Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 83(5): 698-714.e4, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36724784

RESUMEN

Non-homologous end joining is the major double-strand break repair (DSBR) pathway in mammals. DNA-PK is the hub and organizer of multiple steps in non-homologous end joining (NHEJ). Recent high-resolution structures show how two distinct NHEJ complexes "synapse" two DNA ends. One complex includes a DNA-PK dimer mediated by XLF, whereas a distinct DNA-PK dimer forms via a domain-swap mechanism where the C terminus of Ku80 from one DNA-PK protomer interacts with another DNA-PK protomer in trans. Remarkably, the distance between the two synapsed DNA ends in both dimers is the same (∼115 Å), which matches the distance observed in the initial description of an NHEJ long-range synaptic complex. Here, a mutational strategy is used to demonstrate distinct cellular function(s) of the two dimers: one promoting fill-in end processing, while the other promotes DNA end resection. Thus, the specific DNA-PK dimer formed (which may be impacted by DNA end structure) dictates the mechanism by which ends will be made ligatable.


Asunto(s)
Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN , Animales , Proteínas de Unión al ADN/genética , Subunidades de Proteína/metabolismo , Reparación del ADN por Unión de Extremidades , Reparación del ADN , ADN/genética , Proteína Quinasa Activada por ADN/genética , Autoantígeno Ku/genética , Mamíferos/metabolismo
2.
Genes Dev ; 30(19): 2152-2157, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27798842

RESUMEN

PAXX was identified recently as a novel nonhomologous end-joining DNA repair factor in human cells. To characterize its physiological roles, we generated Paxx-deficient mice. Like Xlf-/- mice, Paxx-/- mice are viable, grow normally, and are fertile but show mild radiosensitivity. Strikingly, while Paxx loss is epistatic with Ku80, Lig4, and Atm deficiency, Paxx/Xlf double-knockout mice display embryonic lethality associated with genomic instability, cell death in the central nervous system, and an almost complete block in lymphogenesis, phenotypes that closely resemble those of Xrcc4-/- and Lig4-/- mice. Thus, combined loss of Paxx and Xlf is synthetic-lethal in mammals.


Asunto(s)
Proteínas de Unión al ADN/genética , Desarrollo Embrionario/genética , Mutaciones Letales Sintéticas/genética , Trisacáridos/genética , Animales , Apoptosis/genética , Proteínas de Unión al ADN/metabolismo , Epistasis Genética , Inestabilidad Genómica/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Tolerancia a Radiación/genética , Trisacáridos/metabolismo
3.
J Biol Chem ; 295(1): 125-137, 2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31753920

RESUMEN

Clastogen exposure can result in chromosomal rearrangements, including large deletions and inversions that are associated with cancer development. To examine such rearrangements in human cells, here we developed a reporter assay based on endogenous genes on chromosome 12. Using the RNA-guided nuclease Cas9, we induced two DNA double-strand breaks, one each in the GAPDH and CD4 genes, that caused a deletion rearrangement leading to CD4 expression from the GAPDH promoter. We observed that this GAPDH-CD4 deletion rearrangement activates CD4+ cells that can be readily detected by flow cytometry. Similarly, double-strand breaks in the LPCAT3 and CD4 genes induced an LPCAT3-CD4 inversion rearrangement resulting in CD4 expression. Studying the GAPDH-CD4 deletion rearrangement in multiple cell lines, we found that the canonical non-homologous end joining (C-NHEJ) factor XLF promotes these rearrangements. Junction analysis uncovered that the relative contribution of C-NHEJ appears lower in U2OS than in HEK293 and A549 cells. Furthermore, an ATM kinase inhibitor increased C-NHEJ-mediated rearrangements only in U2OS cells. We also found that an XLF residue that is critical for an interaction with the C-NHEJ factor X-ray repair cross-complementing 4 (XRCC4), and XRCC4 itself are each important for promoting both this deletion rearrangement and end joining without insertion/deletion mutations. In summary, a reporter assay based on endogenous genes on chromosome 12 reveals that XLF-dependent C-NHEJ promotes deletion rearrangements in human cells and that cell type-specific differences in the contribution of C-NHEJ and ATM kinase inhibition influence these rearrangements.


Asunto(s)
Deleción Cromosómica , Reparación del ADN por Unión de Extremidades , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferasa/genética , 1-Acilglicerofosfocolina O-Aciltransferasa/metabolismo , Células A549 , Antígenos CD4/genética , Antígenos CD4/metabolismo , Inversión Cromosómica , Roturas del ADN de Doble Cadena , Enzimas Reparadoras del ADN/genética , Proteínas de Unión al ADN/genética , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/genética , Células HEK293 , Humanos , Regiones Promotoras Genéticas
4.
Curr Allergy Asthma Rep ; 20(10): 57, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32648006

RESUMEN

PURPOSE OF REVIEW: The most serious DNA damage, DNA double strand breaks (DNA-dsb), leads to mutagenesis, carcinogenesis or apoptosis if left unrepaired. Non-homologous end joining (NHEJ) is the principle repair pathway employed by mammalian cells to repair DNA-dsb. Several proteins are involved in this pathway, defects in which can lead to human disease. This review updates on the most recent information available for the specific diseases associated with the pathway. RECENT FINDINGS: A new member of the NHEJ pathway, PAXX, has been identified, although no human disease has been associated with it. The clinical phenotypes of Artemis, DNA ligase 4, Cernunnos-XLF and DNA-PKcs deficiency have been extended. The role of haematopoietic stem cell transplantation, following reduced intensity conditioning chemotherapy, for many of these diseases is being advanced. In the era of newborn screening, urgent genetic diagnosis is necessary to correctly target appropriate treatment for patients with DNA-dsb repair disorders.


Asunto(s)
Roturas del ADN de Doble Cadena , Enfermedades de Inmunodeficiencia Primaria/genética , Femenino , Humanos , Lactante
5.
Proc Natl Acad Sci U S A ; 113(38): 10619-24, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27601633

RESUMEN

Classical nonhomologous end joining (C-NHEJ) is a major mammalian DNA double-strand break (DSB) repair pathway. Core C-NHEJ factors, such as XRCC4, are required for joining DSB intermediates of the G1 phase-specific V(D)J recombination reaction in progenitor lymphocytes. Core factors also contribute to joining DSBs in cycling mature B-lineage cells, including DSBs generated during antibody class switch recombination (CSR) and DSBs generated by ionizing radiation. The XRCC4-like-factor (XLF) C-NHEJ protein is dispensable for V(D)J recombination in normal cells, but because of functional redundancy, it is absolutely required for this process in cells deficient for the ataxia telangiectasia-mutated (ATM) DSB response factor. The recently identified paralogue of XRCC4 and XLF (PAXX) factor has homology to these two proteins and variably contributes to ionizing radiation-induced DSB repair in human and chicken cells. We now report that PAXX is dispensable for joining V(D)J recombination DSBs in G1-arrested mouse pro-B-cell lines, dispensable for joining CSR-associated DSBs in a cycling mouse B-cell line, and dispensable for normal ionizing radiation resistance in both G1-arrested and cycling pro-B lines. However, we find that combined deficiency for PAXX and XLF in G1-arrested pro-B lines abrogates DSB joining during V(D)J recombination and sensitizes the cells to ionizing radiation exposure. Thus, PAXX provides core C-NHEJ factor-associated functions in the absence of XLF and vice versa in G1-arrested pro-B-cell lines. Finally, we also find that PAXX deficiency has no impact on V(D)J recombination DSB joining in ATM-deficient pro-B lines. We discuss implications of these findings with respect to potential PAXX and XLF functions in C-NHEJ.


Asunto(s)
Reparación del ADN por Unión de Extremidades/genética , Enzimas Reparadoras del ADN/genética , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Animales , Pollos/genética , Roturas del ADN de Doble Cadena/efectos de la radiación , Daño del ADN/efectos de la radiación , Reparación del ADN/efectos de la radiación , Humanos , Ratones , Radiación Ionizante , Recombinación V(D)J/genética
6.
J Allergy Clin Immunol ; 141(1): 322-328.e10, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28392333

RESUMEN

BACKGROUND: Rare DNA breakage repair disorders predispose to infection and lymphoreticular malignancies. Hematopoietic cell transplantation (HCT) is curative, but coadministered chemotherapy or radiotherapy is damaging because of systemic radiosensitivity. We collected HCT outcome data for Nijmegen breakage syndrome, DNA ligase IV deficiency, Cernunnos-XRCC4-like factor (Cernunnos-XLF) deficiency, and ataxia-telangiectasia (AT). METHODS: Data from 38 centers worldwide, including indication, donor, conditioning regimen, graft-versus-host disease, and outcome, were analyzed. Conditioning was classified as myeloablative conditioning (MAC) if it contained radiotherapy or alkylators and reduced-intensity conditioning (RIC) if no alkylators and/or 150 mg/m2 fludarabine or less and 40 mg/kg cyclophosphamide or less were used. RESULTS: Fifty-five new, 14 updated, and 18 previously published patients were analyzed. Median age at HCT was 48 months (range, 1.5-552 months). Twenty-nine patients underwent transplantation for infection, 21 had malignancy, 13 had bone marrow failure, 13 received pre-emptive transplantation, 5 had multiple indications, and 6 had no information. Twenty-two received MAC, 59 received RIC, and 4 were infused; information was unavailable for 2 patients. Seventy-three of 77 patients with DNA ligase IV deficiency, Cernunnos-XLF deficiency, or Nijmegen breakage syndrome received conditioning. Survival was 53 (69%) of 77 and was worse for those receiving MAC than for those receiving RIC (P = .006). Most deaths occurred early after transplantation, suggesting poor tolerance of conditioning. Survival in patients with AT was 25%. Forty-one (49%) of 83 patients experienced acute GvHD, which was less frequent in those receiving RIC compared with those receiving MAC (26/56 [46%] vs 12/21 [57%], P = .45). Median follow-up was 35 months (range, 2-168 months). No secondary malignancies were reported during 15 years of follow-up. Growth and developmental delay remained after HCT; immune-mediated complications resolved. CONCLUSION: RIC HCT resolves DNA repair disorder-associated immunodeficiency. Long-term follow-up is required for secondary malignancy surveillance. Routine HCT for AT is not recommended.


Asunto(s)
Roturas del ADN de Doble Cadena , Trastornos por Deficiencias en la Reparación del ADN/genética , Trastornos por Deficiencias en la Reparación del ADN/terapia , Reparación del ADN , Trasplante de Células Madre Hematopoyéticas , Adolescente , Alelos , Niño , Preescolar , Trastornos por Deficiencias en la Reparación del ADN/diagnóstico , Trastornos por Deficiencias en la Reparación del ADN/mortalidad , Femenino , Estudios de Seguimiento , Enfermedad Injerto contra Huésped/diagnóstico , Enfermedad Injerto contra Huésped/etiología , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Trasplante de Células Madre Hematopoyéticas/métodos , Humanos , Lactante , Estimación de Kaplan-Meier , Masculino , Mutación , Pronóstico , Resultado del Tratamiento , Virosis , Adulto Joven
7.
J Clin Immunol ; 37(6): 575-581, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28741180

RESUMEN

INTRODUCTION: Non-homologous end joining gene 1 (NHEJ1) defect is a rare form of primary immune deficiency. Very few cases have been described from around the world. PURPOSE: We are reporting the first family from the Arabian Gulf with three siblings presenting with combined immunodeficiency (CID), microcephaly, and growth retardation due to a novel NHEJ1 splice site mutation, in addition to a review of the previously published literature on this subject. METHODS: Patients' clinical, immunological, and laboratory features were examined. Samples were subjected to targeted next-generation sequencing (NGS). The pathogenic change in NHEJ1 was confirmed by Sanger sequencing, then further assessed at the RNA and protein levels. RESULTS: Patients were found to have a homozygous splice site mutation immediately downstream of exon 3 in NHEJ1 (c.390 + 1G > C). This led to two distinct mRNA products, one of which demonstrated skipping of the last 69 basepairs (bp) of exon 3 while the other showed complete skipping of the entire exon. Although both deletions were in-frame, immunoblotting did not reveal any NHEJ1 protein products in patient cells, indicating a null phenotype. CONCLUSION: Patients presenting with CID, microcephaly, and growth retardation should be screened for NHEJ1 gene mutations. We discuss our data in the context of one of our patients who is still alive at the age of 30 years, without transplantation, and who is the longest known survivor of this disease.


Asunto(s)
Enzimas Reparadoras del ADN/genética , Proteínas de Unión al ADN/genética , Discapacidades del Desarrollo/genética , Síndromes de Inmunodeficiencia/genética , Microcefalia/genética , Mutación/genética , Isoformas de Proteínas/genética , Sitios de Empalme de ARN/genética , Adolescente , Adulto , Empalme Alternativo , Niño , Familia , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Homocigoto , Humanos , Masculino , Linaje , Fenotipo , Hermanos
8.
BMC Cancer ; 17(1): 344, 2017 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-28526069

RESUMEN

BACKGROUND: DNA repair pathways are used by cancer cells to overcome many standard anticancer treatments, causing therapy resistance. Here, we investigated the role of XRCC4-like factor (XLF), a core member of the non-homologous end joining (NHEJ) repair pathway, in chemoresistance in hepatocellular carcinoma (HCC). METHODS: qRT-PCR analysis and western blotting were performed to detect expression levels of genes and proteins related to NHEJ. NHEJ repair capacity was assessed in vitro (cell-free) and in vivo by monitoring the activity of the NHEJ pathway. Cell viability and IC50 assays were used to measure sensitivity to drug therapy. A xenograft HCC model was used to develop methods of targeting XLF-induced chemosensitization. Clinicopathological analysis was conducted on patients with HCC treated with transarterial chemoembolization (TACE). RESULTS: Many conventional cancer chemotherapeutics induce DNA double-strand breaks (DSBs). HCC cells respond to these breaks by increasing their NHEJ activity, resulting in resistance. XLF-knockdown cells show an inhibition of NHEJ activity in both cell-free and live-cell assays as well as a high level of unrepaired cellular DSBs. These results indicate that XLF facilitates DNA end-joining and therefore promotes NHEJ activity in cancer cells. Consequently, knockdown of XLF significantly chemosensitized resistant cells both in vitro and in xenograft tumors. A low rate of XLF genomic alteration was found in patients with primary HCC, but XLF expression was induced after drug treatment. Clinically, a high level of XLF expression is significantly associated with advanced HCC and shorter overall survival. CONCLUSION: Chemotherapy-induced overexpression of XLF and XLF-mediated enhancements in NHEJ activity contribute to chemoresistance in HCC cells and patients with HCC. Targeting XLF to modulate DSB repair could enhance drug sensitivity and may be a therapeutically useful addition to conventional therapy.


Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Enzimas Reparadoras del ADN/genética , Proteínas de Unión al ADN/genética , Resistencia a Antineoplásicos/genética , Neoplasias Hepáticas/tratamiento farmacológico , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Sistema Libre de Células , Quimioembolización Terapéutica/métodos , Cisplatino/administración & dosificación , Roturas del ADN de Doble Cadena/efectos de los fármacos , Reparación del ADN por Unión de Extremidades/genética , Reparación del ADN/efectos de los fármacos , Doxorrubicina/administración & dosificación , Fluorouracilo/administración & dosificación , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Ratones , Compuestos Organoplatinos/administración & dosificación , Oxaliplatino , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Acta Biochim Biophys Sin (Shanghai) ; 48(7): 632-40, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27217473

RESUMEN

DNA double-strand breaks (DSBs) are the most serious form of DNA damage. In human cells, non-homologous end joining (NHEJ) is the major pathway for the repair of DSBs. Different types of DSBs result in different subsets of NHEJ repair strategies. These variations in NHEJ repair strategies depend on numerous elements, such as the flexible recruitment of NHEJ-related proteins, the complexity of the DSB ends, and the spatial- and temporal-ordered formation of the multi-protein complex. On the one hand, current studies of DNA DSBs repair focus on the repair pathway choices between homologous recombination and classic or alternative NHEJ. On the other hand, increasing researches have also deepened the significance and dug into the cross-links between the NHEJ pathway and the area of genome organization and aging. Although remarkable progress has been made in elucidating the underlying principles during the past decades, the detailed mechanism of action in response to different types of DSBs remains largely unknown and needs further evaluation in the future study.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Animales , Daño del ADN
10.
Cent Eur J Immunol ; 41(1): 107-15, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27095930

RESUMEN

Combined immunodeficiencies (CIDs) include a group of inherited monogenic disorders. CIDs are characterized by defective cellular and humoral immunities that lead to severe infections. CIDs can be classified according to immunologic phenotypes as T(-)B(-)NK(-) CID, T(-)B(-)NK(+) CID, T(-)B(+)NK(-) CID and T(-)B(+)NK(+) CID. In a 20-year period, from 1994 to 2014, a total of 40 CID patients were diagnosed at the Pediatric Immunology of Erciyes University Medical Faculty in Kayseri, Turkey. The gender ratio (F/M) was 3/5. The median age at the onset of symptoms was 2 months (range, 15 days - 15 years). Of the 14 T(-)B(-)NK(-) CIDs, 6, 2 (siblings), 1, 1 and 4 had a mutation in the ADA, PNP, Artemis, RAG1 genes and unknown genetic diagnosis respectively. Of the 15 T(-)B(-)NK(+) CIDs, 3, 2 (siblings) and 10 had a mutation in the RAG1, XLF/Cernunnos genes and unknown genetic diagnosis respectively. Of the 9 T(-)B(+)NK(-) CIDs, 2 siblings, 1, 1 and 5 had a mutation in the ZAP70, IL2RG, DOCK8 genes and unknown genetic diagnosis respectively. Of the 2 T(-)B(+)NK(+) CIDs, 2 had a mutation in the MAGT1 and ZAP70 genes respectively. Of the 40 CIDs, 26 (65%) were died and 14 (35%) are alive. Eight patients received HSCT (hematopoietic stem cell transplantation) with 62.5% survival rate. As a result, patients presented with severe infections in the first months of life have to be examined for CIDs. Shortening time of diagnosis would increase chance of HSCT as life-saving treatment in the CID patients.

11.
Cell Rep ; 42(1): 111917, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36640344

RESUMEN

The synapsis of DNA ends is a critical step for the repair of double-strand breaks by non-homologous end joining (NHEJ). This is performed by a multicomponent protein complex assembled around Ku70-Ku80 heterodimers and regulated by accessory factors, including long non-coding RNAs, through poorly understood mechanisms. Here, we use magnetic tweezers to investigate the contributions of core NHEJ proteins and APLF and lncRNA NIHCOLE to DNA synapsis. APLF stabilizes DNA end bridging and, together with Ku70-Ku80, establishes a minimal complex that supports DNA synapsis for several minutes under piconewton forces. We find the C-terminal acidic region of APLF to be critical for bridging. NIHCOLE increases the dwell time of the synapses by Ku70-Ku80 and APLF. This effect is further enhanced by a small and structured RNA domain within NIHCOLE. We propose a model where Ku70-Ku80 can simultaneously bind DNA, APLF, and structured RNAs to promote the stable joining of DNA ends.


Asunto(s)
ARN Largo no Codificante , ARN Largo no Codificante/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Roturas del ADN de Doble Cadena , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Reparación del ADN por Unión de Extremidades , ADN/metabolismo , Reparación del ADN
12.
Front Immunol ; 13: 852453, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35309348

RESUMEN

Non-homologous end joining (cNHEJ) is a major pathway to repair double-strand breaks (DSBs) in DNA. Several core cNHEJ are involved in the progress of the repair such as KU70 and 80, DNA-dependent protein kinase catalytic subunit (DNA-PKcs), Artemis, X-ray repair cross-complementing protein 4 (XRCC4), DNA ligase IV, and XRCC4-like factor (XLF). Recent studies have added a number of new proteins during cNHEJ. One of the newly identified proteins is Paralogue of XRCC4 and XLF (PAXX), which acts as a scaffold that is required to stabilize the KU70/80 heterodimer at DSBs sites and promotes the assembly and/or stability of the cNHEJ machinery. PAXX plays an essential role in lymphocyte development in XLF-deficient background, while XLF/PAXX double-deficient mouse embryo died before birth. Emerging evidence also shows a connection between the expression levels of PAXX and cancer development in human patients, indicating a prognosis role of the protein. This review will summarize and discuss the function of PAXX in DSBs repair and its potential role in cancer development.


Asunto(s)
Roturas del ADN de Doble Cadena , Neoplasias , Animales , ADN , Reparación del ADN , Proteínas de Unión al ADN/genética , Humanos , Ratones , Neoplasias/genética
13.
Front Pediatr ; 10: 883173, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35967585

RESUMEN

Background: During the process of generating diverse T and B cell receptor (TCR and BCR, respectively) repertoires, double-strand DNA breaks are produced. Subsequently, these breaks are corrected by a complex system led by the non-homologous end-joining (NHEJ). Pathogenic variants in genes involved in this process, such as the NHEJ1 gene, cause severe combined immunodeficiency syndrome (SCID) along with neurodevelopmental disease and sensitivity to ionizing radiation. Objective: To provide new clinical and immunological insights on NHEJ1 deficiency arising from a newly diagnosed patient with severe immunodeficiency. Materials and methods: A male infant, born to consanguineous parents, suspected of having primary immunodeficiency underwent immunological and genetic workup. This included a thorough assessment of T cell phenotyping and lymphocyte activation by mitogen stimulation tests, whole-exome sequencing (WES), TCR repertoire Vß repertoire via flow cytometry analysis, and TCR and BCR repertoire analysis via next-generation sequencing (NGS). Results: Clinical findings included microcephaly, recurrent pneumonia, and failure to thrive. An immune workup revealed lymphopenia, reduced T cell function, and hypogammaglobulinemia. Skewed TCR Vß repertoire, TCR gamma (TRG) repertoire, and BCR repertoire were determined in the patient. Genetic analysis identified a novel homozygous missense pathogenic variant in XLF/Cernunnos: c.A580Ins.T; p.M194fs. The patient underwent a successful hematopoietic stem cell transplantation (HSCT). Conclusion: A novel NHEJ1 pathogenic variant is reported in a patient who presented with SCID phenotype that displayed clonally expanded T and B cells. An adjusted HSCT was safe to ensure full T cell immune reconstitution.

14.
DNA Repair (Amst) ; 108: 103217, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34481157

RESUMEN

The RING-type E3 ubiquitin ligases RNF8 and RNF168 recruit DNA damage response (DDR) factors to chromatin flanking DNA double strand breaks (DSBs) including 53BP1, which protects DNA ends from resection during DNA DSB repair by non-homologous end joining (NHEJ). Deficiency of RNF8 or RNF168 does not lead to demonstrable NHEJ defects, but like deficiency of 53BP1, the combined deficiency of XLF and RNF8 or RNF168 leads to diminished NHEJ in lymphocytes arrested in G0/G1 phase. The function of RNF8 in NHEJ depends on its E3 ubiquitin ligase activity. Loss of RNF8 or RNF168 in G0/G1-phase lymphocytes leads to the resection of broken DNA ends, demonstrating that RNF8 and RNF168 function to protect DNA ends from nucleases, pos sibly through the recruitment of 53BP1. However, the loss of 53BP1 leads to more severe resection than the loss of RNF8 or RNF168. Moreover, in 53BP1-deficient cells, the loss of RNF8 or RNF168 leads to diminished DNA end resection. We conclude that RNF8 and RNF168 regulate pathways that both prevent and promote DNA end resection in cells arrested in G0/G1 phase.


Asunto(s)
Proteínas de Unión al ADN , Ubiquitina , ADN/metabolismo , Reparación del ADN por Unión de Extremidades , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
15.
DNA Repair (Amst) ; 85: 102738, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31731258

RESUMEN

The repair of DNA double-stranded breaks (DSBs) is an essential function performed by the Classical Non-Homologous End-Joining (C-NHEJ) pathway in higher eukaryotes. C-NHEJ, in fact, does double duty as it is also required for the repair of the intermediates formed during lymphoid B- and T-cell recombination. Consequently, the failure to properly repair DSBs leads to both genomic instability and immunodeficiency. A critical DSB protein required for C-NHEJ is the DNA Ligase IV (LIGIV) accessory factor, X-Ray Cross Complementing 4 (XRCC4). XRCC4 is believed to stabilize LIGIV, participate in LIGIV activation, and to help tether the broken DSB ends together. XRCC4's role in these processes has been muddied by the identification of two additional XRCC4 paralogs, XRCC4-Like Factor (XLF), and Paralog of XRCC4 and XLF (PAXX). The roles that these paralogs play in C-NHEJ is partially understood, but, in turn, has itself been obscured by species-specific differences observed in the absence of one or the other paralogs. In order to investigate the role(s) that XRCC4 may play, with or without XLF and/or PAXX, in lymphoid variable(diversity)joining [V(D)J] recombination as well as in DNA DSB repair in human somatic cells, we utilized gene targeting to inactivate the XRCC4 gene in both parental and XLF- HCT116 cells and then inactivated PAXX in those same cell lines. The loss of XRCC4 expression by itself led, as anticipated, to increased sensitivity to DNA damaging agents as well as an increased dependence on microhomology-mediated DNA repair whether in the context of DSB repair or during V(D)J recombination. The additional loss of XLF in these cell lines sensitized the cells even more whereas the presence or absence of PAXX was scarcely negligible. These studies demonstrate that, of the three LIG4 accessory factor paralogs, the absence of XRCC4 influences DNA repair and recombination the most in human cells.


Asunto(s)
Enzimas Reparadoras del ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Etopósido/efectos adversos , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , ADN Ligasa (ATP)/metabolismo , Marcación de Gen , Células HCT116 , Humanos , Recombinación V(D)J
16.
Drug Des Devel Ther ; 13: 3823-3834, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31806933

RESUMEN

PURPOSE: A previous study has identified that XRCC4-like factor (XLF) is a potential target to overcome resistance to 5-fluorouracil (5-Fu) and oxaliplatin (OXA) in colorectal cancer (CRC). The purpose of this study is to develop potent XLF inhibitors to chemoresistance in CRC. METHODS: Virtual screening was adopted to identify novel XLF-binding compounds by initially testing 6800 molecules in Chemical Entities of Biological Interest library. Hit compounds were further validated by Western blot assay. Cell sensitivity to 5-Fu and OXA was measured using sulforhodamine B assay. The effect of XLF inhibitor on DNA repair efficiency was evaluated by comet assay, fluorescent-based nonhomologous end joining (NHEJ) and homologous recombination (HR) reporter assays. DNA-binding activity of NHEJ key factors was examined by chromatin fractionation assay. RESULTS: We identified G3, a novel and potent XLF inhibitor (IC50 0.47±0.02 µM). G3 induced XLF protein degradation in CRC cells. Significantly, G3 improved cell sensitivity to 5-Fu and OXA in chemoresistant CRC cell lines. Mechanistically, G3 depleted XLF expression, severely compromised NHEJ efficiency by up to 65% and inhibited NHEJ key factor assembly on DNA. G3 also inhibited HR efficiency in a time-dependent manner. CONCLUSION: These results suggest that G3 overcomes 5-Fu and OXA resistance in CRC cells by inhibiting XLF expression. Thus, XLF is a promising target and its inhibitor G3 is a potential candidate for treatment of chemoresistant CRC patients.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Productos Biológicos/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Enzimas Reparadoras del ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/antagonistas & inhibidores , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Reparación del ADN , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Ensayos de Selección de Medicamentos Antitumorales , Células HCT116 , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad , Células Tumorales Cultivadas
17.
Onco Targets Ther ; 12: 2095-2104, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30936724

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is the third commonly diagnosed cancer with a high risk of death. After curative surgery, 40% of patients will have metastases or develop recurrence. Therefore, chemotherapy is significantly responsible as the major therapy method. However, chemoresistance is found in almost all metastatic patients and remains a critical obstacle to curing CRC. MATERIALS AND METHODS: Cell viability is analyzed by sulforhodamine B staining assay. The nonhomologous end joining (NHEJ) repair ability of each cell line was determined by NHEJ reporter assay. mRNA expression levels of NHEJ factors are detected by real-time quantitative polymerase chain reaction. The protein expression levels were observed by western blot assay. RESULTS: Our study found that 5-florouracil (5-Fu) and oxaliplatin (OXA)-resistant HCT116 and LS174T cells showed upregulated efficiency of DNA double-strand repair pathway NHEJ. We then identified that the NHEJ key factor XLF is responsible for the chemoresistance and XLF deficiency sensitizes CRC cells to 5-Fu and OXA significantly. CONCLUSION: Our research first demonstrates that the NHEJ pathway, especially its key factor XLF, significantly contributes to chemoresistance in CRC.

18.
Front Pediatr ; 7: 557, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32010653

RESUMEN

The ubiquitous presence of enzymes required for repair of DNA double strand breaks renders patients with defects in these pathways susceptible to immunodeficiency, an increased risk of infection, autoimmunity, bone marrow failure and malignancies, which are commonly associated with Epstein Barr virus (EBV) infection. Treatment of malignancies is particularly difficult, as the nature of the systemic defect means that patients are sensitive to chemotherapy and radiotherapy. Increasing numbers of patients with Nijmegen Breakage syndrome, Ligase 4 deficiency and Cernunnos-XLF deficiency have been successfully transplanted. Best results are obtained with the use of reduced intensity conditioning. Patients with ataxia-telangiectasia have particularly poor outcomes and the best treatment approach for these patients is still to be determined.

19.
Onco Targets Ther ; 12: 10139-10151, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31819508

RESUMEN

INTRODUCTION: Glioblastoma (GBM) is the most commonly diagnosed primary brain tumor in adults. The 14.6 months median survival period of GBM patients is still palliative due to resistance to the first-line chemotherapeutic agent temozolomide (TMZ). METHODS: The cell growth inhibition effect was assessed using the SRB assay. The mRNA expression levels were examined using RT-qPCR. The protein expression levels were determined using Western blot analysis. The DNA repair by non-homologous end-joining (NHEJ) was quantified using NHEJ reporter assay. The TMZ-induced apoptosis was detected by the Caspase 3/7 activity kit. The DNA binding activity in cells was determined using chromatin fractionation assay. The 53BP1 inhibitor was identified using virtual screening followed by Western blot analysis. The synergy between TMZ and 53BP1 inhibitor in vivo was analyzed using a xenograft mouse model. RESULTS: We found that non-homologous end joining (NHEJ), which is one of the major DNA double-strand break repair pathways, participates in acquired TMZ-resistance in GBM. Canonical NHEJ key factors, XLF and 53BP1, are upregulated in TMZ-resistant GBM cells. Depletion of XLF or 53BP1 in TMZ-resistant cells significantly improve the potency of TMZ against GBM cell growth. Importantly, we identified a small molecule HSU2018 to inhibit 53BP1 at nanomolar concentration. The combination of HSU2018 and TMZ generates excellent synergy for cell growth inhibition in TMZ-resistant GBM cells and xenograft. CONCLUSION: Our data suggest that NHEJ is a novel mechanism contributing to TMZ-resistance, and its key factors may serve as potential targets for improving chemotherapy in TMZ-resistant GBM.

20.
Front Immunol ; 9: 2959, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30666249
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA