We found that circulating levels of and the protein levels of ACE2 were increased in the TAD mouse model and in patients with TAD. For further evidence, ACE2 deficiency decelerated the formation of TAD. However, overexpression of ACE2 aggravated BAPN-induced aortic injury and VSMCs phenotypic switch via lowered SIRT3 expression and elevated inflammatory cytokine expression. CONCLUSION: ACE2 deficiency prevented the development of TAD by inhibiting inflammation and VSMCs phenotypic switch in a SIRT3-dependent manner, suggesting that the ACE2/SIRT3 signaling pathway played a pivotal role in the pathological process of TAD and might be a potential therapeutical target.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Aneurisma de la Aorta Torácica , Disección Aórtica , Modelos Animales de Enfermedad , Inflamación , Músculo Liso Vascular , Miocitos del Músculo Liso , Sirtuina 3 , Animales , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Ratones , Disección Aórtica/metabolismo , Disección Aórtica/etiología , Disección Aórtica/genética , Disección Aórtica/patología , Miocitos del Músculo Liso/metabolismo , Sirtuina 3/metabolismo , Sirtuina 3/genética , Sirtuina 3/deficiencia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Inflamación/metabolismo , Aneurisma de la Aorta Torácica/metabolismo , Aneurisma de la Aorta Torácica/etiología , Aneurisma de la Aorta Torácica/genética , Masculino , Fenotipo , Humanos , Ratones Noqueados , Aorta Torácica/metabolismo , Aorta Torácica/patología , Aorta Torácica/efectos de los fármacos , Aminopropionitrilo/farmacología , Ratones Endogámicos C57BL , Disección de la Aorta Torácica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA