Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Naturwissenschaften ; 107(3): 15, 2020 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-32285203

RESUMEN

Laboratory water flumes are artificial troughs of moving water widely used in hydraulic studies of fluvial systems to investigate real-world problems at smaller, more manageable scales. Water flumes have also been used to understand bone transportation sorting and bone orientation found in the fossil record using actual bones. To date, these studies have not involved scaled bones. A 1/12 scale model of a 21.8-m long skeleton of Apatosaurus, a long-necked sauropod dinosaur from the Late Jurassic, was used to explore three problems at Dinosaur National Monument (USA) that cannot be explained by tradition bone flume studies: (1) why there is an abrupt bend in articulated vertebrae, (2) why articulated dorsals are inverted relative to the pelvis, and (3) how bone jams form. The flume experiments established that (1) bed friction with the wing-like transverse processes of vertebrae resists the force of the water flow, whereas those vertebrae lacking the processes are free to pivot in the flow; (2) elevation of the dorsal vertebrae by the transverse processes subjects the vertebrae to the energy of the flow stream, which causes the vertebrae to flip. Computation fluid dynamics (CFD) software shows this flip was due to differential pressure on the upstream and downstream sides. (3) The formation and growth of bone clusters or jams (analogous to log jams in rivers) occur as transported bones pile against an initial obstruction and jammed bones themselves become obstacles. These preliminary studies show that scale models can provide valuable insights into certain taphonomic problems that cannot be obtained by traditional bone flume studies.


Asunto(s)
Arqueología/métodos , Huesos , Fósiles , Movimientos del Agua , Modelos Biológicos
2.
J Biomech ; 165: 112020, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38422774

RESUMEN

Increasing the velocity of the lower-limb movement is crucial for improving underwater undulatory swimming (UUS) velocity. However, the underlying mechanism of how these movements influence swimming velocity have remained unclear. This study aimed to clarify the relationship between changes in swimming movement and the resulting changes in flow field as a result of changes in test flow velocity (U) in a water flume. A male student swimmer was tested with the following three U settings 0.8, 1.0 and 1.2 m/s. The lower-limb movements and wake flow behind the swimmer were compared. A motion capture system was employed for motion analysis, and a stereo PIV for visualizing the flow field. The findings revealed that, as U increased, the velocity vectors of the flow field in all directions (u, v, w) increased, as did the toe velocity. It was also suggested that with increasing U, the outward change in the toe velocity vector down-kick and the inward change in the toe velocity vector up-kick may have a positive effect on the vortices, contributing to an increase in the velocity vectors in the flow field. Furthermore, the high U, vortex re-capturing occurred during the transition from down-kick to up-kick, indicating that this might contribute to increased momentum. This suggests that the transition from the down-kick to the up-kick is necessary for gaining greater momentum. Notably, this study is the first to identify the factors that increase the swimming velocity of the UUS in the context of movement and flow field.


Asunto(s)
Extremidad Inferior , Natación , Humanos , Masculino , Fenómenos Biomecánicos , Movimiento (Física) , Movimiento
3.
Sports Biomech ; : 1-17, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38708690

RESUMEN

This study aimed to elucidate the foot kinematics and foot pressure difference characteristics of faster swimmers in undulatory underwater swimming (UUS). In total, eight faster and eight slower swimmers performed UUS in a water flume at a flow velocity set at 80% of the maximal effort swimming velocity. The toe velocity and foot angle of attack were measured using a motion capture system. A total of eight small pressure sensors were attached to the surface of the left foot to calculate the pressure difference between the plantar and dorsal sides of the foot. Differences in the mean values of each variable between the groups were analysed. Compared to the slower swimmers, the faster swimmers exhibited a significantly higher swimming velocity (1.53 ± 0.06 m/s vs. 1.31 ± 0.08 m/s) and a larger mean pressure difference in the phase from the start of the up-kick until the toe moved forward relative to the body (3.88 ± 0.65 kPa vs. 2.66 ± 1.19 kPa). The faster group showed higher toe vertical velocity and toe direction of movement, switching from lateral to medial at the time of generating the larger foot pressure difference in the up-kick, providing insight into the reasons behind the foot kinematics of high UUS performance swimmers.

4.
Front Sports Act Living ; 4: 829618, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35498520

RESUMEN

This study aimed to investigate the changes in kinematics and muscle activity with increasing swimming velocity during underwater undulatory swimming (UUS). In a water flume, 8 male national-level swimmers performed three UUS trials at 70, 80, and 90% of their maximum swimming velocity (70, 80, and 90%V, respectively). A motion capture system was used for three-dimensional kinematic analysis, and surface electromyography (EMG) data were collected from eight muscles in the gluteal region and lower limbs. The results indicated that kick frequency, vertical toe velocity, and angular velocity increased with increasing UUS velocity, whereas kick length and kick amplitude decreased. Furthermore, the symmetry of the peak toe velocity improved at 90%V. The integrated EMG values of the rectus femoris, biceps femoris, gluteus maximus, gluteus medius, tibialis anterior, and gastrocnemius were higher at 90%V than at the lower flow speeds, and the sum of integrated EMGs increased with increasing UUS velocity. These results suggest that an increase in the intensity of muscle activity in the lower limbs contributed to an increase in kick frequency. Furthermore, muscle activity of the biceps femoris and gastrocnemius commenced slightly earlier with increasing UUS velocity, which may be related to improving kick symmetry. In conclusion, this study suggests the following main findings: 1) changes in not only kick frequency but also in kicking velocity are important for increasing UUS velocity, 2) the intensity of specific muscle activity increases with increasing UUS velocity, and 3) kick symmetry is related to changes in UUS velocity, and improvements in kick symmetry may be caused by changes in the muscle activity patterns.

5.
J Biomech ; 93: 60-69, 2019 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-31303331

RESUMEN

Human undulatory underwater swimming (UUS) is an underwater propelling technique in competitive swimming and its propulsive mechanism is poorly understood. The purpose of this study was to visualize the three-dimensional (3D) flow field in the wake region during human UUS in a water flume. A national level male swimmer performed 41 UUS trials in a water flume. A motion capture system and stereo particle image velocimetry (PIV) equipment were used to investigate the 3D coordinates of the swimmer and 3D flow fields in the wake region. After one kick cycle was divided into eight phases, we conducted coordinate transformations and phase averaging method to construct quasi 3D flow fields. At the end of the downward kick, the lower limbs external rotations of the lower limbs were observed, and the feet approached towards each other. A strong downstream flow, i.e. a jet was observed in the wake region during the downward kick, and the paired vortex structure was accompanied by a jet. In the vortex structure, a cluster of vortices and a jet were generated in the wake during the downward kick, and the vortices were subsequently shed from the feet by the rotated leg motion. This suggested that the swimmer gained a thrust by creating vortices around the foot during the downward kick, which collided to form a jet. This paper describes, illustrates, and explains the propulsive mechanism of human UUS.


Asunto(s)
Biofisica/métodos , Extremidad Inferior/fisiología , Natación/fisiología , Fenómenos Biomecánicos , Humanos , Imagenología Tridimensional , Masculino , Movimiento (Física) , Reología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA