Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Int J Med Sci ; 19(11): 1680-1694, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36237989

RESUMEN

Gastric cancer is a highly malignant tumor. Gastric cancer stem cells (GCSCs) are the main causes of drug resistance, metastasis, recurrence, and poor prognosis. As a secondary metabolite of lichen, Atranorin has a variety of biological effects, such as antibacterial, anti-inflammatory, analgesic, and wound healing; however, its killing effect on GCSCs has not been reported. In this study, we constructed Atranorin complexes comprising superparamagnetic iron oxide nanoparticles (SPION) (Atranorin@SPION). In vitro and in vivo experiments confirmed that Atranorin@SPION could significantly inhibit the proliferation, invasion, angiogenesis, and tumorigenicity of CD44+/ CD24+ GCSCs, and induce oxidative stress injury, Fe2+ accumulation, and ferroptosis. Quantitative real-time reverse transcription PCR and western blotting results showed that Atranorin@SPION not only reduced the expression levels of GCSC stem cell markers and cell proliferation and division markers, but also significantly inhibited the expression levels of key molecules in the cystine/glutamate transporter (Xc-)/glutathione peroxidase 4 (GPX4) and Tet methylcytosine dioxygenase (TET) family proteins. The results of high performance liquid chromatography-mass spectrometry and Dot blotting showed that Atranorin@SPION significantly inhibited the mRNA 5­hydroxymethylcytidine modification of GCSCs. Meanwhile, the results of RNA immunoprecipitation-PCR also indicated that Atranorin@SPIONs significantly reduced the 5-hydroxymethylcytidine modification level of GPX4 and SLC7A11 mRNA 3' untranslated region in GCSCs, resulting in a decrease in their stability, shortening their half-lives and reducing translation activity. Therefore, this study revealed that Atranorin@SPIONs induced ferroptosis of GCSCs by weakening the expression of the Xc-/GPX4 axis and the 5-hydroxymethylcytidine modification of mRNAs in the pathway, thereby achieving their therapeutic effect on gastric cancer.


Asunto(s)
Dioxigenasas , Ferroptosis , Neoplasias Gástricas , Regiones no Traducidas 3' , Sistema de Transporte de Aminoácidos X-AG/genética , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Sistema de Transporte de Aminoácidos X-AG/farmacología , Analgésicos/uso terapéutico , Antibacterianos/uso terapéutico , Antiinflamatorios/farmacología , Línea Celular Tumoral , Cistina/genética , Cistina/metabolismo , Cistina/farmacología , Citidina/análogos & derivados , Dioxigenasas/genética , Dioxigenasas/metabolismo , Dioxigenasas/farmacología , Ferroptosis/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Hidroxibenzoatos , Nanopartículas Magnéticas de Óxido de Hierro , Células Madre Neoplásicas/patología , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología
2.
Eur J Pharmacol ; 968: 176406, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38341076

RESUMEN

Hypoxic-ischemic encephalopathy (HIE) is a brain damage caused by perinatal hypoxia and blood flow reduction. Severe HIE leads to death. Available treatments remain limited. Oxidative stress and nerve damage are major factors in brain injury caused by HIE. Catalpol, an iridoid glucoside found in the root of Rehmannia glutinosa, has antioxidant and neuroprotective effects. This study examined the neuroprotective effects of catalpol using a neonatal rat HIE model and found that catalpol might protect the brain through inhibiting neuronal ferroptosis and ameliorating oxidative stress. Behavior tests suggested that catalpol treatment improved functions of motor, learning, and memory abilities after hypoxic-ischemic injury. Catalpol treatment inhibited changes to several ferroptosis-related proteins, including p-PI3K, p-AKT, NRF2, GPX4, SLC7A11, SLC3A2, GCLC, and GSS in HIE neonatal rats. Catalpol also prevented changes to several ferroptosis-related proteins in PC12 cells after oxygen-glucose deprivation. The ferroptosis inducer erastin reversed the protective effects of catalpol both in vitro and in vivo. We concluded that catalpol protects against hypoxic-ischemic brain damage (HIBD) by inhibiting ferroptosis through the PI3K/NRF2/system Xc-/GPX4 axis.


Asunto(s)
Ferroptosis , Hipoxia-Isquemia Encefálica , Fármacos Neuroprotectores , Ratas , Animales , Hipoxia-Isquemia Encefálica/complicaciones , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Hipoxia-Isquemia Encefálica/metabolismo , Glucósidos Iridoides/farmacología , Glucósidos Iridoides/uso terapéutico , Animales Recién Nacidos , Factor 2 Relacionado con NF-E2/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Hipoxia , Isquemia , Encéfalo/metabolismo
3.
BMC Complement Med Ther ; 23(1): 118, 2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37060026

RESUMEN

BACKGROUND: Ethanol-induced gastric mucosal lesions (EGML) is one of the most common digestive disorders for which current therapies have limited outcomes in clinical practice. Prevotella histicola (P. histicola) has shown probiotic efficacy against arthritis, multiple sclerosis and oestrogen deficiency-induced depression in mice; however, its role in EGML remains unclear in spite of its extensive colonisation of the stomach. Ferroptosis, which is characterised by lipid peroxidation, may be involved in EGML. Herein, we aimed to investigate the effects and underlying mechanism of action of P. histicola on EGML in the ferroptosis-dependent pathway. METHODS: P. histicola was intragastrically administered for a week, and deferoxamine (DFO), a ferroptosis inhibitor, was intraperitoneally injected prior to oral ethanol administration. The gastric mucosal lesions and ferroptosis were assessed via histopathological examinations, quantitative real-time PCR, Western blot, immunohistochemistry and immunofluorescence. RESULTS: P. histicola was originally found to attenuate EGML by reducing histopathological changes and lipid reactive oxygen species (ROS) accumulation. The pro-ferroptotic genes of Transferrin Receptor (TFR1), Solute Carrier Family 39 Member 14 (SLC39A14), Haem Oxygenase-1 (HMOX-1), Acyl-CoA Synthetase Long-chain Family Member 4 (ACSL4), Cyclooxygenase 2 (COX-2) and mitochondrial Voltage-dependent Anion Channels (VDACs) were up-regulated; the anti-ferroptotic System Xc-/Glutathione Peroxidase 4 (GPX4) axis was inhibited after ethanol administration. However, the changes of histopathology and ferroptosis-related parameters induced by ethanol were reversed by DFO. Furthermore, P. histicola treatment significantly downregulated the expression of ACSL4, HMOX-1 and COX-2, as well as TFR1 and SLC39A14, on mRNA or the protein level, while activating the System Xc-/GPX4 axis. CONCLUSIONS: We found that P. histicola reduces ferroptosis to attenuate EGML by inhibiting the ACSL4- and VDAC-dependent pro-ferroptotic pathways and activating the anti-ferroptotic System Xc-/GPX4 axis.


Asunto(s)
Proteínas de Transporte de Catión , Ferroptosis , Animales , Ratones , Ciclooxigenasa 2 , Administración Oral , Etanol
4.
Bioengineered ; 12(2): 10924-10934, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34699317

RESUMEN

Ferroptosis is an important form of myocardial cell death in myocardial ischemia-reperfusion injury (MIRI). Naringenin (NAR), as a flavonoid, has a significant advantage in improving MIRI. But the regulatory effect and mechanism of NAR on ferroptosis in MIRI have not been reported. After the rats were given NAR and induced to form myocardial ischemia-reperfusion (MI/R) injury, Tetrazolium chloride (TTC) staining was used to detect the myocardial infarction area of rats, and Hematoxylin-eosin (H&E) staining was used to detect myocardial injury. The markers of tissue inflammation were detected by ELISA. Serum creatine kinase Serum creatin kinase (CPK), Lactate dehydrogenase (LDH), and lipid peroxide (LPO) and oxidative stress related levels were measured. In addition, iron detection kits were used to detect total iron and Fe2+ levels in cardiac tissues, and western blot was used to detect the expression of ferroptosis-related proteins and the expression of nuclear factor-erythroid factor 2-related factor 2 (Nrf2) and glutathione peroxidase 4 (GPX4). At the cellular level, H9C2 cardiomyocytes were induced by hypoxia/reoxygenation (H/R), and ferroptosis inducer Erastin was administered to detect cell viability, ferroptosis-related indicators, oxidative stress related indicators, and expressions of Nrf2 and GPX4, to explore the mechanisms involved. NAR alleviated MI/R-induced pathological damage, inflammation and lipid peroxidation in myocardial tissue of rats. NAR adjusted the NRF2 /System xc - /GPX4 axis and improved ferroptosis. At the cellular level, ferroptosis inducer Erastin reversed the protective effect of NAR on H/R-induced H9C2 cardiomyocytes. In conclusion, NAR can alleviate MIRI by regulating the Nrf2/System xc-/GPX4 axis to inhibit ferroptosis.


Asunto(s)
Ferroptosis/efectos de los fármacos , Flavanonas/farmacología , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Miocardio/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
5.
Curr Med Chem ; 28(2): 329-345, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-31965935

RESUMEN

BACKGROUND: Artemisinin is a sesquiterpene lactone compound with a special peroxide bridge that is tightly linked to the cytotoxicity involved in fighting malaria and cancer. Artemisinin and its derivatives (ARTs) are considered to be potential anticancer drugs that promote cancer cell apoptosis, induce cell cycle arrest and autophagy, inhibit cancer cell invasion and migration. Additionally, ARTs significantly increase intracellular Reactive Oxygen Species (ROS) in cancer cells, which result in ferroptosis, a new form of cell death, depending on the ferritin concentration. Ferroptosis is regarded as a cancer suppressor and as well as considered a new mechanism for cancer therapy. METHODS: The anticancer activities of ARTs and reference molecules were compared by literature search and analysis. The latest research progress on ferroptosis was described, with a special focus on the molecular mechanism of artemisinin-induced ferroptosis. RESULTS: Artemisinin derivatives, artemisinin-derived dimers, hybrids and artemisinin-transferrin conjugates, could significantly improve anticancer activity, and their IC50 values are lower than those of reference molecules such as doxorubicin and paclitaxel. The biological activities of linkers in dimers and hybrids are important in the drug design processes. ARTs induce ferroptosis mainly by triggering intracellular ROS production, promoting the lysosomal degradation of ferritin and regulating the System Xc-/Gpx4 axis. Interestingly, ARTs also stimulate the feedback inhibition pathway. CONCLUSION: Artemisinin and its derivatives could be used in the future as cancer therapies with broader applications due to their induction of ferroptosis. Meanwhile, more attention should be paid to the development of novel artemisinin-related drugs based on the mechanism of artemisinininduced ferroptosis.


Asunto(s)
Neoplasias , Antimaláricos/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Artemisininas/farmacología , Artemisininas/uso terapéutico , Ferroptosis , Humanos , Neoplasias/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA