Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
BMC Cancer ; 24(1): 936, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090564

RESUMEN

PURPOSE: To evaluate the dosimetric characteristics of ZAP-X stereotactic radiosurgery (SRS) for single brain metastasis by comparing with two mature SRS platforms. METHODS: Thirteen patients with single brain metastasis treated with CyberKnife (CK) G4 were selected retrospectively. The prescription dose for the planning target volume (PTV) was 18-24 Gy for 1-3 fractions. The PTV volume ranged from 0.44 to 11.52 cc.Treatment plans of thirteen patients were replanned using the ZAP-X plan system and the Gamma Knife (GK) ICON plan system with the same prescription dose and organs at risk (OARs) constraints. The prescription dose of PTV was normalized to 70% for both ZAP-X and CK, while it was 50% for GK. The dosimetric parameters of three groups included the plan characteristics (CI, GI, GSI, beams, MUs, treatment time), PTV (D2, D95, D98, Dmin, Dmean, Coverage), brain tissue (volume of 100%-10% prescription dose irradiation V100%-V10%, Dmean) and other OARs (Dmax, Dmean),all of these were compared and evaluated. All data were read and analyzed with MIM Maestro. One-way ANOVA or a multisample Friedman rank sum test was performed, where p < 0.05 indicated significant differences. RESULTS: The CI of GK was significantly lower than that of ZAP-X and CK. Regarding the mean value, ZAP-X had a lower GI and higher GSI, but there was no significant difference among the three groups. The MUs of ZAP-X were significantly lower than those of CK, and the mean value of the treatment time of ZAP-X was significantly shorter than that of CK. For PTV, the D95, D98, and target coverage of CK were higher, while the mean of Dmin of GK was significantly lower than that of CK and ZAP-X. For brain tissue, ZAP-X showed a smaller volume from V100% to V20%; the statistical results of V60% and V50% showed a difference between ZAP-X and GK, while the V40% and V30% showed a significant difference between ZAP-X and the other two groups; V10% and Dmean indicated that GK was better. Excluding the Dmax of the brainstem, right optic nerve and optic chiasm, the mean value of all other OARs was less than 1 Gy. For the brainstem, GK and ZAP-X had better protection, especially at the maximum dose. CONCLUSION: For the SRS treating single brain metastasis, all three treatment devices, ZAP-X system, CyberKnife G4 system, and GammaKnife system, could meet clinical treatment requirements. The newly platform ZAP-X could provide a high-quality plan equivalent to or even better than CyberKnife and Gamma Knife, with ZAP-X presenting a certain dose advantage, especially with a more conformal dose distribution and better protection for brain tissue. As the ZAP-X systems get continuous improvements and upgrades, they may become a new SRS platform for the treatment of brain metastasis.


Asunto(s)
Neoplasias Encefálicas , Radiocirugia , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Humanos , Radiocirugia/métodos , Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirugía , Masculino , Planificación de la Radioterapia Asistida por Computador/métodos , Estudios Retrospectivos , Femenino , Persona de Mediana Edad , Radiometría , Anciano , Adulto , Órganos en Riesgo/efectos de la radiación
2.
J Appl Clin Med Phys ; 24(3): e13857, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36519493

RESUMEN

This study provides insight into the overall system performance, stability, and delivery accuracy of the first clinical self-shielded stereotactic radiosurgery (SRS) system. Quality assurance procedures specifically developed for this unit are discussed, and trends and variations over the course of 2-years for beam constancy, targeting and dose delivery are presented. Absolute dose calibration for this 2.7 MV unit is performed to deliver 1 cGy/MU at dmax  = 7 mm at a source-to-axis-distance (SAD) of 450 mm for a 25 mm collimator. Output measurements were made with 2-setups: a device that attaches to a fixed position on the couch (daily) and a spherical phantom that attaches to the collimating wheel (monthly). Beam energy was measured using a cylindrical acrylic phantom at depths of 100 (D10 ) and 200 (D20 ) mm. Beam profiles were evaluated using Gafchromic film and compared with TPS beam data. Accuracy in beam targeting was quantified with the Winston-Lutz (WL) and end-to-end (E2E) tests. Delivery quality assurance (DQA) was performed prior to clinical treatments using Gafchromic EBT3/XD film. Net cumulative output adjustments of 15% (pre-clinical), 9% (1st year) and 3% (2nd year) were made. The mean output was 0.997 ± 0.010 cGy/MU (range: 0.960-1.046 cGy/MU) and 0.993 ± 0.029 cGy/MU (range: 0.884-1.065 cGy/MU) for measurements with the daily and monthly setups, respectively. The mean relative beam energy (D10 /D20 ) was 0.998 ± 0.004 (range: 0.991-1.006). The mean total targeting error was 0.46 ± 0.17 mm (range: 0.06-0.98 mm) for the WL and 0.52 ± 0.28 mm (range: 0.11-1.27 mm) for the E2E tests. The average gamma pass rates for DQA measurements were 99.0% and 90.5% for 2%/2 mm and 2%/1 mm gamma criteria, respectively. This SRS unit meets tolerance limits recommended by TG-135, MPPG 9a., and TG-142 with a treatment delivery accuracy similar to what is achieved by other SRS systems.


Asunto(s)
Radiocirugia , Humanos , Radiocirugia/métodos , Dosificación Radioterapéutica , Aceleradores de Partículas , Fantasmas de Imagen , Calibración , Planificación de la Radioterapia Asistida por Computador/métodos
3.
Med Phys ; 51(6): 4423-4433, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38695760

RESUMEN

BACKGROUND: The newly available ZAP-X stereotactic radiosurgical system is designed for the treatment of intracranial lesions, with several unique features that include a self-shielding, gyroscopic gantry, wheel collimation, non-orthogonal kV imaging, short source-axis distance, and low-energy megavoltage beam. Systematic characterization of its radiation as well as other properties is imperative to ensure its safe and effective clinical application. PURPOSE: To accurately determine the radiation output of the ZAP-X with a special focus on the smaller diameter cones and an aim to provide useful recommendations on quantification of small field dosimetry. METHODS: Six different types of detectors were used to measure relative output factors at field sizes ranging from 4 to 25 mm, including the PTW microSilicon and microdiamond diodes, Exradin W2 plastic scintillator, Exradin A16 and A1SL ionization chambers, and the alanine dosimeter. The 25 mm cone served as the reference field size. Absolute dose was determined with both TG-51-based dosimetry using a calibrated PTW Semiflex ion chamber and measurements using alanine dosimeters. RESULTS: The average radiation output factors (maximum deviation from the average) measured with the microDiamond, microSilicon, and W2 detectors were: for the 4 mm cone, 0.741 (1.0%); for the 5 mm cone: 0.817 (1.0%); for the 7.5 mm cone: 0.908 (1.0%); for the 10 mm cone: 0.946 (0.4%); for the 12.5 mm cone: 0.964 (0.2%); for the 15 mm cone: 0.976 (0.1%); for the 20 mm cone: 0.990 (0.1%). For field sizes larger than 10 mm, the A1SL and A16 micro-chambers also yielded consistent output factors within 1.5% of those obtained using the microSilicon, microdiamond, and W2 detectors. The absolute dose measurement obtained with alanine was within 1.2%, consistent with combined uncertainties, compared to the PTW Semiflex chamber for the 25 mm reference cone. CONCLUSION: For field sizes less than 10 mm, the microSilicon diode, microDiamond detector, and W2 scintillator are suitable devices for accurate small field dosimetry of the ZAP-X system. For larger fields, the A1SL and A16 micro-chambers can also be used. Furthermore, alanine dosimetry can be an accurate verification of reference and absolute dose typically measured with ion chambers. Use of multiple suitable detectors and uncertainty analyses were recommended for reliable determination of small field radiation outputs.


Asunto(s)
Radiometría , Radiocirugia , Radiocirugia/instrumentación , Radiometría/instrumentación , Protección Radiológica/instrumentación , Estándares de Referencia
4.
Front Oncol ; 14: 1333642, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38939330

RESUMEN

Purpose/Objectives: ZAP-X, a novel and dedicated radiosurgery (SRS) system, has recently emerged, while CyberKnife has solidified its position as a versatile solution for SRS and stereotactic body radiation therapy over the past two decades. This study aims to compare the dosimetric performance and delivery efficiency of ZAP-X and CyberKnife in treating brain metastases of varying target sizes, employing circular collimation. Methods and materials: Twenty-three patients, encompassing a total of 47 brain metastases, were included in the creation of comparative plans of ZAP-X and CyberKnife for analysis. The comparative plans were generated to achieve identical prescription doses for the targets, while adhering to the same dose constraints for organs at risk (OAR). The prescription isodose percentage was optimized within the range of 97-100% for each plan to ensure effective target-volume coverage. To assess plan quality, indices such as conformity, homogeneity, and gradient (CI, HI, and GI) were computed, along with the reporting of total brain volumes receiving 12Gy and 10Gy. Estimated treatment time and monitor units (MUs) were compared between the two modalities in evaluating delivery efficiency. Results: Overall, CyberKnife achieved better CI and HI, while ZAP-X exhibited better GI and a smaller irradiated volume for the normal brain. The superiority of CyberKnife's plan conformity was more pronounced for target size less than 1 cc and greater than 10 cc. Conversely, the advantage of ZAP-X's plan dose gradient was more notable for target sizes under 10 cc. The homogeneity of ZAP-X plans, employing multiple isocenters, displayed a strong correlation with the target's shape and the planner's experience in placing isocenters. Generally, the estimated treatment time was similar between the two modalities, and the delivery efficiency was significantly impacted by the chosen collimation sizes for both modalities. Conclusion: This study demonstrates that, within the range of target sizes within the patient cohort, plans generated by ZAP-X and CyberKnife exhibit comparable plan quality and delivery efficiency. At present, with the current platform of the two modalities, CyberKnife outperforms ZAP-X in terms of conformity and homogeneity, while ZAP-X tends to produce plans with a more rapid dose falloff.

5.
Med Phys ; 50(8): 5212-5221, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37099483

RESUMEN

BACKGROUND: Radiosurgery is a well-established treatment for various intracranial tumors. In contrast to other established radiosurgery platforms, the new ZAP-X® allows for self-shielding gyroscopic radiosurgery. Here, treatment beams with variable beam-on times are targeted towards a small number of isocenters. The existing planning framework relies on a heuristic based on random selection or manual selection of isocenters, which often leads to a higher plan quality in clinical practice. PURPOSE: The purpose of this work is to study an improved approach for radiosurgery treatment planning, which automatically selects the isocenter locations for the treatment of brain tumors and diseases in the head and neck area using the new system ZAP-X® . METHODS: We propose a new method to automatically obtain the locations of the isocenters, which are essential in gyroscopic radiosurgery treatment planning. First, an optimal treatment plan is created based on a randomly selected nonisocentric candidate beam set. The intersections of the resulting subset of weighted beams are then clustered to find isocenters. This approach is compared to sphere-packing, random selection, and selection by an expert planner for generating isocenters. We retrospectively evaluate plan quality on 10 acoustic neuroma cases. RESULTS: Isocenters acquired by the method of clustering result in clinically viable plans for all 10 test cases. When using the same number of isocenters, the clustering approach improves coverage on average by 31 percentage points compared to random selection, 15 percentage points compared to sphere packing and 2 percentage points compared to the coverage achieved with the expert selected isocenters. The automatic determination of location and number of isocenters leads, on average, to a coverage of 97 ± 3% with a conformity index of 1.22 ± 0.22, while using 2.46 ± 3.60 fewer isocenters than manually selected. In terms of algorithm performance, all plans were calculated in less than 2 min with an average runtime of 75 ± 25 s. CONCLUSIONS: This study demonstrates the feasibility of an automatic isocenter selection by clustering in the treatment planning process with the ZAP-X® system. Even in complex cases where the existing approaches fail to produce feasible plans, the clustering method generates plans that are comparable to those produced by expert selected isocenters. Therefore, our approach can help reduce the effort and time required for treatment planning in gyroscopic radiosurgery.


Asunto(s)
Neoplasias Encefálicas , Radiocirugia , Humanos , Estudios Retrospectivos , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirugía , Algoritmos , Análisis por Conglomerados
6.
J Med Phys ; 48(4): 312-327, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38223793

RESUMEN

Radiosurgery and stereotactic radiotherapy have established themselves as precise and accurate areas of radiation oncology for the treatment of brain and extracranial lesions. Along with the evolution of other methods of radiotherapy, this type of treatment has been associated with significant advances in terms of a variety of modalities and techniques to improve the accuracy and efficacy of treatment. This paper provides a comprehensive overview of the progress in stereotactic radiosurgery (SRS) over several decades, and includes a review of various articles and research papers, commencing with the emergence of stereotactic techniques in radiotherapy. Key clinical aspects of SRS, such as fixation methods, radiobiology considerations, quality assurance practices, and treatment planning strategies, are presented. In addition, the review highlights the technological advancements in treatment modalities, encompassing the transition from cobalt-based systems to linear accelerator-based modalities. By addressing these topics, this study aims to offer insights into the advancements that have shaped the field of SRS, that have ultimately enhanced the accuracy and effectiveness of treatment.

7.
Med Phys ; 49(12): 7733-7741, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35964159

RESUMEN

BACKGROUND: Methods for accurate absolute dose (AD) calibration are essential for the proper functioning of radiotherapy treatment machines. Many systems do not conform to TG-51 calibration standards, and modifications are required. TG-21 calibration is also a viable methodology for these situations with the appropriate setup, equipment, and factors. It has been shown that both these methods result in minimal errors. A similar approach has been taken in calibrating the dose for a recent vault-free radiosurgery system. PURPOSE: To evaluate modified TG-21 and TG-51 protocols for AD calibrations of the ZAP-X radiosurgery system using ion chambers, film, and thermoluminescent dosimeters (TLDs). METHODS: The current treatment planning system for ZAP-X requires AD calibration at dmax (7 mm) and 450 mm source-to-axis distance. Both N D , w 60 C o [ G y / C ] $N_{D,w}^{{60}Co}[ {Gy/C} ]$ and Nx [R/C] calibration coefficients were provided by an accredited dosimetry calibration laboratory for a physikalisch technische werkstatten (PTW) 31010 chamber (0.125 cc). The vendor provides an f-bracket that can be mounted on the collimator. Various phantoms can then be attached to the f-bracket. A custom acrylic phantom was designed based on recommendations from TG-21 and technical report series-398 that places the chamber at 500 mm from the source with a depth of 44-mm acrylic and 456-mm SSD. Nx along with other TG-21 parameters was used to calculate the AD. Measurements using a PTW MP3-XS water tank and the same chamber were used to calculate AD using N D , w 60 C o $N_{D,w}^{{60}Co}$ and TG-51 factors. Dose verification was performed using Gafchromic film and 3rd party TLDs. RESULTS: Measurements from TG-51, TG-21 (utilizing the custom acrylic phantom), film, and TLDs agreed to within ± 2%. CONCLUSIONS: A modified TG-51 AD calculation in water is preferred but may not be practical due to the difficulty in tank setup. The TG-21 modified protocol using a custom acrylic phantom is an accurate alternative option for dose calibration. Both of these methods are within acceptable agreement and provide confidence in the system's AD calibration.


Asunto(s)
Fenilpropionatos , Radiocirugia , Radiocirugia/métodos , Radiometría , Fantasmas de Imagen , Calibración , Agua
8.
World Neurosurg ; 164: e420-e426, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35568128

RESUMEN

BACKGROUND: Self-shielding gyroscopic radiosurgery (GRS) represents a technical innovation in the field of stereotactic radiosurgery. GRS does not require a radiation vault and is optimized for radiosurgical treatments. Reports on its usage are limited. We describe the first clinical experience of GRS at our institution to assess the application of GRS in the treatment of cranial tumors. Moreover, we perform a dosimetric comparison to robotic radiosurgery (RRS) with vestibular schwannoma (VS) GRS patients. METHODS: Patients who were treated with GRS between July and November 2021 were included. Patient, tumor, and dosimetric characteristics were retrospectively summarized and analyzed. RESULTS: Forty-one patients with 48 intracranial tumors were included. Tumor entities mostly comprised VS, brain metastases, and meningiomas. The median prescription dose and isodose line were 13.5 Gy and 50.0% for benign neoplasia versus 20 Gy and 60.0% for malignant tumors, respectively. The mean planning target volume was 1.5 cubic centimeters. All patients received a single-fraction treatment without encountering any technical setup difficulties. Treatment plan comparisons with RRS revealed comparable plan characteristics, dose gradients, and organs at risk doses. Significant differences were detected concerning the new conformity index and number of monitor units per treatment (both P < 0.01). CONCLUSIONS: This case series provides more evidence on the usage of self-shielding GRS in the management of cranial tumors. Dosimetric comparisons for VS cases revealed mostly equivalent dosimetric characteristics to RRS. Further clinical and physical analyses for GRS are underway.


Asunto(s)
Neoplasias Encefálicas , Neuroma Acústico , Radiocirugia , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/cirugía , Humanos , Neuroma Acústico/radioterapia , Neuroma Acústico/cirugía , Radiometría , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Estudios Retrospectivos
9.
Cureus ; 14(11): e31490, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36532937

RESUMEN

The ZAP-X represents the first-of-its-kind "self-shielded" therapeutic radiation device, which by novelty, challenges regulators to accommodate it within the existing regulatory framework for radiation protection. To facilitate informed regulatory interpretation, X-ray radiation leakage from the ZAP-X was measured inside the shielded treatment capsule at the level of the patient and X-ray target plane. Measurements were performed on a clinically commissioned system calibrated for reference conditions to deliver 1cGy/MU. Radiation was measured with a FLUKE 451 survey meter and a RadCal ionization chamber as both exposure and dose and presented as a percentage of the system reference dose. Measurements were taken at thirteen locations, eight in the patient plane and five in the X-ray target plane. The results showed a maximum X-ray leakage of 0.000986% in the patient plane and 0.000907% in the target plane. These results are 30 - 100 times lower than existing recommendations as referenced by IEC guidelines standard 60601-2-1 (2020) for radiotherapy linear accelerators (LINACs). Although most conventional LINACs apply a safety factor of 2-5 to the design of collimator shielding and patient dose sparing, the ZAP-X delivers less than 10% of the patient whole body dose compared to this standard, originating from the X-ray target. Even though the ZAP-X intensity modulated radiation therapy (IMRT) factor is significantly higher than conventional Linacs, the absolute dose originating from leakage radiation remains lower by 25. The amount of unintended dose received by the patient's body distant from the isocenter is of interest from the perspective of both clinical and radiation safety. As this whole-body dose is decreased, the resulting treatment-related cancer incidence and mortality rates are decreased accordingly.

10.
Med Phys ; 48(10): 6121-6136, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34260069

RESUMEN

PURPOSE: This study reports a single-institution experience with beam data acquisition and film-based validation for a novel self-shielded sterotactic radiosurgery unit and investigates detector dependency on field output factors (OFs), off-axis ratios (OARs), and percent depth dose (PDD) measurements within the context of small-field dosimetry. METHODS: The delivery platform for this unit consists of a 2.7-MV S-band linear accelerator mounted on coupled gimbals that rotate around a common isocenter (source-to-axis distance [SAD] = 450 mm), allowing for more than 260 noncoplanar beam angles. Beam collimation is achieved via a tungsten collimator wheel with eight circular apertures ranging from 4 mm to 25 mm in diameter. Three diodes (PTW 60012 Diode E, PTW 60018 SRS Diode, and Sun Nuclear EDGE) and a synthetic diamond detector (PTW 60019 micro Diamond [µD] detector) were used for OAR, PDD, and OF measurements. OFs were also acquired with a PTW 31022 PinPoint ionization chamber. Beam scanning was performed using a 3D water tank at depths of 7, 50, 100, 200, and 250 mm with a source-to-surface distance of 450 mm. OFs were measured at the depth of maximum dose (dmax  = 7 mm) with the SAD at 450 mm. Gafchromic EBT3 film was used to validate OF and profile measurements and as a reference detector for estimating correction factors for active detector OFs. Deviations in field size, penumbra, and PDDs across the different detectors were quantified. RESULTS: Relative OFs (ROFs) for the diodes were within 1.4% for all collimators except for 5 and 7.5 mm, for which SRS Diode measurements were higher by 1.6% and 2.6% versus Diode E. The µD ROFs were within 1.4% of the diode measurements. PinPoint ROFs were lower by >10% for the 4-mm and 5-mm collimators versus the Diode E and µD. Corrections to OFs using EBT3 film as a reference were within 1.2% for all diodes and the µD detector for collimators 10 mm and greater and within 2.0%, 2.8%, and 1.1% for the 7.5-, 5-, and 4-mm collimators, respectively. The maximum difference in full width at half maximum (FWHM) between the Diode E and the other active detectors was for the 25-mm collimator and was 0.09 mm (µD), 0.16 mm (SRS Diode), and 0.65 mm (EDGE). Differences seen in PDDs beyond the depth of dmax were <1% across the three diodes and the µD. FWHM and penumbra measurements made using EBT3 film were within 1.34% and 3.26%, respectively, of the processed profile data entered into the treatment planning system. CONCLUSIONS: Minimal differences were seen in OAR and PDD measurements acquired with the diodes and the µD. ROFs measured with the three diodes were within 2.6% and within 1.4% versus the µD. Gafchromic Film measurements provided independent verification of the OAR and OF measurements. Estimated corrections to OFs using film as a reference were <1.6% for the Diode E, EDGE, and µD detector.


Asunto(s)
Radiocirugia , Diamante , Método de Montecarlo , Aceleradores de Partículas , Radiometría
11.
Cureus ; 13(3): e13972, 2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33880301

RESUMEN

Various small-field radiation dose detectors were systematically compared and their impact on measured beam performance of the ZAP-X® dedicated stereotactic radiosurgery system (ZAP Surgical Systems, Inc., San Carlos, CA, USA) was determined. Three Physikalische Technische Werkstaetten (PTW) diodes, i.e., the microSilicon, the microDiamond, and the Stereotactic Radiosurgery (SRS) diode detectors of (PTW-Freiburg, Freiburg, Germany), as well as Gafchromic™ External Beam Therapy 3 (EBT) film (Ashland, Inc., Wilmington, DE, USA), were used and compared to arrive at a recommended standard for this critical component of small-field beam measurements. Beam profiles, including the dose fall-off region near the edge of the beam, were measured with the PTW diodes and EBT3 film and subsequently contrasted. The impact of detector physical and dosimetric characteristics on the results of the measurements was investigated and compared with film measurements. The beam penumbra was used to quantify the dose fall-off. The measurement acquired with the diodes and film showed the most significant differences in the fall-off region near the field edge. The film-based measurements clearly showed the steepest dose gradient verified by the penumbra value of 1.21 mm, followed by the SRS diode with 1.60 mm, the microSilicon diode with 1.67 mm, and the microDiamond diode with 1.83 mm. A clear correlation of each detector's sensitive area with the penumbra was found, with the microDiamond detector at 2.2 mm diameter sensitive area having the largest penumbra, followed by the microSilicon and SRS diodes. Beam measurements for the purposes of system characterization or treatment planning system beam data acquisition depend, to a large extent, on detector characteristics. This is especially true for small-field dosimetry performed during stereotactic radiosurgery beam measurements. Careful consideration should be practiced which allows for the measurements to represent true beam characteristics and minimize the impact of the detector on the measurements. We conclude that film should be considered the reference method for such measurements with the ZAP-X due to its smallest physical measurement resolution of 23.1 µm. Potential drawbacks to this methodology are the need to calibrate the film relative to the dose and possible problems with saturation and non-linear film response for very high and very low optical densities.

12.
Cureus ; 12(5): e8324, 2020 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-32617203

RESUMEN

Introduction The treatment of trigeminal neuralgia (TN) is one of the most demanding of all radiosurgery procedures, requiring accurate delivery and sharp dose fall off. ZAP-X®, a new, innovative frameless radiosurgical device, maybe an attractive platform for the treatment of TN and other functional brain disorders. Here, we compared the dosimetry of ZAP-X plans for a single patient to that generated by a well-established dedicated radiosurgery device, the CyberKnife. Methods Radiosurgery plans that delineated the cranial nerve from a single patient's fused computed tomography and magnetic resonance imaging (CT-MR) data set were planned on both the ZAP-X and CyberKnife, with the latter serving as a validated benchmark. The same target and treatment planning constraints were applied. Plans were evaluated by a physician with experience treating TN and a medical physicist. The ZAP-X treatment plan used two isocenters delivered through 4-mm collimators based on a non-isocentric plan that delivered 29,441 MU through 81 beams. The CyberKnife plans used a 5-mm collimator for a non-isocentric plan that delivered 17,880 MU through 88 beams. Results Based on visual inspection, the isodose volumes covered by ZAP-X and CyberKnife were similar at the prescription isodose (70% and 80%, respectively, with a maximum dose (Dmax) of 7500 cGy. The conformality index was better for the CyberKnife as compared to ZAP-X. However, the irradiated volumes were smaller at the 50%, 20%, and 10% isodoses for ZAP-X (0.12 cc, 0.57 cc, and 1.69 for ZAP-X; 0.18 cc, 0.91 cc, and 3.41 cc for CyberKnife). In particular, the 20% and 10% isodose volumes were much smaller for ZAP-X, especially on the axial and sagittal planes. Conclusions ZAP-X treatment planning for TN compares favorably with equivalent planning on CyberKnife. The brain volumes containing the 20% and 10% isodoses are smaller using ZAP-X, thus relatively sparing critical structures close to the target, including the Gasserian ganglion and brainstem. This feature could be of clinical relevance by potentially reducing treatment-related complications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA