Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Sensors (Basel) ; 24(16)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39204937

RESUMEN

Inclusive design does not stop at removing physical obstacles such as staircases. It also involves identifying architectural features that impose sensory burdens, such as repetitive visual patterns that are known to potentially cause dizziness or visual discomfort. In order to assess their influence on human gait and its stability, three repetitive patterns-random dots, repetitive stripes, and repetitive waves (Lisbon pattern)-were displayed in a coloured and greyscale variant in a virtual reality (VR) environment. The movements of eight participants were recorded using a motion capture system and electromyography (EMG). During all test conditions, a significant increase in the muscular activity of leg flexor muscles was identified just before touchdown. Further, an increase in the activity of laterally stabilising muscles during the swing phase was observed for all of the test conditions. The lateral and vertical centre of mass (CoM) deviation was statistically evaluated using a linear mixed model (LMM). The patterns did cause a significant increase in the CoM excursion in the vertical direction but not in the lateral direction. These findings are indicative of an inhibited and more cautious gait style and a change in control strategy. Furthermore, we quantified the induced discomfort by using both algorithmic estimates and self-reports. The Fourier-based methods favoured the greyscaled random dots over repetitive stripes. The colour metric favoured the striped pattern over the random dots. The participants reported that the wavey Lisbon pattern was the most disruptive. For architectural and structural design, this study indicates (1) that highly repetitive patterns should be used with care in consideration of their impact on the human visuomotor system and its behavioural effects and (2) that coloured patterns should be used with greater caution than greyscale patterns.


Asunto(s)
Electromiografía , Marcha , Realidad Virtual , Caminata , Humanos , Caminata/fisiología , Masculino , Marcha/fisiología , Femenino , Adulto , Músculo Esquelético/fisiología , Adulto Joven , Fenómenos Biomecánicos/fisiología , Algoritmos
2.
J Appl Biomech ; : 1-8, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39313212

RESUMEN

Balance training paradigms have been shown to effectively reduce fall risk. Visual feedback is an important sensory mechanism for regulating postural control, promoting visual perturbations for balance training paradigms. Stroboscopic goggles, which oscillate from transparent to opaque, are a form of visual perturbation, but their effect on standing balance has not been assessed. In this study, 29 participants stood in bilateral and tandem stances as the center of pressure was recorded for 6 consecutive minutes wherein there were no stroboscopic perturbations in the first and last minutes. Spatial-temporal, frequency domain, and nonlinear standing balance parameters were calculated for each period. More differences in spatial-temporal parameters due to the strobe were found in the medial-lateral direction than the anterior-posterior direction. More differences in frequency domain parameters were observed in the anterior-posterior direction than the medial-lateral direction, but this did not occur for each variable. The nonlinear parameters were strongly affected by the strobe. Stroboscopic perturbations did not affect the bilateral and tandem stances equally. Spatial-temporal parameters for the tandem stance were greater in magnitude during the strobe period than the no strobe periods. This effect was not seen with the bilateral stance. This indicates that the efficacy of stroboscopic perturbations for challenging standing balance depends on task difficulty. Balance training paradigms that utilize stroboscopic perturbations will need to harmonize these perturbations with task difficulty.

3.
Gait Posture ; 113: 504-511, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39173440

RESUMEN

BACKGROUND: Changes in spatio-temporal gait parameters and their variability during balance-challenging tasks are markers of motor performance linked to fall risk. Radio frequency (RF) sensors hold great promise towards achieving continuous remote monitoring of these parameters. RESEARCH QUESTIONS: To establish the concurrent validity of RF-based gait metrics extracted using micro-Doppler (µD) signatures and to determine whether these metrics are sensitive to gait modifications created by multidirectional visual perturbations. METHODS: Fifteen participants walked overground in a virtual environment (VE) and VE with medio-lateral (ML) and antero-posterior (AP) perturbations. An optoelectronic motion capture system and one RF sensor were used to extract the linear velocity of the trunk and estimate step time (ST), step velocity (SV), step length (SL), and their variability (STV, SVV, and SLV). Intra-class coefficient for consistency (ICC), mean and standard deviation of the differences (MD), 95 % limits of agreement, and Pearson correlation coefficients (r) were used to determine concurrent validity. One-way repeated-measures analysis of variance was used to analyze the main and interaction effects of visual conditions. RESULTS: All outcomes showed good to excellent reliability (r>0.795, ICC>0.886). Average gait parameters showed good to excellent agreement, with values obtained with the RF sensor systematically smaller than the values obtained with the markers (MD of 0.001 s, 0.09 m/s, and 0.06 m). Gait variability parameters showed poor to moderate agreement, with values obtained with the RF sensor systematically larger than those obtained with the markers (MD of 1.9 %-3.9 %). Both measurement systems reported decreased SL and SV during ML perturbations, but the gait variability parameters extracted with the radar were not able to detect the higher STV and SLV during this condition. SIGNIFICANCE: The radar µD signature is a valid and reliable method for the assessment of average spatio-temporal gait parameters but gait variability measures need to be viewed with caution because of the lower levels of agreement and sensitivity to ML visual perturbations. This work represents an initial investigation for the development of a low-cost system that will facilitate aging-in-place by providing remote monitoring of gait in natural settings.


Asunto(s)
Marcha , Humanos , Masculino , Femenino , Marcha/fisiología , Adulto , Radar , Adulto Joven , Análisis de la Marcha/instrumentación , Análisis de la Marcha/métodos , Reproducibilidad de los Resultados , Equilibrio Postural/fisiología , Fenómenos Biomecánicos
4.
Gait Posture ; 96: 22-28, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35561569

RESUMEN

BACKGROUND: Low levels of sensory noise applied to the skin through electrical stimulation (ES) can improve balance control through a mechanism called stochastic resonance (SR). Little is known regarding the extent subsensory ES can improve reactive control of balance after unanticipated balance perturbations and the best location where to apply the stimulation. RESEARCH QUESTIONS: How efficient is subsensory ES in improving reactive control of balance following visual perturbations delivered in a virtual reality (VR) environment? 2) Does lower trunk stimulation have greater effects than lower legs stimulation? METHODS: Eighteen healthy young adults stood on a force plate while wearing a Valve Index VR headset in eyes closed (EC), eyes open (EO), eyes open with anteroposterior visual perturbations (AP) and eyes open with mediolateral visual perturbations (ML) conditions. No-stimulation (NS), leg stimulation (LS), or trunk stimulation (TS) equal to 90% of the sensory threshold (ST) was applied. The 95% confidence ellipse area (95%EA), the lengths of AP and ML sway path (APPath, MLPath), and the AP and ML 50% and 95% power frequencies (APPF50, MLPF50, APPF95, and MLPF95) were calculated. Repeated-measures ANOVA and Tukey post-hoc tests were used to analyze the main and interaction effects of stimulation and visual conditions. RESULTS: During AP perturbations, participants showed higher frequencies, longer paths, and larger ellipse areas. TS caused lower APPF50, MLPF50, MLPF95, APPath and EA while LS caused lower MLPF50 and EA. During ML perturbations, TS reduced APPF50 and both LS and TS caused reduction of MLPF95. Higher instability following AP perturbations was associated with greater effects of TS and LS. SIGNIFICANCE: The application of subsensory ES improved postural control during AP perturbations and TS reduced postural sway more effectively than LS. TS may be an effective strategy to enhance balance control during reactive postural tasks, thus potentially reducing fall risk.


Asunto(s)
Equilibrio Postural , Vibración , Estimulación Eléctrica , Humanos , Ruido , Equilibrio Postural/fisiología , Umbral Sensorial/fisiología , Adulto Joven
5.
Behav Sci (Basel) ; 9(11)2019 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-31718105

RESUMEN

BACKGROUND: Virtual reality (VR) is becoming a widespread tool in rehabilitation, especially for postural stability. However, the impact of using VR in a "moving wall paradigm" (visual perturbation), specifically without and with anticipation of the perturbation, is unknown. METHODS: Nineteen healthy subjects performed three trials of static balance testing on a force plate under three different conditions: baseline (no perturbation), unexpected VR perturbation, and expected VR perturbation. The statistical analysis consisted of a 1 × 3 repeated-measures ANOVA to test for differences in the center of pressure (COP) displacement, 95% ellipsoid area, and COP sway velocity. RESULTS: The expected perturbation rendered significantly lower (p < 0.05) COP displacements and 95% ellipsoid area compared to the unexpected condition. A significantly higher (p < 0.05) sway velocity was also observed in the expected condition compared to the unexpected condition. CONCLUSIONS: Postural stability was lowered during unexpected visual perturbations compared to both during baseline and during expected visual perturbations, suggesting that conflicting visual feedback induced postural instability due to compensatory postural responses. However, during expected visual perturbations, significantly lowered postural sway displacement and area were achieved by increasing the sway velocity, suggesting the occurrence of postural behavior due to anticipatory postural responses. Finally, the study also concluded that VR could be used to induce different postural responses by providing visual perturbations to the postural control system, which can subsequently be used as an effective and low-cost tool for postural stability training and rehabilitation.

6.
Laryngoscope Investig Otolaryngol ; 4(1): 143-153, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30828632

RESUMEN

BACKGROUND: The prevalence of balance and gait deficits increases with age and is associated with the increased incidence of falls seen in the elderly population; these falls are associated with significant morbidity and mortality. OBJECTIVES: To review changes in gait and balance associated with aging and the effect of visual perturbations on gait and balance in the elderly to provide a basis for future research. METHODS: PubMed and Cochrane Library were searched for articles from 1980 to present pertaining to gait and balance in older adults (>60) and younger adults (<60). Search terms included balance, posture, gait, locomotion, gait variability, gait disorders, gait disturbance, elderly, aging, falls, vision, visual, vestibular, and virtual reality. The references section of queried articles was also used to find relevant studies. Studies were excluded if subjects had a diagnosed gait or balance disorder. RESULTS: Elderly adults show age-related decline in sensory systems and reduced ability to adapt to changes in their environment to maintain balance. Elderly adults are particularly dependent on vision to maintain postural stability. Distinct changes in spatiotemporal gait parameters are associated with aging, such as slower gait and increased gait variability, which are amplified with exposure to visual perturbations. Increased gait variability, specifically with mediolateral perturbations, poses a particular challenge for elderly adults and is linked to increased falls risk. Virtual reality training has shown promising effects on balance and gait. CONCLUSION: Elderly adults show age-related decline in balance and gait with increased gait variability and an associated increased risk of falls. LEVEL OF EVIDENCE: 5.

7.
eNeuro ; 4(2)2017.
Artículo en Inglés | MEDLINE | ID: mdl-28303262

RESUMEN

During goal-directed reaching, rapid visuomotor feedback processes enable the human motor system to quickly correct for errors in the trajectory of the hand that arise from motor noise and, in some cases, external perturbations. To date, these visuomotor responses, the gain of which is sensitive to features of the task and environment, have primarily been examined in the context of unimanual reaching movements toward a single target. However, many natural tasks involve moving both hands together, often to separate targets, such that errors can occur in parallel and at different spatial locations. Here, we examined the resource capacity of automatic visuomotor corrective mechanisms by comparing feedback gains during bimanual reaches, toward two targets, to feedback gains during unimanual reaches toward single targets. To investigate the sensitivity of the feedback gains and their relation to visual-spatial processing, we manipulated the widths of the targets and participants' gaze location. We found that the gain of corrective responses to cursor displacements, while strongly modulated by target width and gaze position, were only slightly reduced during bimanual control. Our results show that automatic visuomotor corrective mechanisms can efficiently operate in parallel across multiple spatial locations.


Asunto(s)
Retroalimentación Sensorial , Mano , Actividad Motora , Adulto , Fenómenos Biomecánicos , Medidas del Movimiento Ocular , Movimientos Oculares , Femenino , Objetivos , Mano/fisiología , Humanos , Masculino , Psicofísica , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA