Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(11)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37299941

RESUMEN

The Fugl-Meyer Assessment (FMA) has been used as a functional assessment of upper-limb function in stroke patients. This study aimed to create a more objective and standardized evaluation based on an FMA of the upper-limb items. A total of 30 first-ever stroke patients (65.3 ± 10.3 years old) and 15 healthy participants (35.4 ± 13.4 years old) admitted to Itami Kousei Neurosurgical Hospital were included. A nine-axis motion sensor was attached to the participants, and the joint angles of 17 upper-limb items (excluding fingers) and 23 FMA upper-limb items (excluding reflexes and fingers) were measured. From the measurement results, we analyzed the time-series data of each movement and obtained the correlation between the joint angles of each part. Discriminant analysis showed that 17 and 6 items had a concordance rate of ≥80% (80.0~95.6%) and <80% (64.4~75.6%), respectively. In the multiple regression analysis of continuous variables of FMA, a good regression model was obtained to predict the FMA with three to five joint angles. The discriminant analysis for 17 evaluation items suggests the possibility of roughly calculating FMA scores from joint angles.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Persona de Mediana Edad , Anciano , Adulto Joven , Adulto , Rehabilitación de Accidente Cerebrovascular/métodos , Evaluación de la Discapacidad , Recuperación de la Función , Extremidad Superior
2.
Sensors (Basel) ; 23(17)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37687827

RESUMEN

For realistic and reliable full-body visualization in virtual reality, the HTC VIVE Tracker could be an alternative to highly complex and cost- and effort-intensive motion capture systems such as Vicon. Due to its lighter weight and smaller dimensions, the latest generation of trackers is proving to be very promising for capturing human movements. The aim of this study was to investigate the accuracy of the HTC VIVE Tracker 3.0 compared to the gold-standard Vicon for different arrangements of the base stations and various velocities during an athletic movement. Therefore, the position data from three trackers attached to the hip, knee and ankle of one sporty participant were recorded while riding a bicycle ergometer at different pedaling frequencies and different base station arrangements. As parameters for the measurement accuracy, the trajectories of the linear motion of the knee and the circular motion of the ankle were compared between VIVE and Vicon by calculating the spatial distance from the raw data at each point in time. Both the pedaling frequency and the arrangement of the base stations significantly affected the measurement accuracy, with the lowest pedaling frequency of 80 rpm and the rectangular arrangement recommended by the manufacturer showing the smallest spatial differences of 10.4 mm ± 4.5 mm at the knee and 11.3 mm ± 5.1 mm at the ankle. As the pedaling frequency increased gradually (120 rpm and 160 rpm), the measurement accuracy of the trackers per step decreased less at the knee (approximately 5 mm) than at the ankle (approximately 10 mm). In conclusion, the measurement accuracy for various athletic skills was high enough to enable the visualization of body limbs or the entire body using inverse kinematics in VR on the one hand and, on the other hand, to provide initial insights into the quality of certain techniques at lower speeds in sports science research. However, the VIVE trackers are not suitable for exact biomechanical analyses.


Asunto(s)
Articulación del Tobillo , Realidad Virtual , Humanos , Retroalimentación , Articulación de la Rodilla , Extremidad Superior
3.
Sensors (Basel) ; 23(14)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37514690

RESUMEN

This work is focused on the preliminary stage of the 3D drone tracking challenge, namely the precise detection of drones on images obtained from a synchronized multi-camera system. The YOLOv5 deep network with different input resolutions is trained and tested on the basis of real, multimodal data containing synchronized video sequences and precise motion capture data as a ground truth reference. The bounding boxes are determined based on the 3D position and orientation of an asymmetric cross attached to the top of the tracked object with known translation to the object's center. The arms of the cross are identified by the markers registered by motion capture acquisition. Besides the classical mean average precision (mAP), a measure more adequate in the evaluation of detection performance in 3D tracking is proposed, namely the average distance between the centroids of matched references and detected drones, including false positive and false negative ratios. Moreover, the videos generated in the AirSim simulation platform were taken into account in both the training and testing stages.

4.
Sensors (Basel) ; 23(24)2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38139481

RESUMEN

As the number of musculoskeletal disorders caused by smartphone usage, sedentary lifestyles, and active sports activities increases, there is a growing demand for precise and accurate measurement and evaluation of issues such as incorrect compensation patterns, asymmetrical posture, and limited joint operation range. Urgent development of new inspection equipment is necessary to address issues such as convenience, economic feasibility, and post-processing difficulties. Using 4DEYE®, a new multi-view red, green, and blue (RGB) sensor-based motion analysis equipment, and the VICON® ratio, which are infrared-based markers, we conducted a comparative analysis of the simultaneous validity of the joint angle (trajectory) and reliability. In this study, five healthy participants who could perform movements were selected for the pilot study and two movements (Y-balance and side dip) were analyzed. In addition, the ICC (Intraclass Correlation Coefficient) was analyzed using the SPSS (Statistical Package for the Social Sciences) V.18 while the number of data frames of each equipment was equalized using the MATLAB program. The results revealed that side dips, which are open kinetic chain exercises (intraclass correlation coefficient ICC(2.1), 0.895-0.996), showed very high concordance with the Y-balance test, a closed kinetic chain exercise (ICC(2.1), 0.678-0.990). The joint measurement results were similar regardless of the movement in the open or closed kinetic chain exercise, confirming the high reliability of the newly developed multiview RGB sensor. This is of great significance because we obtained important and fundamental results that can be used in various patterns of exercise movements in the future.


Asunto(s)
Movimiento , Postura , Humanos , Rango del Movimiento Articular , Proyectos Piloto , Reproducibilidad de los Resultados
5.
Sensors (Basel) ; 23(24)2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38139644

RESUMEN

Accuracy validation of gait analysis using pose estimation with artificial intelligence (AI) remains inadequate, particularly in objective assessments of absolute error and similarity of waveform patterns. This study aimed to clarify objective measures for absolute error and waveform pattern similarity in gait analysis using pose estimation AI (OpenPose). Additionally, we investigated the feasibility of simultaneous measuring both lower limbs using a single camera from one side. We compared motion analysis data from pose estimation AI using video footage that was synchronized with a three-dimensional motion analysis device. The comparisons involved mean absolute error (MAE) and the coefficient of multiple correlation (CMC) to compare the waveform pattern similarity. The MAE ranged from 2.3 to 3.1° on the camera side and from 3.1 to 4.1° on the opposite side, with slightly higher accuracy on the camera side. Moreover, the CMC ranged from 0.936 to 0.994 on the camera side and from 0.890 to 0.988 on the opposite side, indicating a "very good to excellent" waveform similarity. Gait analysis using a single camera revealed that the precision on both sides was sufficiently robust for clinical evaluation, while measurement accuracy was slightly superior on the camera side.


Asunto(s)
Inteligencia Artificial , Análisis de la Marcha , Fenómenos Biomecánicos , Extremidad Inferior , Movimiento (Física) , Marcha
6.
BMC Musculoskelet Disord ; 23(1): 909, 2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36224548

RESUMEN

BACKGROUND: Wearable sensor technology may allow accurate monitoring of spine movement outside a clinical setting. The concurrent validity of wearable sensors during multiplane tasks, such as lifting, is unknown. This study assessed DorsaVi Version 6 sensors for their concurrent validity with the Vicon motion analysis system for measuring lumbar flexion during lifting. METHODS: Twelve participants (nine with, and three without back pain) wore sensors on T12 and S2 spinal levels with Vicon surface markers attached to those sensors. Participants performed 5 symmetrical (lifting from front) and 20 asymmetrical lifts (alternate lifting from left and right). The global-T12-angle, global-S2-angle and the angle between these two sensors (relative-lumbar-angle) were output in the sagittal plane. Agreement between systems was determined through-range and at peak flexion, using multilevel mixed-effects regression models to calculate root mean square errors and standard deviation. Mean differences and limits of agreement for peak flexion were calculated using the Bland Altman method. RESULTS: For through-range measures of symmetrical lifts, root mean squared errors (standard deviation) were 0.86° (0.78) at global-T12-angle, 0.90° (0.84) at global-S2-angle and 1.34° (1.25) at relative-lumbar-angle. For through-range measures of asymmetrical lifts, root mean squared errors (standard deviation) were 1.84° (1.58) at global-T12-angle, 1.90° (1.65) at global-S2-angle and 1.70° (1.54) at relative-lumbar-angle. The mean difference (95% limit of agreement) for peak flexion of symmetrical lifts, was - 0.90° (-6.80 to 5.00) for global-T12-angle, 0.60° (-2.16 to 3.36) for global-S2-angle and - 1.20° (-8.06 to 5.67) for relative-lumbar-angle. The mean difference (95% limit of agreement) for peak flexion of asymmetrical lifts was - 1.59° (-8.66 to 5.48) for global-T12-angle, -0.60° (-7.00 to 5.79) for global-S2-angle and - 0.84° (-8.55 to 6.88) for relative-lumbar-angle. CONCLUSION: The root means squared errors were slightly better for symmetrical lifts than they were for asymmetrical lifts. Mean differences and 95% limits of agreement showed variability across lift types. However, the root mean squared errors for all lifts were better than previous research and below clinically acceptable thresholds. This research supports the use of lumbar flexion measurements from these inertial measurement units in populations with low back pain, where multi-plane lifting movements are assessed.


Asunto(s)
Elevación , Movimiento , Dispositivos Electrónicos Vestibles , Humanos , Vértebras Lumbares , Rango del Movimiento Articular , Reproducibilidad de los Resultados
7.
J Hand Surg Am ; 47(2): 187.e1-187.e13, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34049729

RESUMEN

PURPOSE: Wrist circumduction is increasingly used as a functional motion assessment for patients. Thus, increasing our understanding of its relation to the functional motion envelope is valuable. Previous studies have shown that the wrist is preferentially extended during hand activities of daily living (ADLs), with greater ulnar than radial deviation. The purpose of this study was to characterize the functional wrist motions of 22 modern ADLs in healthy subjects. We hypothesized that the subjects would perform ADLs predominantly in ulnar extension. METHODS: Ten right-handed, healthy subjects performed flexion-extension, radioulnar deviation, maximal circumduction, and 22 modern ADLs. Angular wrist positions were obtained by tracking retroreflective markers on the hand and forearm. Angular motion data were analyzed with a custom program for peak/trough angles in flexion extension and radioulnar deviation, ellipse area of circumduction data, and ellipse area of combined motion data. RESULTS: The required ranges of motion for ADLs were from 46.6° ± 16.5° of flexion (stirring task) to 63.8° ± 14.2° of extension (combing) in flexion-extension and from 15.6° ± 8.9° of radial deviation (opening a jar) to 32.5° ± 8.3° of ulnar deviation (picking up smartphone) in radioulnar deviation. Ellipse area of combined motion data of the 22 ADLs were, on average, 58.2% ± 14.3% of the ellipse area of maximal circumduction. A motion data quadrantal analysis revealed that 54.9% of all ADL wrist motion occurred in ulnar extension. Among the average wrist positions for 22 ADLs, 16 were located in the ulnar extension quadrant. CONCLUSIONS: This study revealed a functional wrist motion envelope that was less than 60% of wrist maximal motion capacity on average. Our results also showed that the majority of ADLs are performed in ulnar extension of the wrist. CLINICAL RELEVANCE: Baseline values for healthy subjects performing 22 wrist ADLs can inform future studies assessing dysfunction, postsurgical changes, and rehabilitation progress.


Asunto(s)
Actividades Cotidianas , Muñeca , Fenómenos Biomecánicos , Humanos , Rango del Movimiento Articular , Cúbito , Articulación de la Muñeca
8.
Sensors (Basel) ; 22(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36236276

RESUMEN

The quality of modern measuring instruments has a strong influence on the speed of diagnosing diseases of the human musculoskeletal system. The research is focused on automatization of the method of gait analysis. The study involved six healthy subjects. The subjects walk straight. Each subject made several gait types: casual walking and imitation of a non-standard gait, including shuffling, lameness, clubfoot, walking from the heel, rolling from heel to toe, walking with hands in pockets, and catwalk. Each type of gait was recorded three times. For video fixation, the Vicon Nexus system was used. A total of 27 reflective markers were placed on the special anatomical regions. The goniometry methods were used. The walk data were divided by steps and by step phases. Kinematic parameters for estimation were formulated and calculated. An approach for data clusterization is presented. For this purpose, angle data were interpolated and the interpolation coefficients were used for clustering the data. The data were processed and four cluster groups were found. Typical angulograms for cluster groups were presented. For each group, average angles were calculated. A statistically significant difference was found between received cluster groups.


Asunto(s)
Análisis de la Marcha , Marcha , Fenómenos Biomecánicos , Análisis de la Marcha/métodos , Humanos , Proyectos Piloto , Caminata
9.
Sensors (Basel) ; 22(15)2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35957324

RESUMEN

The complexity of mandibular dynamics encourages constant research as a vehicle to improve oral health. The gold standard motion capture system might help us to understand its functioning and its relation to body position, aiming to perform an exhaustive bibliographic review in the Dentistry field. Six different electronic databases were used (Dentistry & Oral Sciences Source, Scopus, Web of Science, PubMed, CINAHL and SPORTDiscus) in April 2022. The selection criteria includes a biography, critical analysis, and the full text from 1984 to April 2022, based on the odontological gold standard, whether or not in combination with additional devices. Clinical cases, bibliographic reviews or meta-analysis and grey literature were excluded. The checklist of the critical assessment methodology by Joanna Brigs was used (JBI). After choosing scientific articles published in peer-reviewed journals, 23 out of 186 investigations were classified as eligible with a total of 384 participants. The issue being addressed is related to the speech properties, posture and body movement in relation to dento-oro-facial muscle and facial analysis, mandibular kinematics and mandibular dynamics during the mastication process. The markers arrangement depends on the dynamic to be analysed. From a physiologic and pathologic perspective, the applications of the optic system are relevant in Dentistry. The scarcity of literature obtained implies the need for future research.


Asunto(s)
Lista de Verificación , Masticación , Fenómenos Biomecánicos , Humanos , Músculos
10.
Sensors (Basel) ; 21(17)2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34502861

RESUMEN

The new smart insole PODOSmart®, is introduced as a new tool for gait analysis against high cost laboratory based equipment. PODOSmart® system measures walking profile and gait variables in real life conditions. PODOSmart® insoles consists of wireless sensors, can be fitted into any shoe and offer the ability to measure spatial, temporal, and kinematic gait parameters. The intelligent insoles feature several sensors that detect and capture foot movements and a microprocessor that calculates gait related biomechanical data. Gait analysis results are presented in PODOSmart® platform. This study aims to present the characteristics of this tool and to validate it comparing with a stereophotogrammetry-based system. Validation was performed by gait analysis for eleven healthy individuals on a six-meters walkway using both PODOSmart® and Vicon system. Intraclass correlation coefficients (ICC) were calculated for gait parameters. ICC for the validation ranged from 0.313 to 0.990 in gait parameters. The highest ICC was observed in cadence, circumduction, walking speed, stride length and stride duration. PODOSmart® is a valid tool for gait analysis compared to the gold standard Vicon. As PODOSmart®, is a portable gait analysis tool with an affordable cost it can be a useful novel tool for gait analysis in healthy and pathological population.


Asunto(s)
Marcha , Zapatos , Fenómenos Biomecánicos , Análisis de la Marcha , Humanos , Caminata
11.
Sensors (Basel) ; 20(9)2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32365573

RESUMEN

Camera-based 3D motion analysis systems are considered to be the gold standard for movement analysis. However, using such equipment in a clinical setting is prohibitive due to the expense and time-consuming nature of data collection and analysis. Therefore, Inertial Measurement Units (IMUs) have been suggested as an alternative to measure movement in clinical settings. One area which is both important and challenging is the assessment of turning kinematics in individuals with movement disorders. This study aimed to validate the use of IMUs in the measurement of turning kinematics in healthy adults compared to a camera-based 3D motion analysis system. Data were collected from twelve participants using a Vicon motion analysis system which were compared with data from four IMUs placed on the forehead, middle thorax, and feet in order to determine accuracy and reliability. The results demonstrated that the IMU sensors produced reliable kinematic measures and showed excellent reliability (ICCs 0.80-0.98) and no significant differences were seen in paired t-tests in all parameters when comparing the two systems. This suggests that the IMU sensors provide a viable alternative to camera-based motion capture that could be used in isolation to gather data from individuals with movement disorders in clinical settings and real-life situations.


Asunto(s)
Movimiento (Física) , Acelerometría , Algoritmos , Fenómenos Biomecánicos , Pie , Movimiento , Reproducibilidad de los Resultados
12.
Sensors (Basel) ; 20(13)2020 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-32630828

RESUMEN

Due to the complex coupling motion of shoulder mechanism, only a small amount of quantitative information is available in the existing literature, although various kinematic models of the shoulder complex have been proposed. This study focused on the specific motion coupling relationship between glenohumeral (GH) joint center displacement variable quantity relative to the thorax coordinate system and humeral elevation angle to describe the shoulder complex. The mechanism model of shoulder complex was proposed with an algorithm designed. Subsequently, twelve healthy subjects performed right arm raising, lowering, as well as raising and lowering (RAL) movements in sixteen elevation planes, and the motion information of the markers attached to the thorax, scapula, and humerus was captured by using Vicon motion capturing system. Then, experimental data was processed and the generalized GH joint with floating center was quantized. Simultaneously, different coupling characteristics were detected during humerus raising as well as lowering movements. The motion coupling relationships in different phases were acquired, and a modified kinematic model was established, with the description of overall motion characteristics of shoulder complex validated by comparing the results with a prior kinematic model from literature, showing enough accuracy for the design of upper limb rehabilitation robots.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Modelos Anatómicos , Rango del Movimiento Articular , Articulación del Hombro , Hombro , Fenómenos Biomecánicos , Humanos , Escápula
13.
Sensors (Basel) ; 20(15)2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32751920

RESUMEN

Investigating the effects of load carriage on military soldiers using optical motion capture is challenging. However, inertial measurement units (IMUs) provide a promising alternative. Our purpose was to compare optical motion capture with an Xsens IMU system in terms of movement reconstruction using principal component analysis (PCA) using correlation coefficients and joint kinematics using root mean squared error (RMSE). Eighteen civilians performed military-type movements while their motion was recorded using both optical and IMU-based systems. Tasks included walking, running, and transitioning between running, kneeling, and prone positions. PCA was applied to both the optical and virtual IMU markers, and the correlations between the principal component (PC) scores were assessed. Full-body joint angles were calculated and compared using RMSE between optical markers, IMU data, and virtual markers generated from IMU data with and without coordinate system alignment. There was good agreement in movement reconstruction using PCA; the average correlation coefficient was 0.81 ± 0.14. RMSE values between the optical markers and IMU data for flexion-extension were less than 9°, and 15° for the lower and upper limbs, respectively, across all tasks. The underlying biomechanical model and associated coordinate systems appear to influence RMSE values the most. The IMU system appears appropriate for capturing and reconstructing full-body motion variability for military-based movements.

14.
Biol Sport ; 37(4): 351-357, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33343068

RESUMEN

The aim of this study was to examine the concurrent validity of the Kinexon local positioning system (LPS) in comparison with the Vicon motion capture system used as the reference. Five recreationally active men performed ten repetitions of linear sprints, medio-lateral side-to-side and handball-specific movements both in the centre and on the side of an indoor field. Validity was assessed for peak speed, peak acceleration and peak deceleration using standardised biases, Pearson coefficient of correlation (r), and standardised typical error of the estimate. With the exception of peak decelerations during specific movements in the centre and peak acceleration and deceleration during linear sprints on the side of the field, the standardised typical error of the estimate (TEE) values were all small to moderate (0.06-0.48), standardised bias ranged between 0.01 and 2.85 and Pearson coefficient values were all > 0.90 for all variables in all conditions. Peak acceleration and deceleration during linear sprints on the side of the field showed the largest TEEs and the greatest differences between the two systems. The ultra-wideband based (UWB) local positioning system had acceptable validity compared with Vicon to assess players' movements in handball with the exception of high accelerations and decelerations during linear sprints on the side of the field.

15.
J Phys Ther Sci ; 32(8): 510-515, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32884172

RESUMEN

[Purpose] This study evaluated subjective posture recognition by physiotherapists with expertise in posture, examined the quantification of posture using a three-dimensional (3D) motion capture, and described posture-based characteristics. [Participants and Methods] We photographed good, normal, and bad postures in 12 participants using an infrared camera, and the resultant data were analyzed. [Results] We observed the largest displacement from a good to a bad posture in the tenth thoracic vertebra on the X-axis in the anterior-posterior direction in comparison with other index points. Further, we observed considerable differences between good and bad postures compared with other index points. Moreover, we noted significant differences between the amount of displacement between good to a normal posture and from a good to a bad posture. The vertical displacement of the Z-axis was smaller than other index points. [Conclusion] Th10 captured features from the three postures. The X-axis was displaced most between good and bad postures. Further, the amount of displacement on the Z-axis was less between good and bad posture, rendering it difficult to capture features. Therefore, the findings reported herein can be used to compare the front and rear directions of the X-axis for capturing postural changes.

16.
Sensors (Basel) ; 19(17)2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31438520

RESUMEN

Immersive virtual reality has recently developed into a readily available system that allows for full-body tracking. Can this affordable system be used for component tracking to advance or replace expensive kinematic systems for motion analysis in the clinic? The aim of this study was to assess the accuracy of position and orientation measures from Vive wireless body trackers when compared to Vicon optoelectronic tracked markers attached to (1) a robot simulating trunk flexion and rotation by repeatedly moving to know locations, and (2) healthy adults playing virtual reality games necessitating significant trunk displacements. The comparison of both systems showed component tracking with Vive trackers is accurate within 0.68 ± 0.32 cm translationally and 1.64 ± 0.18° rotationally when compared with a three-dimensional motion capture system. No significant differences between Vive trackers and Vicon systems were found suggesting the Vive wireless sensors can be used to accurately track joint motion for clinical and research data.

17.
Sensors (Basel) ; 17(11)2017 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-29165396

RESUMEN

Climbing and descending stairs are demanding daily activities, and the monitoring of them may reveal the presence of musculoskeletal diseases at an early stage. A markerless system is needed to monitor such stair walking activity without mentally or physically disturbing the subject. Microsoft Kinect v2 has been used for gait monitoring, as it provides a markerless skeleton tracking function. However, few studies have used this device for stair walking monitoring, and the accuracy of its skeleton tracking function during stair walking has not been evaluated. Moreover, skeleton tracking is not likely to be suitable for estimating body joints during stair walking, as the form of the body is different from what it is when it walks on level surfaces. In this study, a new method of estimating the 3D position of the knee joint was devised that uses the depth data of Kinect v2. The accuracy of this method was compared with that of the skeleton tracking function of Kinect v2 by simultaneously measuring subjects with a 3D motion capture system. The depth data method was found to be more accurate than skeleton tracking. The mean error of the 3D Euclidian distance of the depth data method was 43.2 ± 27.5 mm, while that of the skeleton tracking was 50.4 ± 23.9 mm. This method indicates the possibility of stair walking monitoring for the early discovery of musculoskeletal diseases.


Asunto(s)
Articulación de la Rodilla , Fenómenos Biomecánicos , Marcha , Humanos , Rango del Movimiento Articular , Caminata
18.
J Phys Ther Sci ; 29(5): 819-821, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28603352

RESUMEN

[Purpose] This study investigated the effects of proprietary foot orthotics in young adults with flatfoot to determine changes in the ankle joint angle in the coronal plane during the midstance phase. [Subjects and Methods] The subjects were 15 college students diagnosed with flatfoot. Changes in the ankle joint angle in the coronal plane in the midstance phase were measured using the Vicon Motion System before and after use of the orthotic. The data were analyzed using Statistical Package for the Social Sciences Win 16.0. [Results] The subjects showed significant increases in left and right ankle joint angles in the coronal plane during the midstance phase of the gait cycle after use of the orthotics. However, the difference between the left and right ankle joint angles showed no significant change, even though the difference increased after use of the orthotics. [Conclusion] Young adults with flatfoot showed increased ankle joint angles after use of the orthotics. This suggests that orthotic footwear can shape the plantar arch and affect the ankle joint, and that constant use of orthotics would cause a dynamic change in normal walking.

19.
J Phys Ther Sci ; 29(3): 438-441, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28356626

RESUMEN

[Purpose] This study examined the impact of wearing a functional foot orthotic on the pelvic angle of young adults who have flatfoot. [Subjects and Methods] A total of 15 college students diagnosed with flatfoot were included in the study. Changes in the pelvic angle in the stance period during walking before and after orthotic use were measured using a VICON Motion System (VICON, Hansung, Korea). The data were analyzed using SPSS 12.0 for Windows. [Results] In the experimental group, the pelvic angle during the mid-stance and mid-swing periods of the gait cycle significantly decreased on the left and right sides after wearing the orthotic, compared to the measurements taken before orthotic usage. The pelvic angle change on the left and right sides also decreased after wearing the orthotic, though this difference was not significant. [Conclusion] The pelvic angle of college students with flatfoot decreased after they wore orthotics. This implies that wearing orthotic shoes can greatly benefit individuals during normal walking by promoting passive changes that decrease the pelvic angle.

20.
J Sports Sci ; 34(4): 303-10, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26032327

RESUMEN

Self-recall training diaries are a frequently used tool to quantify training load and training information. While accelerometers are predominantly used to validate training diaries, they are unable to validate contextual training information. Thus this study aimed to examine the novel use of data fusion from a wearable camera device (SenseCam) and accelerometer to validate a self-recall training diary. Thirty participants filled in a training diary for 1 day while simultaneously wearing a SenseCam and accelerometer. The training diary was validated using Bland-Altman plots, Spearman's rank-order correlation, percentage agreement and κ measure of agreement between the diary and the SenseCam and accelerometer. The results demonstrated overall agreement, and no bias, between the training diary and the accelerometer for training intensity, and the SenseCam for duration of activity and travel time. A positive correlation was found for duration (r = 0.82, P < 0.001) and intensity (r = 0.67, P < 0.001). Hundred per cent agreement was found between the SenseCam and training diary for activity, training surface and footwear (κ = 1, P < 0.0001), with a lower agreement noted for sports played (97.3%, κ = 0.91, P < 0.0001). The self-recall training diary was found to be a valid measure of capturing training load and training information using the combined wearable camera device and accelerometer.


Asunto(s)
Acelerometría/métodos , Recuerdo Mental , Fotograbar , Educación y Entrenamiento Físico , Femenino , Humanos , Masculino , Reproducibilidad de los Resultados , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA