Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.133
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(9): 2336-2341.e5, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38582080

RESUMEN

The Genome Aggregation Database (gnomAD), widely recognized as the gold-standard reference map of human genetic variation, has largely overlooked tandem repeat (TR) expansions, despite the fact that TRs constitute ∼6% of our genome and are linked to over 50 human diseases. Here, we introduce the TR-gnomAD (https://wlcb.oit.uci.edu/TRgnomAD), a biobank-scale reference of 0.86 million TRs derived from 338,963 whole-genome sequencing (WGS) samples of diverse ancestries (39.5% non-European samples). TR-gnomAD offers critical insights into ancestry-specific disease prevalence using disparities in TR unit number frequencies among ancestries. Moreover, TR-gnomAD is able to differentiate between common, presumably benign TR expansions, which are prevalent in TR-gnomAD, from those potentially pathogenic TR expansions, which are found more frequently in disease groups than within TR-gnomAD. Together, TR-gnomAD is an invaluable resource for researchers and physicians to interpret TR expansions in individuals with genetic diseases.


Asunto(s)
Genoma Humano , Secuencias Repetidas en Tándem , Humanos , Secuencias Repetidas en Tándem/genética , Secuenciación Completa del Genoma , Bases de Datos Genéticas , Expansión de las Repeticiones de ADN/genética , Estudio de Asociación del Genoma Completo
2.
Cell ; 186(3): 528-542.e14, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36681079

RESUMEN

Whole-genome duplication (WGD) is a frequent event in cancer evolution and an important driver of aneuploidy. The role of the p53 tumor suppressor in WGD has been enigmatic: p53 can block the proliferation of tetraploid cells, acting as a barrier to WGD, but can also promote mitotic bypass, a key step in WGD via endoreduplication. In wild-type (WT) p53 tumors, WGD is frequently associated with activation of the E2F pathway, especially amplification of CCNE1, encoding cyclin E1. Here, we show that elevated cyclin E1 expression causes replicative stress, which activates ATR- and Chk1-dependent G2 phase arrest. p53, via its downstream target p21, together with Wee1, then inhibits mitotic cyclin-dependent kinase activity sufficiently to activate APC/CCdh1 and promote mitotic bypass. Cyclin E expression suppresses p53-dependent senescence after mitotic bypass, allowing cells to complete endoreduplication. Our results indicate that p53 can contribute to cancer evolution through the promotion of WGD.


Asunto(s)
Ciclina E , Duplicación de Gen , Neoplasias , Proteína p53 Supresora de Tumor , Humanos , Línea Celular Tumoral , Ciclina E/genética , Ciclina E/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Mitosis , Neoplasias/genética , Neoplasias/patología , Proteína p53 Supresora de Tumor/metabolismo
3.
Cell ; 185(23): 4409-4427.e18, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36368308

RESUMEN

Fully understanding autism spectrum disorder (ASD) genetics requires whole-genome sequencing (WGS). We present the latest release of the Autism Speaks MSSNG resource, which includes WGS data from 5,100 individuals with ASD and 6,212 non-ASD parents and siblings (total n = 11,312). Examining a wide variety of genetic variants in MSSNG and the Simons Simplex Collection (SSC; n = 9,205), we identified ASD-associated rare variants in 718/5,100 individuals with ASD from MSSNG (14.1%) and 350/2,419 from SSC (14.5%). Considering genomic architecture, 52% were nuclear sequence-level variants, 46% were nuclear structural variants (including copy-number variants, inversions, large insertions, uniparental isodisomies, and tandem repeat expansions), and 2% were mitochondrial variants. Our study provides a guidebook for exploring genotype-phenotype correlations in families who carry ASD-associated rare variants and serves as an entry point to the expanded studies required to dissect the etiology in the ∼85% of the ASD population that remain idiopathic.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Humanos , Trastorno del Espectro Autista/genética , Predisposición Genética a la Enfermedad , Variaciones en el Número de Copia de ADN/genética , Genómica
4.
Cell ; 185(17): 3153-3168.e18, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35926507

RESUMEN

The centromere represents a single region in most eukaryotic chromosomes. However, several plant and animal lineages assemble holocentromeres along the entire chromosome length. Here, we compare genome organization and evolution as a function of centromere type by assembling chromosome-scale holocentric genomes with repeat-based holocentromeres from three beak-sedge (Rhynchospora pubera, R. breviuscula, and R. tenuis) and their closest monocentric relative, Juncus effusus. We demonstrate that transition to holocentricity affected 3D genome architecture by redefining genomic compartments, while distributing centromere function to thousands of repeat-based centromere units genome-wide. We uncover a complex genome organization in R. pubera that hides its unexpected octoploidy and describe a marked reduction in chromosome number for R. tenuis, which has only two chromosomes. We show that chromosome fusions, facilitated by repeat-based holocentromeres, promoted karyotype evolution and diploidization. Our study thus sheds light on several important aspects of genome architecture and evolution influenced by centromere organization.


Asunto(s)
Centrómero , Cyperaceae , Animales , Centrómero/genética , Cyperaceae/genética , Evolución Molecular , Cariotipo , Plantas/genética
5.
Cell ; 185(18): 3426-3440.e19, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36055201

RESUMEN

The 1000 Genomes Project (1kGP) is the largest fully open resource of whole-genome sequencing (WGS) data consented for public distribution without access or use restrictions. The final, phase 3 release of the 1kGP included 2,504 unrelated samples from 26 populations and was based primarily on low-coverage WGS. Here, we present a high-coverage 3,202-sample WGS 1kGP resource, which now includes 602 complete trios, sequenced to a depth of 30X using Illumina. We performed single-nucleotide variant (SNV) and short insertion and deletion (INDEL) discovery and generated a comprehensive set of structural variants (SVs) by integrating multiple analytic methods through a machine learning model. We show gains in sensitivity and precision of variant calls compared to phase 3, especially among rare SNVs as well as INDELs and SVs spanning frequency spectrum. We also generated an improved reference imputation panel, making variants discovered here accessible for association studies.


Asunto(s)
Genoma Humano , Secuenciación Completa del Genoma , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Mutación INDEL , Masculino , Polimorfismo de Nucleótido Simple
6.
Cell ; 184(8): 2239-2254.e39, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33831375

RESUMEN

Intra-tumor heterogeneity (ITH) is a mechanism of therapeutic resistance and therefore an important clinical challenge. However, the extent, origin, and drivers of ITH across cancer types are poorly understood. To address this, we extensively characterize ITH across whole-genome sequences of 2,658 cancer samples spanning 38 cancer types. Nearly all informative samples (95.1%) contain evidence of distinct subclonal expansions with frequent branching relationships between subclones. We observe positive selection of subclonal driver mutations across most cancer types and identify cancer type-specific subclonal patterns of driver gene mutations, fusions, structural variants, and copy number alterations as well as dynamic changes in mutational processes between subclonal expansions. Our results underline the importance of ITH and its drivers in tumor evolution and provide a pan-cancer resource of comprehensively annotated subclonal events from whole-genome sequencing data.


Asunto(s)
Heterogeneidad Genética , Neoplasias/genética , Variaciones en el Número de Copia de ADN , ADN de Neoplasias/química , ADN de Neoplasias/metabolismo , Bases de Datos Genéticas , Resistencia a Antineoplásicos/genética , Humanos , Neoplasias/patología , Polimorfismo de Nucleótido Simple , Secuenciación Completa del Genoma
7.
Cell ; 184(13): 3426-3437.e8, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-33991487

RESUMEN

We identified an emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant by viral whole-genome sequencing of 2,172 nasal/nasopharyngeal swab samples from 44 counties in California, a state in the western United States. Named B.1.427/B.1.429 to denote its two lineages, the variant emerged in May 2020 and increased from 0% to >50% of sequenced cases from September 2020 to January 2021, showing 18.6%-24% increased transmissibility relative to wild-type circulating strains. The variant carries three mutations in the spike protein, including an L452R substitution. We found 2-fold increased B.1.427/B.1.429 viral shedding in vivo and increased L452R pseudovirus infection of cell cultures and lung organoids, albeit decreased relative to pseudoviruses carrying the N501Y mutation common to variants B.1.1.7, B.1.351, and P.1. Antibody neutralization assays revealed 4.0- to 6.7-fold and 2.0-fold decreases in neutralizing titers from convalescent patients and vaccine recipients, respectively. The increased prevalence of a more transmissible variant in California exhibiting decreased antibody neutralization warrants further investigation.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , COVID-19/inmunología , COVID-19/transmisión , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Humanos , Mutación/genética , Secuenciación Completa del Genoma/métodos
8.
Cell ; 179(3): 736-749.e15, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31626772

RESUMEN

Underrepresentation of Asian genomes has hindered population and medical genetics research on Asians, leading to population disparities in precision medicine. By whole-genome sequencing of 4,810 Singapore Chinese, Malays, and Indians, we found 98.3 million SNPs and small insertions or deletions, over half of which are novel. Population structure analysis demonstrated great representation of Asian genetic diversity by three ethnicities in Singapore and revealed a Malay-related novel ancestry component. Furthermore, demographic inference suggested that Malays split from Chinese ∼24,800 years ago and experienced significant admixture with East Asians ∼1,700 years ago, coinciding with the Austronesian expansion. Additionally, we identified 20 candidate loci for natural selection, 14 of which harbored robust associations with complex traits and diseases. Finally, we show that our data can substantially improve genotype imputation in diverse Asian and Oceanian populations. These results highlight the value of our data as a resource to empower human genetics discovery across broad geographic regions.


Asunto(s)
Genética de Población , Genoma Humano/genética , Selección Genética , Secuenciación Completa del Genoma , Pueblo Asiatico/genética , Femenino , Genotipo , Humanos , Malasia/epidemiología , Masculino , Polimorfismo de Nucleótido Simple/genética , Singapur/epidemiología
9.
Cell ; 176(3): 663-675.e19, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30661756

RESUMEN

In order to provide a comprehensive resource for human structural variants (SVs), we generated long-read sequence data and analyzed SVs for fifteen human genomes. We sequence resolved 99,604 insertions, deletions, and inversions including 2,238 (1.6 Mbp) that are shared among all discovery genomes with an additional 13,053 (6.9 Mbp) present in the majority, indicating minor alleles or errors in the reference. Genotyping in 440 additional genomes confirms the most common SVs in unique euchromatin are now sequence resolved. We report a ninefold SV bias toward the last 5 Mbp of human chromosomes with nearly 55% of all VNTRs (variable number of tandem repeats) mapping to this portion of the genome. We identify SVs affecting coding and noncoding regulatory loci improving annotation and interpretation of functional variation. These data provide the framework to construct a canonical human reference and a resource for developing advanced representations capable of capturing allelic diversity.


Asunto(s)
Frecuencia de los Genes/genética , Genoma Humano/genética , Variación Estructural del Genoma/genética , Alelos , Eucromatina/genética , Genómica/métodos , Humanos , Repeticiones de Minisatélite/genética , Análisis de Secuencia de ADN/métodos
10.
Cell ; 177(7): 1842-1857.e21, 2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31155235

RESUMEN

Mutational processes giving rise to lung adenocarcinomas (LADCs) in non-smokers remain elusive. We analyzed 138 LADC whole genomes, including 83 cases with minimal contribution of smoking-associated mutational signature. Genomic rearrangements were not correlated with smoking-associated mutations and frequently served as driver events of smoking-signature-low LADCs. Complex genomic rearrangements, including chromothripsis and chromoplexy, generated 74% of known fusion oncogenes, including EML4-ALK, CD74-ROS1, and KIF5B-RET. Unlike other collateral rearrangements, these fusion-oncogene-associated rearrangements were frequently copy-number-balanced, representing a genomic signature of early oncogenesis. Analysis of mutation timing revealed that fusions and point mutations of canonical oncogenes were often acquired in the early decades of life. During a long latency, cancer-related genes were disrupted or amplified by complex rearrangements. The genomic landscape was different between subgroups-EGFR-mutant LADCs had frequent whole-genome duplications with p53 mutations, whereas fusion-oncogene-driven LADCs had frequent SETD2 mutations. Our study highlights LADC oncogenesis driven by endogenous mutational processes.


Asunto(s)
Adenocarcinoma del Pulmón , Reordenamiento Génico , Neoplasias Pulmonares , Mutación , Proteínas de Fusión Oncogénica , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Femenino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Masculino , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo
11.
Cell ; 174(3): 758-769.e9, 2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-30033370

RESUMEN

While mutations affecting protein-coding regions have been examined across many cancers, structural variants at the genome-wide level are still poorly defined. Through integrative deep whole-genome and -transcriptome analysis of 101 castration-resistant prostate cancer metastases (109X tumor/38X normal coverage), we identified structural variants altering critical regulators of tumorigenesis and progression not detectable by exome approaches. Notably, we observed amplification of an intergenic enhancer region 624 kb upstream of the androgen receptor (AR) in 81% of patients, correlating with increased AR expression. Tandem duplication hotspots also occur near MYC, in lncRNAs associated with post-translational MYC regulation. Classes of structural variations were linked to distinct DNA repair deficiencies, suggesting their etiology, including associations of CDK12 mutation with tandem duplications, TP53 inactivation with inverted rearrangements and chromothripsis, and BRCA2 inactivation with deletions. Together, these observations provide a comprehensive view of how structural variations affect critical regulators in metastatic prostate cancer.


Asunto(s)
Variación Estructural del Genoma/genética , Neoplasias de la Próstata/genética , Anciano , Anciano de 80 o más Años , Proteína BRCA2/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Variaciones en el Número de Copia de ADN , Exoma , Perfilación de la Expresión Génica/métodos , Genómica/métodos , Humanos , Masculino , Persona de Mediana Edad , Mutación , Metástasis de la Neoplasia/genética , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Secuencias Repetidas en Tándem/genética , Proteína p53 Supresora de Tumor/metabolismo , Secuenciación Completa del Genoma/métodos
12.
Cell ; 174(2): 433-447.e19, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-29909985

RESUMEN

Nearly all prostate cancer deaths are from metastatic castration-resistant prostate cancer (mCRPC), but there have been few whole-genome sequencing (WGS) studies of this disease state. We performed linked-read WGS on 23 mCRPC biopsy specimens and analyzed cell-free DNA sequencing data from 86 patients with mCRPC. In addition to frequent rearrangements affecting known prostate cancer genes, we observed complex rearrangements of the AR locus in most cases. Unexpectedly, these rearrangements include highly recurrent tandem duplications involving an upstream enhancer of AR in 70%-87% of cases compared with <2% of primary prostate cancers. A subset of cases displayed AR or MYC enhancer duplication in the context of a genome-wide tandem duplicator phenotype associated with CDK12 inactivation. Our findings highlight the complex genomic structure of mCRPC, nominate alterations that may inform prostate cancer treatment, and suggest that additional recurrent events in the non-coding mCRPC genome remain to be discovered.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores Androgénicos/genética , Secuenciación Completa del Genoma , Anciano , Anilidas/uso terapéutico , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Elementos de Facilitación Genéticos/genética , Duplicación de Gen , Reordenamiento Génico , Genes myc , Sitios Genéticos , Haplotipos , Humanos , Masculino , Persona de Mediana Edad , Metástasis de la Neoplasia , Fosfohidrolasa PTEN/genética , Fenotipo , Antígeno Prostático Específico/sangre , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Piridinas/uso terapéutico
13.
Cell ; 168(3): 460-472.e14, 2017 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-28089356

RESUMEN

Certain cell types function as factories, secreting large quantities of one or more proteins that are central to the physiology of the respective organ. Examples include surfactant proteins in lung alveoli, albumin in liver parenchyma, and lipase in the stomach lining. Whole-genome sequencing analysis of lung adenocarcinomas revealed noncoding somatic mutational hotspots near VMP1/MIR21 and indel hotspots in surfactant protein genes (SFTPA1, SFTPB, and SFTPC). Extrapolation to other solid cancers demonstrated highly recurrent and tumor-type-specific indel hotspots targeting the noncoding regions of highly expressed genes defining certain secretory cellular lineages: albumin (ALB) in liver carcinoma, gastric lipase (LIPF) in stomach carcinoma, and thyroglobulin (TG) in thyroid carcinoma. The sequence contexts of indels targeting lineage-defining genes were significantly enriched in the AATAATD DNA motif and specific chromatin contexts, including H3K27ac and H3K36me3. Our findings illuminate a prevalent and hitherto unrecognized mutational process linking cellular lineage and cancer.


Asunto(s)
Linaje de la Célula , Mutación INDEL , Mutación , Neoplasias/genética , Neoplasias/patología , Regiones no Traducidas 3' , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Proteínas de la Membrana/genética , MicroARNs/genética , Persona de Mediana Edad , Motivos de Nucleótidos , Polimorfismo de Nucleótido Simple , Proteínas Asociadas a Surfactante Pulmonar/genética
14.
Mol Cell ; 80(6): 1123-1134.e4, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33290743

RESUMEN

Analyzing the genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from clinical samples is crucial for understanding viral spread and evolution as well as for vaccine development. Existing RNA sequencing methods are demanding on user technique and time and, thus, not ideal for time-sensitive clinical samples; these methods are also not optimized for high performance on viral genomes. We developed a facile, practical, and robust approach for metagenomic and deep viral sequencing from clinical samples. We demonstrate the utility of our approach on pharyngeal, sputum, and stool samples collected from coronavirus disease 2019 (COVID-19) patients, successfully obtaining whole metatranscriptomes and complete high-depth, high-coverage SARS-CoV-2 genomes with high yield and robustness. With a shortened hands-on time from sample to virus-enriched sequencing-ready library, this rapid, versatile, and clinic-friendly approach will facilitate molecular epidemiology studies during current and future outbreaks.


Asunto(s)
COVID-19/genética , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento , ARN Viral/genética , SARS-CoV-2/genética , Secuenciación Completa del Genoma , Animales , Humanos , Ratones , Células 3T3 NIH , ARN Viral/metabolismo , SARS-CoV-2/metabolismo
15.
Mol Cell ; 80(3): 541-553.e5, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33068522

RESUMEN

To address how genetic variation alters gene expression in complex cell mixtures, we developed direct nuclear tagmentation and RNA sequencing (DNTR-seq), which enables whole-genome and mRNA sequencing jointly in single cells. DNTR-seq readily identified minor subclones within leukemia patients. In a large-scale DNA damage screen, DNTR-seq was used to detect regions under purifying selection and identified genes where mRNA abundance was resistant to copy-number alteration, suggesting strong genetic compensation. mRNA sequencing (mRNA-seq) quality equals RNA-only methods, and the low positional bias of genomic libraries allowed detection of sub-megabase aberrations at ultra-low coverage. Each cell library is individually addressable and can be re-sequenced at increased depth, allowing multi-tiered study designs. Additionally, the direct tagmentation protocol enables coverage-independent estimation of ploidy, which can be used to identify cell singlets. Thus, DNTR-seq directly links each cell's state to its corresponding genome at scale, enabling routine analysis of heterogeneous tumors and other complex tissues.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Análisis de la Célula Individual/métodos , Secuenciación Completa del Genoma/métodos , Animales , Secuencia de Bases/genética , Línea Celular Tumoral , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , ARN/genética , ARN Mensajero/genética , Análisis de Secuencia de ADN/métodos
16.
Mol Cell ; 79(5): 728-740.e6, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32721385

RESUMEN

Cytosine base editors (CBEs) generate C-to-T nucleotide substitutions in genomic target sites without inducing double-strand breaks. However, CBEs such as BE3 can cause genome-wide off-target changes via sgRNA-independent DNA deamination. By leveraging the orthogonal R-loops generated by SaCas9 nickase to mimic actively transcribed genomic loci that are more susceptible to cytidine deaminase, we set up a high-throughput assay for assessing sgRNA-independent off-target effects of CBEs in rice protoplasts. The reliability of this assay was confirmed by the whole-genome sequencing (WGS) of 10 base editors in regenerated rice plants. The R-loop assay was used to screen a series of rationally designed A3Bctd-BE3 variants for improved specificity. We obtained 2 efficient CBE variants, A3Bctd-VHM-BE3 and A3Bctd-KKR-BE3, and the WGS analysis revealed that these new CBEs eliminated sgRNA-independent DNA off-target edits in rice plants. Moreover, these 2 base editor variants were more precise at their target sites by producing fewer multiple C edits.


Asunto(s)
Citidina Desaminasa/genética , Citosina , Edición Génica/métodos , Antígenos de Histocompatibilidad Menor/genética , Oryza/genética , Citosina/química , Genes de Plantas , Humanos , Mutación , ARN Guía de Kinetoplastida/química , ARN de Planta/química , Reproducibilidad de los Resultados
17.
Mol Cell ; 77(6): 1307-1321.e10, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-31954095

RESUMEN

A comprehensive catalog of cancer driver mutations is essential for understanding tumorigenesis and developing therapies. Exome-sequencing studies have mapped many protein-coding drivers, yet few non-coding drivers are known because genome-wide discovery is challenging. We developed a driver discovery method, ActiveDriverWGS, and analyzed 120,788 cis-regulatory modules (CRMs) across 1,844 whole tumor genomes from the ICGC-TCGA PCAWG project. We found 30 CRMs with enriched SNVs and indels (FDR < 0.05). These frequently mutated regulatory elements (FMREs) were ubiquitously active in human tissues, showed long-range chromatin interactions and mRNA abundance associations with target genes, and were enriched in motif-rewiring mutations and structural variants. Genomic deletion of one FMRE in human cells caused proliferative deficiencies and transcriptional deregulation of cancer genes CCNB1IP1, CDH1, and CDKN2B, validating observations in FMRE-mutated tumors. Pathway analysis revealed further sub-significant FMREs at cancer genes and processes, indicating an unexplored landscape of infrequent driver mutations in the non-coding genome.


Asunto(s)
Biomarcadores de Tumor/genética , Cromatina/metabolismo , Redes Reguladoras de Genes , Mutación , Neoplasias/genética , Neoplasias/patología , Secuencias Reguladoras de Ácidos Nucleicos , Proliferación Celular , Cromatina/genética , Biología Computacional/métodos , Análisis Mutacional de ADN , Genoma Humano , Células HEK293 , Humanos
18.
Am J Hum Genet ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38843839

RESUMEN

There is mounting evidence of the value of clinical genome sequencing (cGS) in individuals with suspected rare genetic disease (RGD), but cGS performance and impact on clinical care in a diverse population drawn from both high-income countries (HICs) and low- and middle-income countries (LMICs) has not been investigated. The iHope program, a philanthropic cGS initiative, established a network of 24 clinical sites in eight countries through which it provided cGS to individuals with signs or symptoms of an RGD and constrained access to molecular testing. A total of 1,004 individuals (median age, 6.5 years; 53.5% male) with diverse ancestral backgrounds (51.8% non-majority European) were assessed from June 2016 to September 2021. The diagnostic yield of cGS was 41.4% (416/1,004), with individuals from LMIC sites 1.7 times more likely to receive a positive test result compared to HIC sites (LMIC 56.5% [195/345] vs. HIC 33.5% [221/659], OR 2.6, 95% CI 1.9-3.4, p < 0.0001). A change in diagnostic evaluation occurred in 76.9% (514/668) of individuals. Change of management, inclusive of specialty referrals, imaging and testing, therapeutic interventions, and palliative care, was reported in 41.4% (285/694) of individuals, which increased to 69.2% (480/694) when genetic counseling and avoidance of additional testing were also included. Individuals from LMIC sites were as likely as their HIC counterparts to experience a change in diagnostic evaluation (OR 6.1, 95% CI 1.1-∞, p = 0.05) and change of management (OR 0.9, 95% CI 0.5-1.3, p = 0.49). Increased access to genomic testing may support diagnostic equity and the reduction of global health care disparities.

19.
Am J Hum Genet ; 111(5): 990-995, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38636510

RESUMEN

Since genotype imputation was introduced, researchers have been relying on the estimated imputation quality from imputation software to perform post-imputation quality control (QC). However, this quality estimate (denoted as Rsq) performs less well for lower-frequency variants. We recently published MagicalRsq, a machine-learning-based imputation quality calibration, which leverages additional typed markers from the same cohort and outperforms Rsq as a QC metric. In this work, we extended the original MagicalRsq to allow cross-cohort model training and named the new model MagicalRsq-X. We removed the cohort-specific estimated minor allele frequency and included linkage disequilibrium scores and recombination rates as additional features. Leveraging whole-genome sequencing data from TOPMed, specifically participants in the BioMe, JHS, WHI, and MESA studies, we performed comprehensive cross-cohort evaluations for predominantly European and African ancestral individuals based on their inferred global ancestry with the 1000 Genomes and Human Genome Diversity Project data as reference. Our results suggest MagicalRsq-X outperforms Rsq in almost every setting, with 7.3%-14.4% improvement in squared Pearson correlation with true R2, corresponding to 85-218 K variant gains. We further developed a metric to quantify the genetic distances of a target cohort relative to a reference cohort and showed that such metric largely explained the performance of MagicalRsq-X models. Finally, we found MagicalRsq-X saved up to 53 known genome-wide significant variants in one of the largest blood cell trait GWASs that would be missed using the original Rsq for QC. In conclusion, MagicalRsq-X shows superiority for post-imputation QC and benefits genetic studies by distinguishing well and poorly imputed lower-frequency variants.


Asunto(s)
Frecuencia de los Genes , Genotipo , Polimorfismo de Nucleótido Simple , Programas Informáticos , Humanos , Estudios de Cohortes , Desequilibrio de Ligamiento , Estudio de Asociación del Genoma Completo/métodos , Genoma Humano , Control de Calidad , Aprendizaje Automático , Secuenciación Completa del Genoma/normas , Secuenciación Completa del Genoma/métodos
20.
Proc Natl Acad Sci U S A ; 121(22): e2320040121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38771882

RESUMEN

Speciation is often driven by selective processes like those associated with viability, mate choice, or local adaptation, and "speciation genes" have been identified in many eukaryotic lineages. In contrast, neutral processes are rarely considered as the primary drivers of speciation, especially over short evolutionary timeframes. Here, we describe a rapid vertebrate speciation event driven primarily by genetic drift. The White Sands pupfish (Cyprinodon tularosa) is endemic to New Mexico's Tularosa Basin where the species is currently managed as two Evolutionarily significant units (ESUs) and is of international conservation concern (Endangered). Whole-genome resequencing data from each ESU showed remarkably high and uniform levels of differentiation across the entire genome (global FST ≈ 0.40). Despite inhabiting ecologically dissimilar springs and streams, our whole-genome analysis revealed no discrete islands of divergence indicative of strong selection, even when we focused on an array of candidate genes. Demographic modeling of the joint allele frequency spectrum indicates the two ESUs split only ~4 to 5 kya and that both ESUs have undergone major bottlenecks within the last 2.5 millennia. Our results indicate the genome-wide disparities between the two ESUs are not driven by divergent selection but by neutral drift due to small population sizes, geographic isolation, and repeated bottlenecks. While rapid speciation is often driven by natural or sexual selection, here we show that isolation and drift have led to speciation within a few thousand generations. We discuss these evolutionary insights in light of the conservation management challenges they pose.


Asunto(s)
Flujo Genético , Especiación Genética , Animales , Peces Killi/genética , Peces Killi/clasificación , New Mexico , Selección Genética , Frecuencia de los Genes , Genoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA