Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 273
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(26): e2309972, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38279615

RESUMEN

In this work, novel ternary composite ZIF-67/Ag NPs/NaYF4:Yb,Er is synthesized by solvothermal method. The photocatalytic activity of the composite is evaluated by sulfadiazine (SDZ) degradation under simulated sunlight. High elimination efficiency of the composite is 95.4% in 180 min with good reusability and stability. The active species (h+, ·O2 - and ·OH) are identified. The attack sites and degradation process of SDZ are deeply investigated based on theoretical calculation and liquid chromatography-mass spectrometry analysis. The upconversion mechanism study shows that favorable photocatalytic effectiveness is attributed to the full utilization of sunlight through the energy transfer upconversion process and fluorescence resonance energy transfer. Additionally, the composite is endowed with outstanding light-absorbing qualities and effective photogenerated electron-hole pair separation thanks to the localized surface plasmon resonance effect of Ag nanoparticles. This work can motivate further design of novel photocatalysts with upconversion luminescence performance, which are applied to the removal of sulphonamide antibiotics in the environment.

2.
Anal Biochem ; 692: 115571, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38796119

RESUMEN

Markers of myocardial injury, such as myoglobin (Mb), are substances swiftly released into the peripheral bloodstream upon myocardial cell injury or altered cardiac activity. During the onset of acute myocardial infarction, patients experience a significant surge in serum Mb levels. Given this, precise detection of Mb is essential, necessitating the development of innovative assays to optimize detection capabilities. This study introduces the synthesis of a three-dimensional hierarchical nanocomposite, Cubic-ZIF67@Au-rGOF-NH2, utilizing aminated reduced graphene oxide and zeolite imidazolium ester framework-67 (ZIF67) as foundational structures. Notably, this novel material, applied in a label-free electrochemical immunosensor, presents a groundbreaking approach for detecting myocardial injury markers. Experimental outcomes revealed ZIF67 and AuNPs exhibit enhanced affinity and growth on the 3D-rGOF-NH2 matrix, thus amplifying electrical conductivity while preserving the inherent electrochemical attributes of ZIF67. As a result, the Cubic-ZIF67@Au-rGOF-NH2 label-free electrochemical immunosensor exhibited a broad detection range and high sensitivity for Mb. The derived standard curve was ΔIp = 16.67552lgC+275.245 (R = 0.993) with a detection threshold of 3.47 fg/ml. Moreover, recoveries of standards spiked into samples ranged between 96.3% and 108.7%. Importantly, the devised immunosensor retained notable selectivity against non-target proteins, proving its potential clinical utility based on exemplary sample analysis performance.


Asunto(s)
Técnicas Electroquímicas , Oro , Grafito , Estructuras Metalorgánicas , Mioglobina , Mioglobina/análisis , Técnicas Electroquímicas/métodos , Grafito/química , Estructuras Metalorgánicas/química , Oro/química , Humanos , Técnicas Biosensibles/métodos , Nanocompuestos/química , Zeolitas/química , Imidazoles/química , Límite de Detección , Nanopartículas del Metal/química
3.
Anal Biochem ; 686: 115422, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38070664

RESUMEN

Core-shell ZIF-8@ZIF-67 was synthesized by growing a cobalt-based ZIF-67 on a ZIF-8 seed particle. Herein, through selective etching of the ZIF-8@ZIF-67 core and subsequent direct carbonization, core-shell hollow ZnO@CoO nitrogen-doped nanoporous carbon (HZnO@CoO-NPC) nanocomposites were prepared. HZnO@CoO-NPCs possessed a high nitrogen content, large surface area, high degree of graphitization and excellent electrical conductivity, all of which were attributed to successfully integrating the unique advantages of ZIF-8 and ZIF-67. HZnO@CoO-NPCs were used to assemble acetylcholinesterase (AChE) biosensors for organophosphorus pesticides (OPs) detection. The low detection limit of 2.74 × 10-13 M for chlorpyrifos and 7.6 × 10-15 M for parathion-methyl demonstrated the superior sensing performance. The results showed that the electrochemical biosensor constructed by HZnO@CoO-NPC provided a sensitive and efficient electrochemical strategy for OPs detection.


Asunto(s)
Técnicas Biosensibles , Insecticidas , Metil Paratión , Nanocompuestos , Plaguicidas , Óxido de Zinc , Compuestos Organofosforados , Nitrógeno , Acetilcolinesterasa/química , Técnicas Biosensibles/métodos
4.
Nanotechnology ; 35(23)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38430570

RESUMEN

Efficient and robust oxygen reduction reaction (ORR) catalysts are essential for the development of high-performance anion-exchange membrane fuel cells (AEMFC). To enhance the electrochemical performance of metal-organic frameworks of cobalt-based zeolite imidazolium skeleton (ZIF-67), this study reported a novel ZIF-67-4@CNT byin situgrowing carbon nanotubes (CNTs) on the surface of ZIF-67 via a mild two-step pyrolysis/oxidation treatment. The electrochemical results showed that the as-prepared ZIF-67-4@CNT after CTAB modification exhibited excellent catalytic activity with good stability, with Eonset, E1/2, and Ilimit, respectively were 0.98 V (versus RHE), 0.87 V (versus RHE) and 6.04 mA cm-2@1600 rpm, and a current retention rate of about 94.21% after polarized at 0.80 V for 10 000 s, which were all superior to that of the commercial 20 wt% Pt/C. The excellent ORR catalytic performance was mainly attributed to the large amount of thein situgrowing CNTs on the surface, encapsulated with a wide range of valence states of metallic cobalt.

5.
Nanotechnology ; 35(14)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38134436

RESUMEN

Due to the misuse and overuse of the antibiotic tetracycline (TC), as well as its refractory degradability, it has become a stubborn environmental contaminant. In this study, a self-standing polyacrylonitrile-based ZIF-67@CNT/ACF aligned anodic membrane was fabricated by innovatively incorporating ZIF-67@CNT nanoparticles into an aligned carbon nanofiber (ACF) membrane to treat the TC. The flow-through nanoporous construction of the ZIF-67@CNT/ACF membrane reactor can compress the diffusion boundary layer on the electrode surface to enhance mass transfer under microscopic laminar flow, which can further enhance the degradation rate. In addition, the enhanced degradation performance also benefited from the significant electrooxidation capacity of the ZIF-67@CNT/ACF membrane. At the optimal electrocatalytic condition of 3.0 V applied potential and pH 6, the degradation rate reached 81% in 1 h for an initial TC concentration of 10 mg l-1. The refractory and highly toxic TC was electrochemically degraded into small non-toxic molecules. Our results indicate that electrocatalytic TC degradation can be enhanced by ZIF-67@CNT/ACF membrane.

6.
Environ Res ; 252(Pt 2): 118931, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38615794

RESUMEN

In the present work, the biomass of Aspergillus flavus (AF) was modified using magnetic nanoparticles MnFe2O4 and metal-organic framework of ZIF-67, and its ability to remove tetracycline antibiotic (TCH) was investigated. With the help of physicochemical tests, AF biomass modification with ZIF-67 and MnFe2O4 magnetic nanoparticles was confirmed. Based on the BET value, AF-MnFe2O4-ZIF-67 (139.83 m2/g) has a higher surface value than AF (0.786 m2/g) and AF/MnFe2O4 (17.504 m2/g). Also, the magnetic saturation value revealed that the modified biomass can be isolated from the treated solution using a simple magnetic field. Maximum TCH elimination (99.04%) using AF-MnFe2O4-ZIF-67 was obtained at pH 7, adsorber mass of 1 g/L, adsorption time of 40 min, and TCH content of 10 mg/L. The thermodynamic study indicated that the TCH abatement using the desired composite is spontaneous and exothermic. The experimental results showed that the adsorption process is compatible with the pseudo-second-order kinetic and Freundlich model. The maximum adsorption capacity for AF, AF-MnFe2O4, and AF-MnFe2O4-ZIF-67 was quantified to be 9.75 mg/g, 25.59 mg/g, and 43.87 mg/g, respectively. The reusability of the desired adsorbers was examined in up to 8 steps. The outcomes showed that the adsorbers can be used several times in TCH elimination. The provided composite can remove TCH from hospital wastewater, so it can be suggested for use in water and wastewater treatment works.


Asunto(s)
Aspergillus flavus , Biomasa , Tetraciclina , Contaminantes Químicos del Agua , Aspergillus flavus/metabolismo , Tetraciclina/química , Contaminantes Químicos del Agua/química , Adsorción , Antibacterianos/química , Estructuras Metalorgánicas/química , Compuestos Férricos/química , Compuestos de Manganeso/química , Cinética , Nanopartículas de Magnetita/química , Purificación del Agua/métodos , Imidazoles , Zeolitas
7.
Environ Res ; 244: 117863, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38070857

RESUMEN

Metal-organic framework (MOF) and MOF-derived materials have attracted extensive research interest as environmental catalysts. In this study, a composite material (ZIF-67/CCot-8) was successfully prepared using cotton fiber as a substrate and growing ZIF-67 in situ. This material exhibited excellent catalytic performance and significantly improved the efficiency of antibiotics degradation. ZIF-67/CCot-8 at a concentration of 0.05 g/L, combined with 0.2 mM peroxymonosulfate (PMS), removed approximately 97% of ciprofloxacin (CIP) and 99% of tetracycline and sulfamethoxazole within 15 min. The high catalytic efficiency of this catalyst is mainly attributed to the uniform distribution of ZIF-67-derived nanoparticles on the surface of the cotton fibers, providing abundant active sites and thereby significantly enhancing the efficiency of antibiotics degradation. Radical quenching experiments and electron paramagnetic resonance (EPR) analyses revealed that sulfate radicals (SO4•-) and singlet oxygen (1O2) were the main active species. Mass spectrometry (MS) was used to elucidate the CIP degradation pathway. The growth of the roots and stems of soybean sprouts in different water environments (tap water, treated water, and untreated water) was also observed. The results demonstrated a significant improvement in the inhibition of plant growth in the post-degradation CIP solution, indicating a substantial reduction in the toxicity of the degraded aqueous solution. To validate the practicality of the ZIF-67/CCot-8/PMS system, a continuous-flow water-treatment device was designed. This system removed 98% of the CIP solution within 180 min, demonstrating its excellent durability. This study presents a potential pathway for effective antibiotics removal using MOF-derived materials.


Asunto(s)
Ciprofloxacina , Peróxidos , Ciprofloxacina/química , Peróxidos/química , Agua , Antibacterianos
8.
Ecotoxicol Environ Saf ; 269: 115854, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38154210

RESUMEN

Chlorination is a versatile technique to combat water-borne pathogens. Over the last years, there has been continued research interest to abate the formation of chlorinated disinfection by-products (DBPs). To prevent hazardous DBPs in drinking water, it is decided to diminish organic precursors, among which humic acids (HA) resulting from the decomposition and transformation of biomass. Metal-organic frameworks (MOFs) such as zeolitic imidazolate frameworks (ZIFs) have recently received tremendous attention in water purification. Herein, customized ZIF-67 MOFs possessing various physicochemical properties were prepared by changing the cobalt source. The HA removal by ZIF-67-Cl, ZIF-67-OAc, ZIF-67-NO3, and ZIF-67-SO4 were 85.6%, 68.9%, 86.1%, and 87.4%, respectively, evidently affected by the specific surface area. HA uptake by ZIF-67-SO4 indicated a removal efficiency beyond 90% in 4  90% after 60 min mixing the solution with 0.3 g L-1 ZIF-67-SO4. Notably, an acceptable removal performance (∼72.3%) was obtained even at HA concentrations up to 100 mg L-1. The equilibrium data fitted well with the isotherm models in the order of Langmuir> Hill > BET> Khan > Redlich-Peterson> Jovanovic> Freundlich > and Temkin. The maximum adsorption capacity qm for HA uptake by ZIF-67-SO4 was 175.89 mg g-1, well above the majority of adsorbents. The pseudo-first-order model described the rate of HA adsorption by time. In conclusion, ZIF-67-SO4 presented promising adsorptive properties against HA. Further studies would be needed to minimize cobalt leaching from the ZIF-67-SO4 structure and improve its reusability safely, to ensure its effectiveness and the economy of adsorption system.


Asunto(s)
Estructuras Metalorgánicas , Contaminantes Químicos del Agua , Sustancias Húmicas , Cobalto , Adsorción , Contaminantes Químicos del Agua/análisis
9.
Mikrochim Acta ; 191(7): 403, 2024 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888689

RESUMEN

An efficient PEC biosensor is proposed for ATP detection based on exciton energy transfer from CdTe quantum dots (CdTe QDs) to Au nanoparticles (AuNPs), integrating CRISPR/Cas12a trans-cleavage activity and specific recognition of ZIF-67 to ATP. Exciton energy transfer between CdTe QDs and AuNPs system is firstly constructed as photoelectrochemical (PEC) sensing substrate. Then, the activator DNAs, used to activate CRISPR/Cas12a, are absorbed on the surface of ZIF-67. In the presence of ATP, the activator DNAs are released due to more efficient adsorption of ZIF-67 to ATP. The released activator DNA activates trans-cleavage activity of CRISPR/Cas12a to degrade ssDNA on the electrode, leading to the recovery of photocurrent due to the interrupted energy transfer. Benefiting from the specific recognition of ZIF-67 to ATP and CRISPR/Cas12a-modulated amplification strategy, the sensor is endowed with excellent specificity and high sensitivity.


Asunto(s)
Adenosina Trifosfato , Técnicas Biosensibles , Sistemas CRISPR-Cas , Compuestos de Cadmio , Técnicas Electroquímicas , Oro , Nanopartículas del Metal , Puntos Cuánticos , Técnicas Biosensibles/métodos , Adenosina Trifosfato/análisis , Adenosina Trifosfato/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Compuestos de Cadmio/química , Puntos Cuánticos/química , Oro/química , Nanopartículas del Metal/química , Telurio/química , Imidazoles/química , Proteínas Asociadas a CRISPR/química , Límite de Detección , Zeolitas/química , Endodesoxirribonucleasas/química , Estructuras Metalorgánicas/química , Procesos Fotoquímicos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética
10.
Mikrochim Acta ; 191(8): 469, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023564

RESUMEN

Dual-functional nanomaterial electrodes have the capability to satisfy the requirements for both sweat analysis and the hydrogen evolution reaction (HER), thereby enabling the integration of electrochemical sensing and hydrogen production. In this study, ZIF-67 cubes are synthesized on nickel foam (NF), while TiO2 is obtained through an annealing process. Subsequently, the ZIF-67@TiO2/MoS2 nanocomposite is fabricated on nickel foam via a hydrothermal method. This composite material exhibits exceptional photocatalytic properties and is also suitable for the detection of glucose in sweat. The glucose detection range spans from 10 nM to 10 mM with a sensitivity of 7.24 µA mM-1 cm-2 for a signal-to-noise ratio of 3 and a detection limit of 0.43 µM. Moreover, when utilized as a hydrogen evolution electrode, this material demonstrates a current density of 10 mA cm-2 at an overpotential of 118 mV, with a Tafel slope of 73 mV/dec. The synthesis process is both straightforward and economical. This research introduces a novel concept for the design of multifunctional chemical sensors.

11.
Mikrochim Acta ; 191(2): 90, 2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38214747

RESUMEN

A novel mosaic structure Silica@C/Co@ZIF-67 composite was synthesized by successfully embedding Co nanoparticles on the surface of silica spheres with the help of thermoplastic polyethyleneimine by carbon-reduction. The ZIF-67 half-shell layer structure was synthesized by the in-situ growth of ZIF-67 on the surface of silica spheres through the coordination of 2-methylimidazole with Co metal nodes. The composite was used as a magnetic solid-phase extraction adsorbent combined with high performance liquid chromatography-ultraviolet detector (HPLC-UV) for the extraction and determination of benzoylurea insecticides (BUs) in vegetables and tea. Based on the presence of π-π, hydrophobic and hydrogen bonding interactions between Silica@C/Co@ZIF-67 and BUs, the BUs were rapidly captured by the composites resulting in high adsorption performance. Under the optimal extraction parameters, the linear ranges were 0.3-200 µg L-1 for diflubenzuron, 0.6-200 µg L-1 for chlorbenzuron, and 1.0-200 µg L-1 for triflumuron, teflubenzuron, and flufenoxuron, with correlation coefficients (R2) greater than 0.9991. The limits of detection (LODs) of the method were 0.1-0.3 µg L-1, and the relative standard deviations (RSDs) were 1.2-3.0% for intra-day and 2.6-4.6% for inter-day. In the spiked recovery experiments of vegetables and tea, the recoveries of the five kinds of BUs ranged from 75.8 to 112.9%. In addition, after 10 repetitions using Silica@C/Co@ZIF-67, the recoveries of the five kinds of BUs were still as high as 78.4 to 83.9%.


Asunto(s)
Diflubenzurón , Insecticidas , Insecticidas/análisis , Cromatografía Líquida de Alta Presión/métodos , Té/química , Dióxido de Silicio
12.
Molecules ; 29(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38257321

RESUMEN

Herein, a zeolitic imidazole framework (ZIF-67) composite was prepared by a rapid, simple and inexpensive situ hybridization technique applying polyurethane sponge (PU) as support, which was designated as ZIF-67-PU. The ZIF-67 nanoparticle was successfully supported on the surface of sponge skeletons mainly through electrostatic attraction as well as probable π-π stacking interactions with PAM modification of the sponge. The resultant ZIF-67-PU exhibited a remarkably enhanced U(VI) elimination capacity of 150.86 mg∙g-1 on the basis of the Langmuir isotherm model, in comparison to pristine sponge. Additionally, the mechanism for U(VI) elimination was mainly achieved through the complex reaction between C-N(H)/-OH groups in ZIF-67 and U(VI), based on XPS investigations. ZIF-67-PU represents a simple, feasible and low-cost disposal option for preparing ZIF-coated sponges of any shape that can enhance the U(VI) elimination capacity. Furthermore, this approach can be widely applied to the preparation of various kinds of MOF-sponges through this situ hybridization technique.

13.
Molecules ; 29(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38930986

RESUMEN

In this study, hybrid skeleton material ZIF-8@ZIF-67 was synthesized by the epitaxial growth method and then was utilized as a carrier for encapsulating Pseudomonas fluorescens lipase (PFL) through the co-precipitation method, resulting in the preparation of immobilized lipase (PFL@ZIF-8@ZIF-67). Subsequently, it was further treated with glutaraldehyde to improve protein immobilization yield. Under optimal immobilization conditions, the specific hydrolytic activity of PFL@ZIF-8@ZIF-67 was 20.4 times higher than that of the free PFL. The prepared biocatalyst was characterized and analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR). Additionally, the thermal stability of PFL@ZIF-8@ZIF-67 at 50 °C was significantly improved compared to the free PFL. After 7 weeks at room temperature, PFL@ZIF-8@ZIF-67 retained 78% of the transesterification activity, while the free enzyme was only 29%. Finally, PFL@ZIF-8@ZIF-67 was applied to the neryl acetate preparation in a solvent-free system, and the yield of neryl acetate reached 99% after 3 h of reaction. After 10 repetitions, the yields of neryl acetate catalyzed by PFL@ZIF-8@ZIF-67 and the free PFL were 80% and 43%, respectively.


Asunto(s)
Enzimas Inmovilizadas , Lipasa , Pseudomonas fluorescens , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Pseudomonas fluorescens/enzimología , Lipasa/química , Lipasa/metabolismo , Esterificación , Estabilidad de Enzimas , Zeolitas/química , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Acetatos/química , Difracción de Rayos X , Biocatálisis , Imidazoles
14.
Molecules ; 29(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38675655

RESUMEN

Lithium-sulfur (Li-S) batteries have received much attention due to their high energy density and low price. In recent years, alleviating the volume expansion and suppressing the shuttle effect during the charge and discharge processes of Li-S batteries have been widely addressed. However, the slow conversion kinetics from polysulfide (LiPSs) to Li2S2/Li2S still limits the application of Li-S batteries. Therefore, we designed a ZIF-67 grown on cellulose (named ZIF-67@CL) as an electrocatalyst to improve the interconversion kinetics from LiPSs to Li2S2/Li2S for Li-S batteries. Based on the results of adsorption experiments of LiPSs, ZIF-67@CL and CL hosts were immersed in Li2S4 solution to adsorb LiPSs, and the UV-Vis test was conducted on the supernatant after adsorption. The results showed that the ZIF-67@CL had a stronger adsorption for LiPSs compared with the cellulose (CL). Furthermore, in the Li2S nucleation tests, the fabricated cells were galvanostatically discharged to 2.06 V at 0.112 mA and then potentiostatically discharged at 2.05 V. Based on the results of Li2S nucleation tests, the catalytic effect of ZIF-67 was further verified. As a result, the sulfur cathode used a ZIF-67 catalyst (named S/ZIF-67@CL) and delivered an initial capacity of 1346 mAh g-1 at a current density of 0.2 C. Even at a high current density of 2 C, it exhibited a high-capacity performance of 1087 mAh g-1 on the first cycle and maintained a capacity output of 462 mAh g-1 after 150 cycles, with a Coulombic efficiency of over 99.82%.

15.
Small ; 19(43): e2302925, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37356070

RESUMEN

Non-precious-metal based electrocatalysts with highly-exposed and well-dispersed active sites are crucially needed to achieve superior electrocatalytic performance for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) toward zinc-air battery (ZAB). Herein, Co-CoO heterostructures derived from nanosized ZIF-67 are densely-exposed and strongly-immobilized onto N-doped porous carbon foam (NPCF) through a self-sacrificial pyrolysis strategy. Benefited from the high exposure of Co-CoO heterostructures and the favorable mass and electron transfer ability of NPCF, the Co-CoO/NPCF electrocatalyst exhibits remarkable performance for both ORR (E1/2  = 0.843 V vs RHE) and OER (Ej = 10 mA cm-2  = 1.586 V vs RHE). Further application of Co-CoO/NPCF as the air-cathode in rechargeable ZAB achieves superior performance for liquid-state ZAB (214.1 mW cm-2 and 600 cycles) and flexible all-solid-state ZAB (93.1 mW cm-2 and 140 cycles). Results from DFT calculations demonstrate that the electronic metal-support interactions between Co-CoO and NPCF via abundant C-Nx sites is favorable for electronic structure modulation, accounting for the remarkable performance.

16.
Chem Rec ; 23(11): e202300142, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37565697

RESUMEN

As a class of metal-organic framework, the zeolitic-imidazole framework-67 is constructed from bridging cobalt ions and 2-methylimidazole. The high content of abundant active cobalt species, uniform structure, ultrahigh porosity, and large surface area show the potential for multiple catalytic applications, especially electrocatalytic oxygen evolution reaction (OER). The design and synthetic strategies of catalyst-based ZIF-67 that approach the maximized catalytic performance are still challenging in further development. Herein, the current progress strategy on the structural design, synthetic route, and functionalization of electrocatalysts based on ZIF-67 to boost the catalytic performance of OER is reviewed. Besides, the structurally designed catalyst from various fabricated strategies corresponding to enhancing catalytic activity is discussed. The emphasized review for understanding design and synthetic structure with catalytic performance could guide researchers in further developing catalyst-based ZIF-67 for improving the efficient electrocatalytic OER.

17.
Environ Res ; 225: 115589, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36858304

RESUMEN

Zeolitic imidazolate framework-67 (ZIF-67) has been decorated with natural biomaterials and DNA to develop a promising strategy and suitable and safe co-delivery platform for doxorubicin and sorafenib (DOX-SOR). FT-IR, XRD, FESEM, and TEM were used to characterize the modified MOFs. Combined Ginkgo biloba leaf extract and E. coli DNA were used as green decorations, and as environmentally-friendly methods to be developed, and DOX and SOR were attached to the porosity and on the surface of the MOFs. TEM and FESEM images demonstrated that the green MOFs were successfully synthesized for biomedical applications and showed their cubic structure. As a result of the nanocarrier-drug interactions, 59.7% and 60.2% of the drug payload were achieved with DOX and SOR, respectively. HEK-293, HT-29, and MCF-7 cells displayed excellent viability by decoration with DNA and Ginkgo biloba leaf extract at low and high concentrations (0.1 and 50 µg/mL), suggesting they could be used in biomedical applications. MTT assays demonstrated that the nanocarriers are highly biocompatible with normal cells and possess anticancer properties when applied to HT-29 and MCF-7 cells. As a result of Ginkgo biloba leaf extract and DNA modification, DOX-SOR release was prolonged and pH-sensitive (highest release at pHs 4.5 and 5.5). The internalization and delivery of the drug were also studied using a 2d fluorescence microscope, demonstrating that the drug was effectively internalized. Cell images showed NPs internalizing in MCF-7 cells, proving their efficacy as drug delivery systems.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Humanos , Sorafenib/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Escherichia coli , Células HEK293 , Espectroscopía Infrarroja por Transformada de Fourier , Neoplasias Hepáticas/tratamiento farmacológico , Doxorrubicina/farmacología , Doxorrubicina/química , Nanopartículas/química
18.
Environ Res ; 237(Pt 1): 116940, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37619624

RESUMEN

This study designed a composite material with internal synergistic effects among multiple components to achieve highly selective adsorption of Cu (II). Through controlled synthesis, the Fe3O4/MnO2(3 1 0)/ZIF-67 composite was successfully fabricated, leading to significant improvement in adsorption selectivity, capacity, and adsorption rate. The experimental results showed that the composite is of outstanding selectivity in the adsorption of Cu (II), with a partition coefficient K of Cu (II) that was 2.2-5.3 times higher than that of other coexisting ions. Moreover, the composite exhibited a remarkable adsorption capacity of 1261.0 mg g-1 and a fast adsorption rate of 840.7 mg g-1 h-1 at 298 K. Additionally, its magnetic property facilitated easy separation from wastewater, thereby enhancing its potential for commercial applications. The synergetic effect mechanism was analyzed through characterizations and DFT calculations. Furthermore, the recyclability of the composite was investigated, which showed that after seven cycles, the adsorption efficiency remained at 85% of its initial efficiency. It can be concluded that Fe3O4/MnO2(3 1 0)/ZIF-67 has potential to address challenges posed by heavy metal pollution in copperplating effluents.

19.
Environ Res ; 225: 115516, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36805897

RESUMEN

Tetracycline (TCC) and sulfadiazine (SDZ) are two of the most consumed antibiotics for human therapies and bacterial infection treatments in aquafarming fields, but their accumulative residues can result in negative effects on water and aquatic microorganisms. Removal techniques are therefore required to purify water before use. Herein, we concentrate on adsorptive removal of TCC and SDZ using cobalt@carbon nanotubes (Co@CNTs) derived from Co-ZIF-67. The presence of CNTs on the edge of nanocomposites was observed. Taguchi orthogonal array was designed with four variables including initial concentration (5-20 mg L-1), dosage (0.05-0.2 g L-1), time (60-240 min), and pH (2-10). Concentration and pH were found to be main contributors to adsorption of tetracycline and sulfadiazine, respectively. The optimum condition was found at concentration 5 mg L-1, dosage 0.2 g L-1, contact time 240 min, and pH 7 for both TCC and SDZ removals. Confirmation tests showed that Co@CNTs-700 removed 99.6% of TCC and 97.3% of SDZ with small errors (3-5.5%). Moreover, the kinetic and isotherm were studied, which kinetic and isotherm data were best fitted with pseudo second-order model and Langmuir. Maximum adsorption capacity values for TCC and SDZ were determined at 118.4-174.1 mg g-1 for 180 min. We also proposed the main role of interactions such as hydrogen bonding, π-π stacking, and electrostatic attraction in the adsorption of antibiotics. With high adsorption performance, Co@CNTs-700 is expected to remove antibiotics efficiently from wastewater.


Asunto(s)
Nanocompuestos , Nanotubos de Carbono , Contaminantes Químicos del Agua , Humanos , Antibacterianos , Sulfadiazina , Nanotubos de Carbono/química , Tetraciclina , Agua , Nanocompuestos/química , Adsorción , Contaminantes Químicos del Agua/análisis , Cinética , Concentración de Iones de Hidrógeno
20.
Mikrochim Acta ; 190(2): 71, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36695915

RESUMEN

Monitoring exocellular adenosine-5'-triphosphate (ATP) is a demanding task but the biosensor development is limited by the low concentration and rapid degradation of ATP. Herein, we developed a simple yet effective biosensor based on ZIF-67 loaded with bi-enzymes of glucose (GOx) and hexokinase (HEX) for effective detection of ATP. In the confined space of the porous matrix, the bi-enzymes competed for the glucose substrate in the presence of ATP, facilitating the biosensor to detect low ATP concentrations down to the micromole level (3.75 µM) at working potential of 0.55 V (vs. Ag/AgCl). Furthermore, ZIF-67 with cobalt served as a porous matrix to specifically adsorb ATP molecules, allowing it to differentiate isomers with sensitivity of 0.53 nA/µM, RSD of 5.4%, and recovery rate of 93.3%. We successfully applied the fabricated biosensor to measure ATP secreted from rat PC12 cells in the pericellular space thus realizing time-resolving measurement. This work paved the path for real-time monitoring of ATP released by cells, which will aid in understanding tumor cell glycolysis and immune responses.


Asunto(s)
Enzimas Inmovilizadas , Glucosa Oxidasa , Animales , Ratas , Enzimas Inmovilizadas/química , Glucosa Oxidasa/química , Hexoquinasa/química , Hexoquinasa/metabolismo , Adenosina Trifosfato/química , Glucosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA