Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.417
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Immunol ; 34: 369-94, 2016 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-27168242

RESUMEN

Vitamin A is a multifunctional vitamin implicated in a wide range of biological processes. Its control over the immune system and functions are perhaps the most pleiotropic not only for development but also for the functional fate of almost every cell involved in protective or regulatory adaptive or innate immunity. This is especially key at the intestinal border, where dietary vitamin A is first absorbed. Most effects of vitamin A are exerted by its metabolite, retinoic acid (RA), which through ligation of nuclear receptors controls transcriptional expression of RA target genes. In addition to this canonical function, RA and RA receptors (RARs), either as ligand-receptor or separately, play extranuclear, nongenomic roles that greatly expand the multiple mechanisms employed for their numerous and paradoxical functions that ultimately link environmental sensing with immune cell fate. This review discusses RA and RARs and their complex roles in innate and adaptive immunity.


Asunto(s)
Sistema Inmunológico , Mucosa Intestinal/fisiología , Receptores de Ácido Retinoico/inmunología , Tretinoina/metabolismo , Vitamina A/inmunología , Inmunidad Adaptativa , Animales , Humanos , Inmunidad Innata , Inmunomodulación , Receptores de Ácido Retinoico/metabolismo , Tretinoina/inmunología
2.
Cell ; 169(5): 807-823.e19, 2017 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-28479188

RESUMEN

Dormant hematopoietic stem cells (dHSCs) are atop the hematopoietic hierarchy. The molecular identity of dHSCs and the mechanisms regulating their maintenance or exit from dormancy remain uncertain. Here, we use single-cell RNA sequencing (RNA-seq) analysis to show that the transition from dormancy toward cell-cycle entry is a continuous developmental path associated with upregulation of biosynthetic processes rather than a stepwise progression. In addition, low Myc levels and high expression of a retinoic acid program are characteristic for dHSCs. To follow the behavior of dHSCs in situ, a Gprc5c-controlled reporter mouse was established. Treatment with all-trans retinoic acid antagonizes stress-induced activation of dHSCs by restricting protein translation and levels of reactive oxygen species (ROS) and Myc. Mice maintained on a vitamin A-free diet lose HSCs and show a disrupted re-entry into dormancy after exposure to inflammatory stress stimuli. Our results highlight the impact of dietary vitamin A on the regulation of cell-cycle-mediated stem cell plasticity. VIDEO ABSTRACT.


Asunto(s)
Células Madre Hematopoyéticas/citología , Transducción de Señal , Tretinoina/farmacología , Vitamina A/administración & dosificación , Animales , Vías Biosintéticas , Técnicas de Cultivo de Célula , Ciclo Celular/efectos de los fármacos , Supervivencia Celular , Dieta , Perfilación de la Expresión Génica , Células Madre Hematopoyéticas/efectos de los fármacos , Ratones , Poli I-C/farmacología , Especies Reactivas de Oxígeno/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Análisis de la Célula Individual , Estrés Fisiológico , Vitamina A/farmacología , Vitaminas/administración & dosificación , Vitaminas/farmacología
3.
Immunity ; 50(1): 106-120.e10, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30650370

RESUMEN

CD4+ T helper (Th) differentiation is regulated by diverse inputs, including the vitamin A metabolite retinoic acid (RA). RA acts through its receptor RARα to repress transcription of inflammatory cytokines, but is also essential for Th-mediated immunity, indicating complex effects of RA on Th specification and the outcome of the immune response. We examined the impact of RA on the genome-wide transcriptional response during Th differentiation to multiple subsets. RA effects were subset-selective and were most significant in Th9 cells. RA globally antagonized Th9-promoting transcription factors and inhibited Th9 differentiation. RA directly targeted the extended Il9 locus and broadly modified the Th9 epigenome through RARα. RA-RARα activity limited murine Th9-associated pulmonary inflammation, and human allergic inflammation was associated with reduced expression of RA target genes. Thus, repression of the Th9 program is a major function of RA-RARα signaling in Th differentiation, arguing for a role for RA in interleukin 9 (IL-9) related diseases.


Asunto(s)
Hipersensibilidad/inmunología , Pulmón/fisiología , Neumonía/inmunología , Receptor alfa de Ácido Retinoico/metabolismo , Linfocitos T Colaboradores-Inductores/fisiología , Animales , Represión Epigenética , Células HEK293 , Humanos , Hipersensibilidad/genética , Interleucina-9/metabolismo , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neumonía/genética , Receptor alfa de Ácido Retinoico/genética , Transducción de Señal , Transcripción Genética , Tretinoina/metabolismo
4.
Immunity ; 49(6): 1103-1115.e6, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30566883

RESUMEN

Retinoic acid (RA), a vitamin A metabolite, regulates transcriptional programs that drive protective or pathogenic immune responses in the intestine, in a manner dependent on RA concentration. Vitamin A is obtained from diet and is metabolized by intestinal epithelial cells (IECs), which operate in intimate association with microbes and immune cells. Here we found that commensal bacteria belonging to class Clostridia modulate RA concentration in the gut by suppressing the expression of retinol dehydrogenase 7 (Rdh7) in IECs. Rdh7 expression and associated RA amounts were lower in the intestinal tissue of conventional mice, as compared to germ-free mice. Deletion of Rdh7 in IECs diminished RA signaling in immune cells, reduced the IL-22-dependent antimicrobial response, and enhanced resistance to colonization by Salmonella Typhimurium. Our findings define a regulatory circuit wherein bacterial regulation of IEC-intrinsic RA synthesis protects microbial communities in the gut from excessive immune activity, achieving a balance that prevents colonization by enteric pathogens.


Asunto(s)
Disbiosis/metabolismo , Células Epiteliales/metabolismo , Interleucinas/metabolismo , Mucosa Intestinal/metabolismo , Tretinoina/metabolismo , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Animales , Bacterias/clasificación , Bacterias/genética , Disbiosis/microbiología , Células Epiteliales/microbiología , Interacciones Microbiota-Huesped , Mucosa Intestinal/citología , Mucosa Intestinal/microbiología , Linfocitos/metabolismo , Linfocitos/microbiología , Ratones Endogámicos C57BL , Ratones Noqueados , Microbiota/genética , Microbiota/fisiología , ARN Ribosómico 16S/genética , Salmonella typhimurium/genética , Salmonella typhimurium/fisiología , Simbiosis , Interleucina-22
5.
EMBO Rep ; 25(7): 2878-2895, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38769419

RESUMEN

Vitamin A (retinol) is distributed via the blood bound to its specific carrier protein, retinol-binding protein 4 (RBP4). Retinol-loaded RBP4 is secreted into the circulation exclusively from hepatocytes, thereby mobilizing hepatic retinoid stores that represent the major vitamin A reserves in the body. The relevance of extrahepatic retinoid stores for circulating retinol and RBP4 levels that are usually kept within narrow physiological limits is unknown. Here, we show that fasting affects retinoid mobilization in a tissue-specific manner, and that hormone-sensitive lipase (HSL) in adipose tissue is required to maintain serum concentrations of retinol and RBP4 during fasting in mice. We found that extracellular retinol-free apo-RBP4 induces retinol release by adipocytes in an HSL-dependent manner. Consistently, global or adipocyte-specific HSL deficiency leads to an accumulation of retinoids in adipose tissue and a drop of serum retinol and RBP4 during fasting, which affects retinoid-responsive gene expression in eye and kidney and lowers renal retinoid content. These findings establish a novel crosstalk between liver and adipose tissue retinoid stores for the maintenance of systemic vitamin A homeostasis during fasting.


Asunto(s)
Adipocitos , Ayuno , Proteínas Plasmáticas de Unión al Retinol , Esterol Esterasa , Vitamina A , Proteínas Plasmáticas de Unión al Retinol/metabolismo , Proteínas Plasmáticas de Unión al Retinol/genética , Animales , Vitamina A/metabolismo , Vitamina A/sangre , Ayuno/metabolismo , Ratones , Adipocitos/metabolismo , Esterol Esterasa/metabolismo , Esterol Esterasa/genética , Hígado/metabolismo , Tejido Adiposo/metabolismo , Ratones Noqueados , Ratones Endogámicos C57BL
6.
J Biol Chem ; 300(6): 107308, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657862

RESUMEN

A deleterious effect of elevated levels of vitamin A on bone health has been reported in clinical studies. Mechanistic studies in rodents have shown that numbers of periosteal osteoclasts are increased, while endocortical osteoclasts are simultaneously decreased by vitamin A treatment. The present study investigated the in vitro and in vivo effect of all-trans retinoic acid (ATRA), the active metabolite of vitamin A, on periosteal osteoclast progenitors. Mouse calvarial bone cells were cultured in media containing ATRA, with or without the osteoclastogenic cytokine receptor activator of nuclear factor kappa B-ligand (RANKL), on plastic dishes or bone discs. Whereas ATRA did not stimulate osteoclast formation alone, the compound robustly potentiated the formation of RANKL-induced bone resorbing osteoclasts. This effect was due to stimulation by ATRA (half-maximal stimulation ∼3 nM) on the numbers of macrophages/osteoclast progenitors in the bone cell cultures, as assessed by mRNA and protein expression of several macrophage and osteoclast progenitor cell markers, such as macrophage colony-stimulating factor receptor, receptor activator of nuclear factor kappa B, F4/80, and CD11b, as well as by flow cytometry (FACS) analysis of CD11b+/F480+/Gr1- cells. The stimulation of macrophage numbers in the periosteal cell cultures was not mediated by increased macrophage colony-stimulating factor or interleukin-34. In contrast, ATRA did not enhance macrophages in bone marrow cell cultures. Importantly, ATRA treatment upregulated the mRNA expression of several macrophage-related genes in the periosteum of tibia in adult mice. These observations demonstrate a novel mechanism by which vitamin A enhances osteoclast formation specifically on periosteal surfaces.


Asunto(s)
Macrófagos , Osteoclastos , Periostio , Ligando RANK , Vitamina A , Animales , Ratones , Osteoclastos/metabolismo , Osteoclastos/citología , Osteoclastos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/citología , Periostio/metabolismo , Periostio/citología , Ligando RANK/metabolismo , Vitamina A/farmacología , Vitamina A/metabolismo , Células Madre/metabolismo , Células Madre/efectos de los fármacos , Células Madre/citología , Células Cultivadas , Tretinoina/farmacología , Osteogénesis/efectos de los fármacos , Ratones Endogámicos C57BL , Masculino
7.
Eur J Immunol ; 54(7): e2250342, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38593338

RESUMEN

Natural killer (NK) cells are innate cytotoxic lymphocytes that contribute to immune responses against stressed, transformed, or infected cells. NK cell effector functions are regulated by microenvironmental factors, including cytokines, metabolites, and nutrients. Vitamin A is an essential micronutrient that plays an indispensable role in embryogenesis and development, but was also reported to regulate immune responses. However, the role of vitamin A in regulating NK cell functions remains poorly understood. Here, we show that the most prevalent vitamin A metabolite, all-trans retinoic acid (atRA), induces transcriptional and functional changes in NK cells leading to altered metabolism and reduced IFN-γ production in response to a wide range of stimuli. atRA-exposed NK cells display a reduced ability to support dendritic cell (DC) maturation and to eliminate immature DCs. Moreover, they support the polarization and proliferation of regulatory T cells. These results imply that in vitamin A-enriched environments, NK cells can acquire functions that might promote tolerogenic immunity and/or immunosuppression.


Asunto(s)
Diferenciación Celular , Células Dendríticas , Interferón gamma , Células Asesinas Naturales , Linfocitos T Reguladores , Vitamina A , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/efectos de los fármacos , Interferón gamma/metabolismo , Diferenciación Celular/inmunología , Diferenciación Celular/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Humanos , Vitamina A/metabolismo , Vitamina A/farmacología , Células Dendríticas/inmunología , Células Dendríticas/efectos de los fármacos , Tretinoina/farmacología , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/inmunología , Células Cultivadas , Tolerancia Inmunológica/efectos de los fármacos
8.
J Biol Chem ; 299(6): 104784, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37146972

RESUMEN

High dietary fat intake is associated with metabolic dysregulation, but little is known regarding the effects of a high fat diet (HFD) on photoreceptor cell functioning. We explored the intersection of an HFD and the visual cycle adducts that form in photoreceptor cells by nonenzymatic reactions. In black C57BL/6J mice and albino C57BL/6Jc2j mice raised on an HFD until age 3, 6, or 12 months, chromatographically quantified bisretinoids were increased relative to mice on a standard diet. In vivo measurement of fundus autofluorescence, the source of which is bisretinoid, also revealed a significant increase in the HFD mice. Additionally, mice provided with a diet high in fat presented with elevated retinol-binding protein 4, the protein responsible for transporting retinol in plasma. Vitamin A was elevated in plasma although not in ocular tissue. Bisretinoids form in photoreceptor cell outer segments by random reactions of retinaldehyde with phosphatidylethanolamine. We found that the latter phospholipid was significantly increased in mice fed an HFD versus mice on a control diet. In leptin-deficient ob/ob mice, a genetic model of obesity, plasma levels of retinol-binding protein 4 were higher but bisretinoids in retina were not elevated. Photoreceptor cell viability measured as outer nuclear layer thickness was reduced in the ob/ob mice relative to WT. The accelerated formation of bisretinoid we observed in diet-induced obese mice is related to the high fat intake and to increased delivery of vitamin A to the visual cycle.


Asunto(s)
Dieta Alta en Grasa , Células Fotorreceptoras , Retinoides , Animales , Ratones , Dieta Alta en Grasa/efectos adversos , Leptina/genética , Leptina/metabolismo , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/metabolismo , Proteínas de Unión al Retinol/metabolismo , Vitamina A/metabolismo , Células Fotorreceptoras/citología , Células Fotorreceptoras/fisiología , Supervivencia Celular , Retinoides/metabolismo
9.
BMC Genomics ; 25(1): 244, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443816

RESUMEN

BACKGROUND: Vitamin A and retinoic acid (RA, a metabolite of vitamin A), are inextricably involved to the development of skeletal muscle in animals. However, the mechanisms regulating skeletal muscle development by vitamin A remain poorly reported. The current study designed to investigate the underlying mechanism of vitamin A affecting myogenic differentiation of lamb myoblasts through transcriptome sequencing (RNA-Seq) and gene function validation experiments. It provides a theoretical basis for elucidating the regulation of vitamin A on skeletal muscle development as well as for improving the economic benefits of the mutton sheep industry. RESULTS: Newborn lambs were injected with 7,500 IU vitamin A, and longissimus dorsi (LD) muscle tissue was surgically sampled for RNA-Seq analysis and primary myoblasts isolation at 3 weeks of age. The results showed that a total of 14 down-regulated and 3 up-regulated genes, were identified between control and vitamin A groups. Among them, BHLHE40 expression was upregulated in vitamin A group lambs. Furthermore, BHLHE40 expression is significantly increased after initiation of differentiation in myoblasts, and RA addition during differentiation greatly promoted BHLHE40 mRNA expression. In vitro, RA inhibited myoblasts proliferation and promoted myoblasts myogenic differentiation through BHLHE40. Moreover, BHLHE40 was proved to inhibit the expression of the DNA binding inhibitor 3 (ID3), and meanwhile, ID3 could effectively promote myoblasts proliferation and inhibit myoblasts myogenic differentiation. CONCLUSIONS: Taken together, our results suggested that vitamin A inhibited myoblasts proliferation and promoted myoblasts myogenic differentiation by inhibiting ID3 expression through BHLHE40.


Asunto(s)
Tretinoina , Vitamina A , Animales , Ovinos , Vitamina A/farmacología , Tretinoina/farmacología , Desarrollo de Músculos , Mioblastos , Músculos Paraespinales
10.
J Pediatr ; 265: 113816, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37931699

RESUMEN

OBJECTIVES: To assess postmortem vitamin A (VA) concentrations in children under 5 years of age and evaluate the association between VA deficiency (VAD) and infectious causes of death (CoD). STUDY DESIGN: In this cross-sectional study from the Child Health and Mortality Prevention Surveillance (CHAMPS) Network, liver biopsies collected within 72 hours of death were analyzed from 405 stillbirths and children under 5 years in Kenya and South Africa. Total liver VA (TLVA) concentrations were quantified using ultra-performance liquid chromatography, and cutoffs of ≤0.1 µmol/g, >0.1 to <0.7 µmol/g, ≥0.7 to <1.0 µmol/g, and ≥1.0 µmol/g were used to define VAD, adequate VA status, high VA, and hypervitaminosis A, respectively. CoD were determined by expert panel review. RESULTS: Among 366 liver samples with viable extraction, pooled prevalences of VAD, adequacy, high VA, and hypervitaminosis were 34.2%, 51.1%, 6.0%, and 8.7%, respectively. VAD was more common among neonates compared with stillbirths, infants, or children, and among those with low birthweight (LBW), underweight, or stunting (P < .05). When adjusting for site, age, and sex, there was no significant association of VAD with increased infectious CoD (OR 1.9, 95% confidence interval [CI] 0.9, 3.8, P = .073). In stratified analyses, VA deficient boys, but not girls, had an increased risk of infectious CoD (OR 3.4, 95% CI 1.3, 10.3, P = .013). CONCLUSIONS: Definitive postmortem assessment of VA status identified both VAD and VA excess among children under 5 years of age in Kenya and South Africa. VAD in boys was associated with increased risk of infectious mortality. Our findings may inform a transition from universal VA supplementation (VAS) to targeted strategies in certain countries.


Asunto(s)
Enfermedades Transmisibles , Deficiencia de Vitamina A , Niño , Masculino , Lactante , Recién Nacido , Femenino , Embarazo , Humanos , Preescolar , Vitamina A/efectos adversos , Estudios Transversales , Mortinato , Deficiencia de Vitamina A/complicaciones , Deficiencia de Vitamina A/epidemiología , Vitaminas , Hígado
11.
J Pediatr ; : 114148, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38880379

RESUMEN

OBJECTIVE: To evaluate the association between deficiency of vitamin A or D at diagnosis of pediatric acute lymphoblastic leukemia (ALL) and subsequent infectious complications during induction therapy. STUDY DESIGN: An IRB-approved, retrospective cohort study of children diagnosed with newly-diagnosed ALL from 2007 to 2017 at St. Jude Children's Research Hospital. We measured vitamin D, vitamin D binding protein, retinol binding protein as a surrogate for vitamin A, and immunoglobulin isotypes in serum obtained at ALL diagnosis, and we assessed the association between vitamin deficiencies or levels and infection-related complications during the 6-week induction phase using Cox regression models. RESULTS: Among 378 evaluable participants, vitamin A and D deficiencies were common (43% and 17% respectively). Vitamin D deficiency was associated with higher risks of febrile neutropenia (adjusted hazard ratio [aHR] 1.7; p=0.0072), clinically-documented infection (aHR 1.73; p=0.025), and likely bacterial infection (aHR 1.86; p=0.008). Conversely, vitamin A deficiency was associated solely with a reduced risk of sepsis (aHR 0.19; p=0.027). CONCLUSIONS: In this retrospective study, vitamin D deficiency was associated with an increased risk of common infection-related complications during induction therapy for ALL. Additional studies are warranted to evaluate whether vitamin D supplementation could mitigate this effect.

12.
Allergy ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38818808

RESUMEN

BACKGROUND: We investigated the biological function of the mould allergen Alt a 1 as a carrier of micronutrients, such as the vitamin A metabolite retinoic acid (RA) and the influence of RA binding on its allergenicity in vitro and in vivo. METHODS: Alt a 1-RA complex formation was analyzed in silico and in vitro. PBMCs from Alternaria-allergic donors were stimulated with Alt a 1 complexed with RA (holo-Alt a 1) or empty apo-Alt a 1 and analyzed for cytokine production and CD marker expression. Serum IgE-binding and crosslinking assays to apo- and holo-protein were correlated to B-cell epitope analysis. Female BALB/c mice already sensitized to Alt a 1 were intranasally treated with apo-Alt a 1, holo-Alt a 1 or RA alone before measuring anaphylactic response, serum antibody levels, splenic cytokines and CD marker expression. RESULTS: In silico docking calculations and in vitro assays showed that the extent of RA binding depended on the higher quaternary state of Alt a 1. Holo-Alt a 1 loaded with RA reduced IL-13 released from PBMCs and CD3+CD4+CRTh2 cells. Complexing Alt a 1 to RA masked its IgE B-cell epitopes and reduced its IgE-binding capacity. In a therapeutic mouse model of Alternaria allergy nasal application of holo-Alt a 1, but not of apo-Alt a 1, significantly impeded the anaphylactic response, impaired splenic antigen-presenting cells and induced IL-10 production. CONCLUSION: Holo-Alt a 1 binding to RA was able to alleviate Th2 immunity in vitro, modulate an ongoing Th2 response and prevent anaphylactic symptoms in vivo, presenting a novel option for improving allergen-specific immunotherapy in Alternaria allergy.

13.
Allergy ; 79(2): 353-383, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38084827

RESUMEN

Nutritional Immunity is one of the most ancient innate immune responses, during which the body can restrict nutrients availability to pathogens and restricts their uptake by the gut mucosa (mucosal block). Though this can be a beneficial strategy during infection, it also is associated with non-communicable diseases-where the pathogen is missing; leading to increased morbidity and mortality as micronutritional uptake and distribution in the body is hindered. Here, we discuss the acute immune response in respect to nutrients, the opposing nutritional demands of regulatory and inflammatory cells and particularly focus on some nutrients linked with inflammation such as iron, vitamins A, Bs, C, and other antioxidants. We propose that while the absorption of certain micronutrients is hindered during inflammation, the dietary lymph path remains available. As such, several clinical trials investigated the role of the lymphatic system during protein absorption, following a ketogenic diet and an increased intake of antioxidants, vitamins, and minerals, in reducing inflammation and ameliorating disease.


Asunto(s)
Micronutrientes , Vitaminas , Humanos , Micronutrientes/uso terapéutico , Vitaminas/uso terapéutico , Antioxidantes/metabolismo , Vitamina A , Inflamación/tratamiento farmacológico , Membrana Mucosa/metabolismo
14.
Int Immunol ; 35(3): 147-155, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36480702

RESUMEN

Group 1 innate lymphoid cells (G1-ILCs) are innate immune effectors critical for the response to intracellular pathogens and tumors. G1-ILCs comprise circulating natural killer (NK) cells and tissue-resident type 1 ILCs (ILC1s). ILC1s mainly reside in barrier tissues and provide the initial sources of interferon-γ (IFN-γ) to prime the protecting responses against infections, which are followed by the response of recruited NK cells. Despite such distribution differences, whether local environmental factors influence the behavior of NK cells and ILC1s is unclear. Here, we show that the signaling of retinoic acid (RA), active metabolites of vitamin A, is essential for the maintenance of ILC1s in the periphery. Mice expressing RARα403, a truncated form of retinoic acid receptor α (RARα) that exerts dominant negative activity, in a lymphoid cell- or G1-ILC-specific manner showed remarkable reductions of peripheral ILC1s while NK cells were unaffected. Lymphoid cell-specific inhibition of RAR activity resulted in the reduction of PD-1+ ILC progenitors (ILCPs), but not of common lymphoid progenitors (CLPs), suggesting the impaired commitment and differentiation of ILC1s. Transcriptome analysis revealed that RARα403-expressing ILC1s exhibited impaired proliferative states and declined expression of effector molecules. Thus, our findings demonstrate that cell-intrinsic RA signaling is required for the homeostasis and the functionality of ILC1s, which may present RA as critical environmental cue targeting local type 1 immunity against infection and cancer.


Asunto(s)
Inmunidad Innata , Linfocitos , Animales , Ratones , Regulación de la Expresión Génica , Interferón gamma/metabolismo , Células Asesinas Naturales , Receptores de Ácido Retinoico/metabolismo
15.
J Nutr ; 154(6): 1815-1826, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38599385

RESUMEN

BACKGROUND: Evidence of the effectiveness of biofortified maize with higher provitamin A (PVA) to address vitamin A deficiency in rural Africa remains scant. OBJECTIVES: This study projects the impact of adopting PVA maize for a diversity of households in an area typical of rural Zimbabwe and models the cost and composition of diets adequate in vitamin A. METHODS: Household-level weighed food records were generated from 30 rural households during a week in April and November 2021. Weekly household intakes were calculated, as well as indicative costs of diets using data from market surveys. The impact of PVA maize adoption was modeled assuming all maize products contained observed vitamin A concentrations. The composition and cost of the least expensive indicative diets adequate in vitamin A were calculated using linear programming. RESULTS: Very few households would reach adequate intake of vitamin A with the consumption of PVA maize. However, from a current situation of 33%, 50%-70% of households were projected to reach ≥50% of their requirements (the target of PVA), even with the modest vitamin A concentrations achieved on-farm (mean of 28.3 µg RAE per 100 g). This proportion would increase if higher concentrations recorded on-station were achieved. The estimated daily costs of current diets (mean ± standard deviation) were USD 1.43 ± 0.59 in the wet season and USD 0.96 ± 0.40 in the dry season. By comparison, optimization models suggest that diets adequate in vitamin A could be achieved at daily costs of USD 0.97 and USD 0.79 in the wet and dry seasons, respectively. CONCLUSIONS: The adoption of PVA maize would bring a substantial improvement in vitamin A intake in rural Zimbabwe but should be combined with other interventions (e.g., diet diversification) to fully address vitamin A deficiency.


Asunto(s)
Biofortificación , Dieta , Población Rural , Vitamina A , Zea mays , Zea mays/química , Zimbabwe , Vitamina A/administración & dosificación , Humanos , Deficiencia de Vitamina A/prevención & control , Deficiencia de Vitamina A/dietoterapia , Provitaminas , Alimentos Fortificados , Estado Nutricional , Femenino , Masculino
16.
J Nutr ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38857673

RESUMEN

BACKGROUND: Inadequate vitamin A (VA) intake is common among lactating women in many communities worldwide, but high-dose VA supplementation for postpartum women is not recommended by the World Health Organization as an effective intervention. OBJECTIVES: To simulate the impact of VA intake via diet and daily VA supplements on VA total body stores (TBS) and balance in theoretical lactating women with low/moderate TBS. METHODS: We studied 6 theoretical subjects with assigned values for TBS from 219-624 µmol. Using Simulation, Analysis, and Modeling software and a previously published compartmental model for whole-body VA metabolism, we simulated TBS over 6 mo of established lactation for each subject under 4 conditions: 1) prelactation VA intake was increased to maintain VA balance (LSS); 2) prelactation VA intake was maintained (NLSS); 3) VA intake was the same as 2) but a daily VA supplement (2.8 µmol/d) was added (NLSS+S); and 4) VA intake was as 1) and the daily VA supplement was included (LSS+S). RESULTS: To compensate for the loss of VA via milk while VA balance was maintained (LSS) over 6 mo of lactation, VA intake had to increase by 0.8-1.87 µmol/d (n = 6) compared with NLSS. Over 6 mo of NLSS treatment, VA balance was negative (geometric mean, -0.77 µmol/d) compared with LSS, whereas balance was positive under NLSS+S and LSS+S conditions (0.75 and 1.5 µmol/d, respectively). For LSS, the proportion of total VA disposal was 37% via breastmilk, 32% from VA stores, and 32% from nonstorage tissues. CONCLUSIONS: Adding a daily VA supplement (2.8 µmol/d) to the diet of lactating women with suboptimal VA intake may effectively counterbalance the negative VA balance resulting from the output of VA via breastmilk and thus benefit both mother and infant by maintaining or increasing VA stores and breastmilk VA concentration.

17.
FASEB J ; 37(8): e23037, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37392372

RESUMEN

The striatum is a brain structure involved in the control of voluntary movement. Striatum contains high amounts of retinoic acid, the active metabolite of vitamin A, as well as retinoid receptors, RARß and RXRγ. Previous studies revealed that disruption of retinoid signaling initiated during development is deleterious for striatal physiology and related motor functions. However, the alteration of retinoid signaling, and the importance of vitamin A supply during adulthood on striatal physiology and function has never been established. In the present study, we investigated the impact of vitamin A supply on striatal function. Adult Sprague-Dawley rats were fed with three specific diets, either sub-deficient, sufficient, or enriched in vitamin A (0.4, 5, and 20 international units [IU] of retinol per g of diet, respectively) for 6 months. We first validated that vitamin A sub-deficient diet in adult rats constitutes a physiological model of retinoid signaling reduction in the striatum. We then revealed subtle alterations of fine motor skills in sub-deficient rats using a new behavioral apparatus specifically designed to test forepaw reach-and-grasp skills relying on striatal function. Finally, we showed using qPCR analysis and immunofluorescence that the striatal dopaminergic system per se was not affected by vitamin A sub-deficiency at adult age. Rather, cholinergic synthesis in the striatum and µ-opioid receptor expression in striosomes sub-territories were the most affected by vitamin A sub-deficiency starting at adulthood. Taken together these results revealed that retinoid signaling alteration at adulthood is associated with motor learning deficits together with discrete neurobiological alterations in the striatum.


Asunto(s)
Cuerpo Estriado , Vitamina A , Ratas , Animales , Ratas Sprague-Dawley , Retinoides , Dieta
18.
Br J Nutr ; 131(3): 482-488, 2024 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-37694547

RESUMEN

Retinol binding protein (RBP) is used as a proxy for retinol in population-based assessments of vitamin A deficiency (VAD) for cost-effectiveness and feasibility. When the cut-off of < 0·7 µmol/l for retinol is applied to RBP to define VAD, an equivalence of the two biomarkers is assumed. Evidence suggests that the relationship between retinol and RBP is not 1:1, particularly in populations with a high burden of infection or inflammation. The goal of this analysis was to longitudinally evaluate the retinol:RBP ratio over 1 month of follow-up among fifty-two individuals exposed to norovirus (n 26 infected, n 26 uninfected), test whether inflammation (measured as α-1-acid glycoprotein (AGP) and C-reactive protein (CRP)) affects retinol, RBP and the ratio between the two and assess whether adjusting vitamin A biomarkers for AGP or CRP improves the equivalence of retinol and RBP. We found that the median molar ratio between retinol and RBP was the same among infected (0·68) and uninfected (0·68) individuals. AGP was associated with the ratio and RBP individually, controlling for CRP, and CRP was associated with both retinol and RBP individually, controlling for AGP over 1 month of follow-up. Adjusting for inflammation led to a slight increase in the ratio among infected individuals (0·71) but remained significantly different from the expected value of one. These findings highlight the need for updated recommendations from the WHO on a cut-off value for RBP and an appropriate method for measuring and adjusting for inflammation when using RBP in population assessments of VAD.


Asunto(s)
Norovirus , Deficiencia de Vitamina A , Humanos , Vitamina A , Proteína C-Reactiva/análisis , Orosomucoide/metabolismo , Biomarcadores , Deficiencia de Vitamina A/epidemiología , Proteínas de Unión al Retinol/metabolismo , Inflamación , Norovirus/metabolismo
19.
Clin Chem Lab Med ; 62(2): 288-292, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-37724812

RESUMEN

OBJECTIVES: Monitoring serum vitamin A (retinol) and vitamin E (α-tocopherol) concentrations is common practice for assessing nutritional status. Measurement of these vitamins can be challenging due to several factors. Whilst the RCPAQAP Vitamins: Serum Program assists participating laboratories in harmonisation, the materials provided do not contain the analogues of retinol and α-tocopherol that may be present in real patient samples. We aimed to assess participants' capacity to accurately report retinol and α-tocopherol in the presence of the vitamin E analogues tocopherol acetate and γ-tocopherol. METHODS: A supplementary series of a control sample and three matched spiked samples were distributed to each laboratory participating in the Program. Retinol and α-tocopherol results for each spiked sample were compared to the results of the control sample submitted by each participant. Acceptability of retinol and α-tocopherol results was determined based on the RCPAQAP allowable performance specifications (APS). RESULTS: Thirteen participants returned results for the supplementary sample series. Interference from α-tocopherol acetate was observed with results below the APS in 30 % (n=4) of laboratories for retinol quantification and in 23 % (n=3) for α-tocopherol quantification. One laboratory returned results above the APS for α-tocopherol when γ-tocopherol was present. CONCLUSIONS: This supplementary sample series has shown that the presence of vitamin E analogues can lead to the over or under estimation of nutritional status by some participants. Affected laboratories are encouraged to review their analytical procedures. To further assess laboratory competence, EQA providers should consider using patient samples or spiked challenge samples.


Asunto(s)
Vitamina A , alfa-Tocoferol , Humanos , gamma-Tocoferol , Laboratorios , Vitamina E , Vitaminas , Vitamina K
20.
Eur J Nutr ; 63(3): 905-918, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38240773

RESUMEN

PURPOSE: Vitamin A deficiency (VAD) remains a significant contributor to childhood morbidity and mortality in developing countries; therefore, the implementation of sustainable and cost-effective approaches to control VAD is of utmost pertinence. This study aims to investigate the efficacy of red palm olein (RPO)-enriched biscuit supplementation in improving vitamin A, haematological, iron, and inflammatory status among vitamin A-deficient schoolchildren. METHODS: We conducted a double-blinded, randomised controlled trial involving 651 rural primary schoolchildren (8-12 years) with VAD in Malaysia. The schoolchildren were randomised to receive either RPO-enriched biscuits (experimental group, n = 334) or palm olein-enriched biscuits (control group, n = 317) for 6-month duration. RESULTS: Significant improvements in retinol and retinol-binding protein 4 levels were observed in both groups after supplementation (P < 0.001). The improvement in retinol levels were similar across groups among subjects with confirmed VAD (P = 0.40). Among those with marginal VAD, greater improvement in retinol levels was recorded in the control group (P < 0.001) but lacked clinical significance. The levels of α- and ß-carotenes, haematological parameters (haemoglobin, packed cell volume, mean corpuscular volume and mean corpuscular haemoglobin) and iron enhanced more significantly in the experimental group (P < 0.05). The significant reduction in the prevalence of microcytic anaemia (- 21.8%) and high inflammation (- 8.1%) was only observed in the experimental group. CONCLUSION: The supplementation of RPO-enriched biscuits enhanced levels of provitamin A carotenes, iron, and erythropoiesis, and exhibited anti-inflammatory effects. Therefore, the incorporation of RPO into National Nutritional Intervention Programs may be a potential measure to improve the health status of vitamin A-deficient children, among various other interventions. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov (NCT03256123).


Asunto(s)
Deficiencia de Vitamina A , Vitamina A , Niño , Humanos , Carotenoides , Provitaminas , Hierro , Eritropoyesis , Deficiencia de Vitamina A/tratamiento farmacológico , Deficiencia de Vitamina A/epidemiología , Suplementos Dietéticos , Estado Nutricional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA