Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Pharm ; 18(1): 347-358, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33355470

RESUMEN

The impact of the chain length or dispersity of polymers in controlling the crystallization of amorphous active pharmaceutical ingredients (APIs) has been discussed for a long time. However, because of the weak control of these parameters in the majority of macromolecules used in pharmaceutical formulations, the abovementioned topic is poorly understood. Herein, four acetylated oligosaccharides, maltose (acMAL), raffinose (acRAF), stachyose (acSTA), and α-cyclodextrin (ac-α-CD) of growing chain lengths and different topologies (linear vs cyclic), mimicking the growing backbone of the polymer, were selected to probe the influence of these structural factors on the crystallization of naproxen (NAP)-an API that does not vitrify regardless of the cooling rate applied in our experiment. It was found that in equimolar systems composed of NAP and linear acetylated oligosaccharides, the progress and activation barrier for crystallization are dependent on the molecular weight of the excipient despite the fact that results of Fourier transform infrared studies indicated that there is no difference in the interaction pattern between measured samples. On the other hand, complementary dielectric, calorimetric, and X-ray diffraction data clearly demonstrated that NAP mixed with ac-α-CD (cyclic saccharide) does not tend to crystallize even in the system with a much higher content of APIs. To explain this interesting finding, we have carried out further density functional theory computations, which revealed that incorporation of NAP into the cavity of ac-α-CD is hardly possible because this state is of much higher energy (up to 80 kJ/mol) with respect to the one where the API is located outside of the saccharide torus. Hence, although at the moment, it is very difficult to explain the much stronger impact of the cyclic saccharide on the suppression of crystallization and enhanced stability of NAP with respect to the linear carbohydrates, our studies clearly showed that the chain length and the topology of the excipient play a significant role in controlling the crystallization of this API.


Asunto(s)
Naproxeno/química , Oligosacáridos/química , Rastreo Diferencial de Calorimetría/métodos , Carbohidratos/química , Cristalización/métodos , Composición de Medicamentos/métodos , Excipientes/química , Simulación de Dinámica Molecular , Peso Molecular , Transición de Fase/efectos de los fármacos , Solubilidad/efectos de los fármacos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Difracción de Rayos X/métodos
2.
AAPS PharmSciTech ; 19(2): 951-960, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29098644

RESUMEN

The presented work describes the formulation and characterization of modified release glassy solid dosage forms (GSDFs) containing an amorphous nifedipine, as a model BCS (Biopharmaceutical Classification System) class II drug. The GSDFs were prepared by melting nifedipine together with octaacetyl sucrose. Dissolution profiles, measured under standard and biorelevant conditions, were compared to those obtained from commercially available formulations containing nifedipine such as modified release (MR) tablets and osmotic release oral system (OROS). The results indicate that the dissolution profiles of the GSDFs with nifedipine are neither affected by the pH of the dissolution media, type and concentration of surfactants, nor by simulated mechanical stress of biorelevant intensity. Furthermore, it was found that the dissolution profiles of the novel dosage forms were similar to the profiles obtained from the nifedipine OROS. The formulation of GSDFs is relatively simple, and the dosage forms were found to have favorable dissolution characteristics.


Asunto(s)
Formas de Dosificación , Sistemas de Liberación de Medicamentos/métodos , Nifedipino/administración & dosificación , Nifedipino/metabolismo , Sacarosa/análogos & derivados , Administración Oral , Liberación de Fármacos , Estabilidad de Medicamentos , Nifedipino/química , Ósmosis , Solubilidad , Sacarosa/administración & dosificación , Sacarosa/química , Sacarosa/metabolismo , Comprimidos
3.
Mol Pharm ; 12(8): 3007-19, 2015 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-26101945

RESUMEN

Molecular dynamics of pure nifedipine and its solid dispersions with modified carbohydrates as well as the crystallization kinetics of active pharmaceutical ingredient (API) above and below the glass transition temperature were studied in detail by means of broadband dielectric spectroscopy (BDS), differential scanning calorimetry (DSC), and X-ray diffraction method. It was found that the activation barrier of crystallization increases in molecular dispersions composed of acetylated disaccharides, whereas it slightly decreases in those consisting of modified monocarbohydrates for the experiments carried out above the glass transition temperature. As shown by molecular dynamics simulations it can be related to the strength, character, and structure of intermolecular interactions between API and saccharides, which vary dependently on the excipient. Long-term physical stability studies showed that, in solid dispersions consisting of acetylated maltose and acetylated sucrose, the crystallization of nifedipine is dramatically slowed down, although it is still observable for a low concentration of excipients. With increasing content of modified carbohydrates, the crystallization of API becomes completely suppressed. This is most likely due to additional barriers relating to the intermolecular interactions and diffusion of nifedipine that must be overcome to trigger the crystallization process.


Asunto(s)
Carbohidratos/química , Cristalización/métodos , Simulación de Dinámica Molecular , Nifedipino/química , Rastreo Diferencial de Calorimetría , Estabilidad de Medicamentos , Excipientes/química , Cinética , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Temperatura de Transición , Difracción de Rayos X
4.
Eur J Pharm Sci ; 164: 105894, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34089820

RESUMEN

In this paper, the molecular dynamics as well as inter- and intramolecular interactions in the homogenous solid dispersions (SDs) of active pharmaceutical ingredient - probucol (PRO) with acetylated glucose (acGLU), acetylated sucrose (acSUC), and sucrose acetoisobutyrate (aibSUC), prepared in 5:1 molar ratio, have been investigated using broadband dielectric (BD) and Fourier transform infrared (FTIR) spectroscopy. Importantly, high pressure dielectric measurements revealed that as for neat PRO, a breakdown of the isochronal structural (α) and JG-ß exact superpositioning, due to increasing separation between both processes under compression, can also be detected in its mixtures with acetylated saccharides (acSACCHs). Furthermore, the analysis of temperature dependences of JG-ß-relaxation times for PRO and PRO-acSACCH SDs at selected isobaric conditions indicated the increase in the cooperativity of the secondary process (reflected in the value of the activation entropy, ΔSß) at elevated pressure in all systems. The mere addition of the small amount of excipient to neat PRO (p = 0.1 MPa) resulted in a greater value of ΔSß (it was the most noticeable in the case of aibSUC). Further FTIR studies carried out on the pressure densified glasses of PRO, and binary mixtures suggested that the observed changes in the cooperativity of the JG-ß-process, as well as the failure of the exact isochronal superpositioning of α- and JG-ß relaxation times, are due to varying H-bond pattern in the examined single- and two-component systems at high compression/in the presence of saccharide.


Asunto(s)
Simulación de Dinámica Molecular , Probucol , Cristalización , Temperatura , Temperatura de Transición
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA