Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
EMBO J ; 40(9): e104888, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33630350

RESUMEN

Endoplasmic reticulum (ER) calcium (Ca2+ ) stores are critical to proteostasis, intracellular signaling, and cellular bioenergetics. Through forward genetic screening in mice, we identified two members of a new complex, Pacs1 and Wdr37, which are required for normal ER Ca2+ handling in lymphocytes. Deletion of Pacs1 or Wdr37 caused peripheral lymphopenia that was linked to blunted Ca2+ release from the ER after antigen receptor stimulation. Pacs1-deficient cells showed diminished inositol triphosphate receptor expression together with increased ER and oxidative stress. Mature Pacs1-/- B cells proliferated and died in vivo under lymphocyte replete conditions, indicating spontaneous loss of cellular quiescence. Disruption of Pacs1-Wdr37 did not diminish adaptive immune responses, but potently suppressed lymphoproliferative disease models by forcing loss of quiescence. Thus, Pacs1-Wdr37 plays a critical role in stabilizing lymphocyte populations through ER Ca2+ handling and presents a new target for lymphoproliferative disease therapy.


Asunto(s)
Retículo Endoplásmico/metabolismo , Eliminación de Gen , Linfopenia/genética , Trastornos Linfoproliferativos/genética , Proteínas Nucleares/genética , Proteínas de Transporte Vesicular/genética , Animales , Linfocitos B/metabolismo , Señalización del Calcio , Modelos Animales de Enfermedad , Femenino , Células HEK293 , Humanos , Linfopenia/metabolismo , Trastornos Linfoproliferativos/metabolismo , Masculino , Ratones , Células 3T3 NIH , Proteínas Nucleares/metabolismo , Proteínas de Transporte Vesicular/metabolismo
2.
Am J Hum Genet ; 105(2): 413-424, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31327508

RESUMEN

WD40 repeat-containing proteins form a large family of proteins present in all eukaryotes. Here, we identified five pediatric probands with de novo variants in WDR37, which encodes a member of the WD40 repeat protein family. Two probands shared one variant and the others have variants in nearby amino acids outside the WD40 repeats. The probands exhibited shared phenotypes of epilepsy, colobomas, facial dysmorphology reminiscent of CHARGE syndrome, developmental delay and intellectual disability, and cerebellar hypoplasia. The WDR37 protein is highly conserved in vertebrate and invertebrate model organisms and is currently not associated with a human disease. We generated a null allele of the single Drosophila ortholog to gain functional insights and replaced the coding region of the fly gene CG12333/wdr37 with GAL4. These flies are homozygous viable but display severe bang sensitivity, a phenotype associated with seizures in flies. Additionally, the mutant flies fall when climbing the walls of the vials, suggesting a defect in grip strength, and repeat the cycle of climbing and falling. Similar to wall clinging defect, mutant males often lose grip of the female abdomen during copulation. These phenotypes are rescued by using the GAL4 in the CG12333/wdr37 locus to drive the UAS-human reference WDR37 cDNA. The two variants found in three human subjects failed to rescue these phenotypes, suggesting that these alleles severely affect the function of this protein. Taken together, our data suggest that variants in WDR37 underlie a novel syndromic neurological disorder.


Asunto(s)
Trastorno Dismórfico Corporal/patología , Cerebelo/anomalías , Coloboma/patología , Discapacidades del Desarrollo/patología , Epilepsia/patología , Discapacidad Intelectual/patología , Mutación , Malformaciones del Sistema Nervioso/patología , Repeticiones WD40/genética , Adulto , Secuencia de Aminoácidos , Animales , Trastorno Dismórfico Corporal/genética , Cerebelo/patología , Niño , Coloboma/genética , Discapacidades del Desarrollo/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Epilepsia/genética , Femenino , Humanos , Lactante , Recién Nacido , Discapacidad Intelectual/genética , Masculino , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Malformaciones del Sistema Nervioso/genética , Fenotipo , Homología de Secuencia , Adulto Joven
3.
Am J Hum Genet ; 105(2): 425-433, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31327510

RESUMEN

While genetic causes are known for many syndromes involving developmental anomalies, a large number of individuals with overlapping phenotypes remain undiagnosed. Using exome-sequencing analysis and review of matchmaker databases, we have discovered four de novo missense variants predicted to affect the N-terminal region of WDR37-p.Ser119Phe, p.Thr125Ile, p.Ser129Cys, and p.Thr130Ile-in unrelated individuals with a previously unrecognized syndrome. Features of WDR37 syndrome include the following: ocular anomalies such as corneal opacity/Peters anomaly, coloboma, and microcornea; dysmorphic facial features; significant neurological impairment with structural brain defects and seizures; poor feeding; poor post-natal growth; variable skeletal, cardiac, and genitourinary defects; and death in infancy in one individual. WDR37 encodes a protein of unknown function with seven predicted WD40 domains and no previously reported human pathogenic variants. Immunocytochemistry and western blot studies showed that wild-type WDR37 is localized predominantly in the cytoplasm and mutant proteins demonstrate similar protein levels and localization. CRISPR-Cas9-mediated genome editing generated zebrafish mutants with novel missense and frameshift alleles: p.Ser129Phe, p.Ser129Cys (which replicates one of the human variants), p.Ser129Tyr, p.Lys127Cysfs, and p.Gln95Argfs. Zebrafish carrying heterozygous missense variants demonstrated poor growth and larval lethality, while heterozygotes with frameshift alleles survived to adulthood, suggesting a potential dominant-negative mechanism for the missense variants. RNA-seq analysis of zebrafish embryos carrying a missense variant detected significant upregulation of cholesterol biosynthesis pathways. This study identifies variants in WDR37 associated with human disease and provides insight into its essential role in vertebrate development and possible molecular functions.


Asunto(s)
Anomalías Múltiples/genética , Coloboma/genética , Discapacidades del Desarrollo/genética , Discapacidad Intelectual/genética , Mutación Missense , Proteínas Nucleares/genética , Repeticiones WD40/genética , Anomalías Múltiples/patología , Adulto , Secuencia de Aminoácidos , Animales , Niño , Preescolar , Coloboma/patología , Discapacidades del Desarrollo/patología , Femenino , Humanos , Lactante , Recién Nacido , Discapacidad Intelectual/patología , Masculino , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Homología de Secuencia , Síndrome , Pez Cebra
4.
Am J Med Genet A ; 185(3): 884-888, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33369122

RESUMEN

We report a male adult with early infantile-onset epilepsy, facial dysmorphism, and iridal and choroidal coloboma who had a de novo heterozygous mutation in PACS2, that is, c.625G > A p.(Glu209Lys). This specific mutation was previously reported in a patient with PACS2-related disorder (early infantile epileptic encephalopathy 66). De novo heterozygous mutations in WDR37 have been shown to cause a novel human disorder, neurooculocardiogenitourinary syndrome (NOCGUS syndrome) (OMIM #618652), characterized by intellectual disability, facial dysmorphism, and coloboma. According to large-scale interactome data, WDR37 interacts most strongly, by far, with PACS1 and PACS2. Clinically, coloboma has been described as a feature in a WDR37-related disorder and a PACS1-related disorder (Schuurs-Hoeijmakers syndrome), but not in a PACS2-related disorder. Our review of the phenotypes of three human disorders caused by WDR37, PACS1, and PACS2 mutations showed a significant overlap of epilepsy, intellectual disability, cerebellar atrophy, and facial features. The present observation of coloboma as a shared feature among these three disorders suggests that this group of genes may be involved in ocular development. We propose that dysregulation of the WDR37-PACS1-PACS2 axis results in a spectrum that is recognizable by intellectual disability, distinctive facial features, and coloboma.


Asunto(s)
Anomalías Múltiples/genética , Coroides/anomalías , Coloboma/genética , Iris/anomalías , Proteínas Nucleares/genética , Proteínas de Transporte Vesicular/genética , Sustitución de Aminoácidos , Cerebelo/anomalías , Anomalías Craneofaciales/genética , Criptorquidismo/genética , Cara/anomalías , Estudios de Asociación Genética , Pérdida Auditiva Sensorineural/genética , Cardiopatías Congénitas/genética , Heterocigoto , Humanos , Discapacidad Intelectual/genética , Masculino , Mutación Missense , Proteínas Nucleares/deficiencia , Mutación Puntual , Convulsiones/genética , Síndrome , Proteínas de Transporte Vesicular/deficiencia , Adulto Joven
5.
BMC Ophthalmol ; 18(1): 147, 2018 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-29929488

RESUMEN

BACKGROUND: Galloway-Mowat syndrome (GMS) is a rare autosomal recessive condition first described in 1968 and characterized by microcephaly and infantile onset of central nervous system (CNS) abnormalities resulting in severely delayed psychomotor development, cerebellar atrophy, epilepsy, and ataxia, as well as renal abnormalities such as nephrotic syndrome, proteinuria, end-stage renal disease (ESRD), and hiatal hernia. CASE PRESENTATION: We describe a GMS case diagnosed with homozygous missense mutation in the WDR73 gene, with absence of renal abnormalities. We expanded the clinical phenotype of GMS with WDR73 gene defect to include retinal dysfunction with missense mutation and developmental dysplasia of the hip. We compared eye findings of our case to previously reported cases, and we present an electroretinogram (ERG) picture for the first time in the literature. CONCLUSION: We recommend that clinicians screen patients with GM syndrome for retinal dysfunction and that a skeletal survey should be done to detect developmental dysplasia of the hip (DDH) so as to provide for early intervention.


Asunto(s)
ADN/genética , Hernia Hiatal/genética , Microcefalia/genética , Mutación Missense , Nefrosis/genética , Proteínas/genética , Enfermedades de la Retina/etiología , Análisis Mutacional de ADN , Electrorretinografía , Femenino , Estudios de Seguimiento , Hernia Hiatal/complicaciones , Hernia Hiatal/diagnóstico , Humanos , Lactante , Microcefalia/complicaciones , Microcefalia/diagnóstico , Nefrosis/complicaciones , Nefrosis/diagnóstico , Fenotipo , Proteínas/metabolismo , Enfermedades de la Retina/diagnóstico , Enfermedades de la Retina/metabolismo
6.
Brain Dev ; 46(3): 154-159, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38044197

RESUMEN

BACKGROUND: Neurooculocardiogenitourinary syndrome (NOCGUS), a multisystemic syndrome characterized by motor disorder, intellectual disability, seizures, abnormal brain structure, ocular diseases, and cardiac diseases, has been reported with missense variant of WD repeat-containing protein 37 (WDR37) in humans. This report aimed to identify the cause of NOCGUS in an affected patient. CASE PRESENTATION: We identified a de novo intronic 4-bp deletion of WDR37, c.727-27_727-24del, which were predicted to cause abnormal splicing by SpliceAI, in the patient with NOCGUS. Reverse transcription polymerase chain reaction (RT-PCR) revealed intron retention of 63 base pairs before exon 10 in messenger RNA, which was predicted to insert 21 additional aberrant amino acids (p.S242_I243insLCQKKLKISRKCLFWPSLWQQ). The patient had novel phenotypes, anal atresia, and polycystic kidney, in addition to intellectual disability, seizures, cerebellar vermian anomaly, and coloboma, which are typical in NOCGUS. We did not observe motor impairments or cardiovascular anomalies. CONCLUSION: This is the first reported case of NOCGUS with the splicing variant of WDR37, which manifests with distinctive but variable features. Our findings may expand a possible phenotypic expression of NOCGUS.


Asunto(s)
Discapacidad Intelectual , Malformaciones del Sistema Nervioso , Humanos , Discapacidad Intelectual/genética , Empalme del ARN/genética , Mutación Missense , Síndrome , Convulsiones , Mutación
7.
bioRxiv ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38712144

RESUMEN

PACS (Phosphofurin Acidic Cluster Sorting Protein) proteins are known for their roles in sorting cargo proteins to organelles and can physically interact with WD40 repeat-containing protein WDR37. PACS1, PACS2, and WDR37 variants are associated with multisystemic syndromes and neurodevelopmental disorders characterized by intellectual disability, seizures, developmental delays, craniofacial abnormalities, and autism spectrum disorder. However, the effects of syndromic variants on function in vivo remains unknown. Here, we report the expression pattern of C. elegans orthologs of PACS and WDR37 and their interaction. We show that cePACS-1 and ceWDR-37 co-localize to somatic cytoplasm of many types of cells, and are mutually required for expression, supporting a conclusion that the intermolecular dependence of PACS1/PACS2/PACS-1 and WDR37/WDR-37 is evolutionarily conserved. We further show that editing in PACS1 and PACS2 variants in cePACS-1 changes protein localization in multiple cell types, including neurons. Moreover, expression of human PACS1 can functionally complement C. elegans PACS-1 in neurons, demonstrating conserved functions of the PACS-WDR37 axis in an invertebrate model system. Our findings reveal effects of human variants and suggest potential strategies to identify regulatory network components that may contribute to understanding molecular underpinnings of PACS/WDR37 syndromes.

8.
Genetics ; 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39031646

RESUMEN

PACS (Phosphofurin Acidic Cluster Sorting Protein) proteins are known for their roles in sorting cargo proteins to organelles and can physically interact with WD40 repeat-containing protein WDR37. PACS1, PACS2, and WDR37 variants are associated with multisystemic syndromes and neurodevelopmental disorders characterized by intellectual disability, seizures, developmental delays, craniofacial abnormalities, and autism spectrum disorder. However, the functional effects of syndromic variants at the cellular level remain unknown. Here, we report the expression pattern of C. elegans orthologs of PACS and WDR37 and their interaction. We show that cePACS-1 and ceWDR-37 co-localize to somatic cytoplasm of many types of cells, and are mutually required for expression, supporting a conclusion that the intermolecular dependence of PACS1/PACS2/PACS-1 and WDR37/WDR-37 is evolutionarily conserved. We further show that editing in PACS1 and PACS2 variants in cePACS-1 changes protein localization in multiple cell types, including neurons. Moreover, expression of human PACS1 can functionally complement C. elegans PACS-1 in neurons, demonstrating conserved functions of the PACS-WDR37 axis in an invertebrate model system. Our findings reveal effects of human variants and suggest potential strategies to identify regulatory network components that may contribute to understanding molecular underpinnings of PACS/WDR37 syndromes.

9.
Mol Syndromol ; 14(2): 143-151, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37064331

RESUMEN

Introduction: PACS1-related neurodevelopmental disorder (PACS1-related NDD) is caused by pathogenic variants in the PACS1 gene and is characterized by a distinctive facial appearance, intellectual disability, speech delay, seizures, feeding difficulties, cryptorchidism, hernias, and structural anomalies of the brain, heart, eye, and kidney. There is a marked facial resemblance and a common multisystem affectation with patients carrying pathogenic variants in the WDR37 and PACS2 genes, although they vary in terms of severity and eye involvement. Case Presentation: Here, we describe 4 individuals with PACS1-related NDD from Mexico, all of them carrying a de novo PACS1 variant c.607C>T; p.(Arg203Trp) identified by exome sequencing. In addition to eye colobomata, this report identified corneal leukoma, cataracts, and tortuosity of retinal vessels as ophthalmic manifestations not previously reported in patients with PACS1-related NDD. Discussion: We reviewed the ocular phenotypes reported in 74 individuals with PACS1-related NDD and the overlaps with WDR37- and PACS2-related syndromes. We found that the 3 syndromes have in common the presence of colobomata, ptosis, nystagmus, strabismus, and refractive errors, whereas microphthalmia, microcornea, and Peters anomaly are found only among individuals with PACS1-related NDD and WDR37 syndrome, being more severe in the latter. This supports the previous statement that the so-called WDR37-PACS1-PACS2 axis might have an important role in ocular development and also that the specific ocular findings could be useful in the clinical differentiation between these related syndromes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA