Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 172(4): 857-868.e15, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29336889

RESUMEN

The mechanism by which the wild-type KRAS allele imparts a growth inhibitory effect to oncogenic KRAS in various cancers, including lung adenocarcinoma (LUAD), is poorly understood. Here, using a genetically inducible model of KRAS loss of heterozygosity (LOH), we show that KRAS dimerization mediates wild-type KRAS-dependent fitness of human and murine KRAS mutant LUAD tumor cells and underlies resistance to MEK inhibition. These effects are abrogated when wild-type KRAS is replaced by KRASD154Q, a mutant that disrupts dimerization at the α4-α5 KRAS dimer interface without changing other fundamental biochemical properties of KRAS, both in vitro and in vivo. Moreover, dimerization has a critical role in the oncogenic activity of mutant KRAS. Our studies provide mechanistic and biological insights into the role of KRAS dimerization and highlight a role for disruption of dimerization as a therapeutic strategy for KRAS mutant cancers.


Asunto(s)
Adenocarcinoma del Pulmón , Inhibidores Enzimáticos/farmacología , Neoplasias Pulmonares , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Mutación Missense , Multimerización de Proteína/efectos de los fármacos , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/enzimología , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Sustitución de Aminoácidos , Animales , Línea Celular Tumoral , Células HEK293 , Humanos , Pérdida de Heterocigocidad , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Ratones , Ratones Noqueados , Multimerización de Proteína/genética , Proteínas Proto-Oncogénicas p21(ras)/genética
2.
Cell ; 168(5): 817-829.e15, 2017 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-28215705

RESUMEN

Investigating therapeutic "outliers" that show exceptional responses to anti-cancer treatment can uncover biomarkers of drug sensitivity. We performed preclinical trials investigating primary murine acute myeloid leukemias (AMLs) generated by retroviral insertional mutagenesis in KrasG12D "knockin" mice with the MEK inhibitor PD0325901 (PD901). One outlier AML responded and exhibited intrinsic drug resistance at relapse. Loss of wild-type (WT) Kras enhanced the fitness of the dominant clone and rendered it sensitive to MEK inhibition. Similarly, human colorectal cancer cell lines with increased KRAS mutant allele frequency were more sensitive to MAP kinase inhibition, and CRISPR-Cas9-mediated replacement of WT KRAS with a mutant allele sensitized heterozygous mutant HCT116 cells to treatment. In a prospectively characterized cohort of patients with advanced cancer, 642 of 1,168 (55%) with KRAS mutations exhibited allelic imbalance. These studies demonstrate that serial genetic changes at the Kras/KRAS locus are frequent in cancer and modulate competitive fitness and MEK dependency.


Asunto(s)
Antineoplásicos/uso terapéutico , Benzamidas/uso terapéutico , Neoplasias Colorrectales/genética , Difenilamina/análogos & derivados , Sistema de Señalización de MAP Quinasas , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Antineoplásicos/farmacología , Benzamidas/farmacología , Línea Celular Tumoral , Evolución Clonal , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Difenilamina/farmacología , Difenilamina/uso terapéutico , Resistencia a Antineoplásicos , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Mutación , Retroviridae
3.
EMBO J ; 39(24): e104719, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33215742

RESUMEN

Recent evidence suggests that animal microRNAs (miRNAs) can target coding sequences (CDSs); however, the pathophysiological importance of such targeting remains unknown. Here, we show that a somatic heterozygous missense mutation (c.402C>G; p.C134W) in FOXL2, a feature shared by virtually all adult-type granulosa cell tumors (AGCTs), introduces a target site for miR-1236, which causes haploinsufficiency of the tumor-suppressor FOXL2. This miR-1236-mediated selective degradation of the variant FOXL2 mRNA is preferentially conducted by a distinct miRNA-loaded RNA-induced silencing complex (miRISC) directed by the Argonaute3 (AGO3) and DHX9 proteins. In both patients and a mouse model of AGCT, abundance of the inversely regulated variant FOXL2 with miR-1236 levels is highly correlated with malignant features of AGCT. Our study provides a molecular basis for understanding the conserved FOXL2 CDS mutation-mediated etiology of AGCT, revealing the existence of a previously unidentified mechanism of miRNA-targeting disease-associated mutations in the CDS by forming a non-canonical miRISC.


Asunto(s)
Proteína Forkhead Box L2/genética , Proteína Forkhead Box L2/metabolismo , Tumor de Células de la Granulosa/genética , MicroARNs/metabolismo , Mutación , Sistemas de Lectura Abierta , Desequilibrio Alélico , Animales , Apoptosis , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Muerte Celular/fisiología , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Regulación Neoplásica de la Expresión Génica , Técnicas de Inactivación de Genes , Tumor de Células de la Granulosa/patología , Células HEK293 , Humanos , Ratones , Ratones Noqueados , MicroARNs/genética , Mutación Missense , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , ARN Mensajero/metabolismo , Transcriptoma
4.
BMC Cancer ; 22(1): 1310, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36517748

RESUMEN

BACKGROUND: We evaluated the performance of single-nucleotide polymorphism (SNP) genotyping arrays OncoScan (Thermo Fisher Scientific, San Diego, CA) and Infinium CytoSNP-850K (CytoSNP; Illumina, Waltham, MA) for assessing homologous recombination deficiency (HRD) genomic instability. METHODS: DNA (pretreatment samples) across 20 tumor types was evaluated with OncoScan, CytoSNP, and the clinically validated HRD test. Copy number variation (CNV) and loss of heterozygosity (LOH) analyses were performed with ASCATv2.5.1. Aggregate HRD genomic metrics included LOH, telomeric-allelic imbalance number (TAI), and large-scale state transition (LST). Associations between BRCA mutation (BRCAm) status and the clinically validated HRD test metric (dichotomized at a clinical cut-off) were evaluated using area under the receiver operating characteristic (AUROC); Spearman ρ was calculated for continuous metrics. CNV segmentation and HRD genomic metrics were calculated (n = 120, n = 106, and n = 126 for OncoScan, CytoSNP and clinically validated HRD test, respectively). RESULTS: When assessed by SNP arrays, the genomic metric demonstrated good association with BRCAm (AUROC of HRD: OncoScan, 0.87; CytoSNP, 0.75) and the clinically validated test (cut-off, 42; AUROC of HRD: OncoScan, 0.92; CytoSNP, 0.91). The genomic metrics demonstrated good correlation with the clinically validated aggregate HRD test metric (ρ: OncoScan, 0.82; CytoSNP, 0.81) and for each component (ρ: OncoScan, 0.68 [LOH], 0.76 [TAI], and 0.78 [LST]; CytoSNP, 0.59 [LOH], 0.77 [TAI], and 0.82 [LST]). HRD assessed by SNP genotyping arrays and the clinically validated test showed good correlation. CONCLUSION: OncoScan and CytoSNP may potentially identify most HRD-positive tumors with appropriate clinically relevant cut-offs.


Asunto(s)
Variaciones en el Número de Copia de ADN , Pérdida de Heterocigocidad , Humanos , Polimorfismo de Nucleótido Simple , Recombinación Homóloga , Secuenciación de Nucleótidos de Alto Rendimiento , Inestabilidad Genómica
5.
J Pathol ; 255(3): 225-231, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34338304

RESUMEN

A recurrent mutation in FOXL2 (c.402C>G; p.C134W) is present in over 95% of adult-type granulosa cell tumours (AGCTs). In contrast, various loss-of-function mutations in FOXL2 lead to the development of blepharophimosis, ptosis, and epicanthus inversus syndrome (BPES). BPES is characterised by an eyelid malformation often accompanied with primary ovarian insufficiency. Two recent studies suggest that FOXL2 C402G is a gain- or change-of-function mutation with altered DNA-binding specificity. Another study proposes that FOXL2 C402G is selectively targeted for degradation, inducing somatic haploinsufficiency, suggesting its role as a tumour suppressor. The latter study relies on data indicative of an FOXL2 allelic imbalance in AGCTs. Here we present RNA-seq data as genetic evidence that no real allelic imbalance is observed at the transcriptomic level in AGCTs. Additionally, there is no loss of protein expression in tumours harbouring the mutated allele. These data and other features of this mutation compared to other oncogenes and tumour suppressor genes argue strongly against FOXL2 being a tumour suppressor in this context. Given the likelihood that FOXL2 C402G is oncogenic, targeting the variant protein or its downstream consequences is the most viable path forward to identifying an effective treatment for this cancer. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Proteína Forkhead Box L2/genética , Tumor de Células de la Granulosa/genética , Oncogenes/genética , Femenino , Humanos , Mutación
6.
Clin Chem Lab Med ; 60(10): 1543-1550, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-35938948

RESUMEN

OBJECTIVES: Copy number alterations (CNAs) are frequently found in malignant tissues. Different approaches have been used for CNA detection. However, it is not easy to detect a large panel of CNA targets in heterogenous tumors. METHODS: We have developed a CNAs detection approach through quantitatively analyzed allelic imbalance by allelotyping single nucleotide polymorphisms (SNPs) by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Furthermore, the copy number changes were quantified by real-competitive PCR (rcPCR) to distinguish loss of heterozygosity (LOH) and genomic amplification. The approach was used to validate the CNA regions detected by next generation sequencing (NGS) in early-stage lung carcinoma. RESULTS: CNAs were detected in heterogeneous DNA samples where tumor DNA is present at only 10% through the SNP based allelotyping. In addition, two different types of CNAs (loss of heterozygosity and chromosome amplification) were able to be distinguished quantitatively by rcPCR. Validation on a total of 41 SNPs from the selected CNA regions showed that copy number changes did occur, and the tissues from early-stage lung carcinoma were distinguished from normal. CONCLUSIONS: CNA detection by MALDI-TOF MS can be used for validating potentially interesting genomic regions identified from next generation sequencing, and for detecting CNAs in tumor tissues consisting of a mixture of neoplastic and normal cells.


Asunto(s)
Carcinoma , Variaciones en el Número de Copia de ADN , ADN , Humanos , Rayos Láser , Polimorfismo de Nucleótido Simple , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
7.
Esophagus ; 19(2): 294-302, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35013873

RESUMEN

BACKGROUND: Recent progress of large-scale international studies has provided comprehensive catalogs of somatic mutations in cancers. Additionally, it has become evident that allelic imbalance in the abundance of somatic mutations between DNA and RNA were pervasive in various types of cancer. However, the allelic imbalance of the abundance of somatic mutations in esophageal squamous cell carcinoma (ESCC) has not been fully analyzed. METHODS: We performed exome sequencing for 25 Japanese patients with ESCC to detect a comprehensive catalog of somatic mutations in ESCC. Additionally, we performed mRNA sequencing to evaluate the allelic imbalance of the identified somatic mutations at the transcriptional level by comparing the mutant allele frequencies between RNA and DNA. RESULTS: The exome sequencing showed that TP53 and ZNF750 were significantly mutated genes. The expression levels of TP53 and ZNF750 were different depending on the mutation status. In almost all the tumors with missense mutations in TP53 and ZNF750, the mutant allele frequencies were higher in the RNA sequencing than those in the exome sequencing, indicating that the mutant alleles were preferentially expressed. By examining the allelic imbalances for all the identified missense mutations, we demonstrated that genes showing preferential expressions of the mutant alleles were involved in the pathways including cell cycle, cell death, and chromatin modification. CONCLUSIONS: The results of this study suggest that the allelic imbalance of the abundance of somatic mutations plays important roles in the initiation and progression of ESCC by modulating cancer-related biological pathways.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Factores de Transcripción , Proteína p53 Supresora de Tumor/genética , Proteínas Supresoras de Tumor , Alelos , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas de Esófago/genética , Humanos , Mutación , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética
8.
Ann Oncol ; 32(1): 58-65, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33098992

RESUMEN

BACKGROUND: In the TNT trial of triple negative breast cancer (NCT00532727), germline BRCA1/2 mutations were present in 28% of carboplatin responders. We assessed quantitative measures of structural chromosomal instability (CIN) to identify a wider patient subgroup within TNT with preferential benefit from carboplatin over docetaxel. PATIENTS AND METHODS: Copy number aberrations (CNAs) were established from 135 formalin-fixed paraffin-embedded primary carcinomas using Illumina OmniExpress SNP-arrays. Seven published [allelic imbalanced CNA (AiCNA); allelic balanced CNA (AbCNA); copy number neutral loss of heterozygosity (CnLOH); number of telomeric allelic imbalances (NtAI); BRCA1-like status; percentage of genome altered (PGA); homologous recombination deficiency (HRD) scores] and two novel [Shannon diversity index (SI); high-level amplifications (HLAMP)] CIN-measurements were derived. HLAMP was defined based on the presence of at least one of the top 5% amplified cytobands located on 1q, 8q and 10p. Continuous CIN-measurements were divided into tertiles. All nine CIN-measurements were used to analyse objective response rate (ORR) and progression-free survival (PFS). RESULTS: Patients with tumours without HLAMP had a numerically higher ORR and significantly longer PFS in the carboplatin (C) than in the docetaxel (D) arm [56% (C) versus 29% (D), PHLAMP,quiet = 0.085; PFS 6.1 months (C) versus 4.1 months (D), Pinteraction/HLAMP = 0.047]. In the carboplatin arm, patients with tumours showing intermediate telomeric NtAI and AiCNA had higher ORR [54% (C) versus 20% (D), PNtAI,intermediate = 0.03; 62% (C) versus 33% (D), PAiCNA,intermediate = 0.076]. Patients with high AiCNA and PGA had shorter PFS in the carboplatin arm [3.4 months (high) versus 5.7 months (low/intermediate); and 3.8 months (high) versus 5.6 months (low/intermediate), respectively; Pinteraction/AiCNA = 0.027, Padj.interaction/AiCNA = 0.125 and Pinteraction/PGA = 0.053, Padj.interaction/PGA = 0.176], whilst no difference was observed in the docetaxel arm. CONCLUSIONS: Patients with tumours lacking HLAMP and demonstrating intermediate CIN-measurements formed a subgroup benefitting from carboplatin relative to docetaxel treatment within the TNT trial. This suggests a complex and paradoxical relationship between the extent of genomic instability in primary tumours and treatment response in the metastatic setting.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias de la Mama Triple Negativas , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biomarcadores , Carboplatino/uso terapéutico , Inestabilidad Cromosómica/genética , Humanos , Fenotipo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética
9.
Exp Mol Pathol ; 120: 104621, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33626378

RESUMEN

Pilocytic astrocytoma (PA) is the most common glioma subtype found in children, and it is a non-malignant tumor type. The majority of PAs is caused by an approximately 2 Mb tandem duplication within 7q34 which creates an in-frame KIAA1549-BRAF fusion gene. The kinase domain of BRAF is fused to the N-terminal of KIAA1549, whereby BRAF is constitutively activated. We here present a novel approach for identifying KIAA1549-BRAF fusion based on single nucleotide polymorphism (SNP) analysis and next generation sequencing (NGS). Highly polymorphic SNPs in the duplicated area and in adjacent areas were selected and a custom targeted amplicon based NGS panel was designed. The panel was tested on DNA extracted from formalin fixed and paraffin embedded tissue from a retrospective cohort, consisting of biopsies from patients with PA, anaplastic astrocytoma, oligodendroglioma and glioblastoma as well as two non-tumor biopsies. The panel could distinguish chromosome 7 gain from BRAF fusion and correctly identified 8/9 PA samples with KIAA1549-BRAF fusion confirmed by RNA sequencing. The one biopsy where no fusion was detected was fresh frozen and from the RNA sequencing expected to have very low tumor content. No allelic imbalance was detected in either oligodendroglioma or in the non-tumor biopsies.


Asunto(s)
Desequilibrio Alélico , Astrocitoma/patología , Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Proteínas de Fusión Oncogénica/genética , Polimorfismo de Nucleótido Simple , Astrocitoma/genética , Astrocitoma/metabolismo , Humanos , Pronóstico , Estudios Retrospectivos
10.
Physiol Genomics ; 52(1): 15-19, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31790337

RESUMEN

Point mutation R723G in the MYH7 gene causes hypertrophic cardiomyopathy (HCM). Heterozygous patients with this mutation exhibit a comparable allelic imbalance of the MYH7 gene. On average 67% of the total MYH7 mRNA are derived from the MYH7R723G-allele and 33% from the MYH7WT allele. Mechanisms underlying mRNA allelic imbalance are largely unknown. We suggest that a different mRNA lifetime of the alleles may cause the allelic drift in R723G patients. A potent regulator of mRNA lifetime is its secondary structure. To test for alterations in the MYH7R723G mRNA structure we used selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) analysis. We show significantly different SHAPE reactivity of wild-type and MYH7R723G RNA, which is in accordance with bioinformatically predicted structures. Thus, we provide the first experimental evidence for mRNA secondary structure alterations by the HCM point mutation. We assume that this may result in a prolonged lifetime of MYH7R723G mRNA in vivo and subsequently in the determined allelic imbalance.


Asunto(s)
Miosinas Cardíacas/genética , Cardiomiopatía Hipertrófica/genética , Mutación/genética , Cadenas Pesadas de Miosina/genética , Conformación de Ácido Nucleico , ARN Mensajero/química , ARN Mensajero/genética , Secuencia de Bases , Humanos , Proteínas Mutantes/química , Proteínas Mutantes/genética
11.
Am J Hum Genet ; 101(4): 489-502, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28942964

RESUMEN

Genome-wide association studies have identified a signal at the SLC22A1 locus for serum acylcarnitines, intermediate metabolites of mitochondrial oxidation whose plasma levels associate with metabolic diseases. Here, we refined the association signal, performed conditional analyses, and examined the linkage structure to find coding variants of SLC22A1 that mediate independent association signals at the locus. We also employed allele-specific expression analysis to find potential regulatory variants of SLC22A1 and demonstrated the effect of one variant on the splicing of SLC22A1. SLC22A1 encodes a hepatic plasma membrane transporter whose role in acylcarnitine physiology has not been described. By targeted metabolomics and isotope tracing experiments in loss- and gain-of-function cell and mouse models of Slc22a1, we uncovered a role of SLC22A1 in the efflux of acylcarnitines from the liver to the circulation. We further validated the impacts of human variants on SLC22A1-mediated acylcarnitine efflux in vitro, explaining their association with serum acylcarnitine levels. Our findings provide the detailed molecular mechanisms of the GWAS association for serum acylcarnitines at the SLC22A1 locus by functionally validating the impact of SLC22A1 and its variants on acylcarnitine transport.


Asunto(s)
Carnitina/análogos & derivados , Regulación de la Expresión Génica , Hígado/metabolismo , Enfermedades Metabólicas/genética , Transportador 1 de Catión Orgánico/genética , Polimorfismo de Nucleótido Simple , Alelos , Empalme Alternativo , Animales , Transporte Biológico , Sistemas CRISPR-Cas , Carnitina/sangre , Carnitina/farmacocinética , Células Cultivadas , Estudios de Cohortes , Femenino , Estudio de Asociación del Genoma Completo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Enfermedades Metabólicas/sangre , Enfermedades Metabólicas/metabolismo , Metabolómica , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Transportador 1 de Catión Orgánico/antagonistas & inhibidores , Transportador 1 de Catión Orgánico/metabolismo , Distribución Tisular
12.
BMC Genet ; 21(1): 84, 2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32727353

RESUMEN

BACKGROUND: The human CGGBP1 binds to GC-rich regions and interspersed repeats, maintains homeostasis of stochastic cytosine methylation and determines DNA-binding of CTCF. Interdependence between regulation of cytosine methylation and CTCF occupancy by CGGBP1 remains unknown. RESULTS: By analyzing methylated DNA-sequencing data obtained from CGGBP1-depleted cells, we report that some transcription factor-binding sites, including CTCF, resist stochastic changes in cytosine methylation. By analysing CTCF-binding sites we show that cytosine methylation changes at CTCF motifs caused by CGGBP1 depletion resist stochastic changes. These CTCF-binding sites are positioned at locations where the spread of cytosine methylation in cis depends on the levels of CGGBP1. CONCLUSION: Our findings suggest that CTCF occupancy and functions are determined by CGGBP1-regulated cytosine methylation patterns.


Asunto(s)
Sitios de Unión , Citosina/química , Metilación de ADN , Proteínas de Unión al ADN/genética , Alelos , Mapeo Cromosómico , Células HEK293 , Humanos , Análisis de Secuencia de ADN , Transducción Genética
13.
Am J Respir Crit Care Med ; 200(6): 742-750, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-30896962

RESUMEN

Rationale: Uninvolved normal-appearing airway epithelium has been shown to exhibit specific mutations characteristic of nearby non-small cell lung cancers (NSCLCs). Yet, its somatic mutational landscape in patients with early-stage NSCLC is unknown.Objectives: To comprehensively survey the somatic mutational architecture of the normal airway epithelium in patients with early-stage NSCLC.Methods: Multiregion normal airways, comprising tumor-adjacent small airways, tumor-distant large airways, nasal epithelium and uninvolved normal lung (collectively airway field), matched NSCLCs, and blood cells (n = 498) from 48 patients were interrogated for somatic single-nucleotide variants by deep-targeted DNA sequencing and for chromosomal allelic imbalance events by genome-wide genotype array profiling. Spatiotemporal relationships between the airway field and NSCLCs were assessed by phylogenetic analysis.Measurements and Main Results: Genomic airway field carcinogenesis was observed in 25 cases (52%). The airway field epithelium exhibited a total of 269 somatic mutations in most patients (n = 36) including key drivers that were shared with the NSCLCs. Allele frequencies of these acquired variants were overall higher in NSCLCs. Integrative analysis of single-nucleotide variants and allelic imbalance events revealed driver genes with shared "two-hit" alterations in the airway field (e.g., TP53, KRAS, KEAP1, STK11, and CDKN2A) and those with single hits progressing to two in the NSCLCs (e.g., PIK3CA and NOTCH1).Conclusions: Tumor-adjacent and tumor-distant normal-appearing airway epithelia exhibit somatic driver alterations that undergo selection-driven clonal expansion in NSCLC. These events offer spatiotemporal insights into the development of NSCLC and, thus, potential targets for early treatment.


Asunto(s)
Adenocarcinoma/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Transformación Celular Neoplásica/genética , Epitelio/crecimiento & desarrollo , Genes Supresores de Tumor , Neoplasias Pulmonares/genética , Mutación , Adenocarcinoma/fisiopatología , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma de Pulmón de Células no Pequeñas/fisiopatología , Femenino , Humanos , Neoplasias Pulmonares/fisiopatología , Masculino , Persona de Mediana Edad , Análisis de Secuencia de ADN
14.
BMC Bioinformatics ; 20(1): 530, 2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31660858

RESUMEN

BACKGROUND: High-throughput sequencing experiments, which can determine allele origins, have been used to assess genome-wide allele-specific expression. Despite the amount of data generated from high-throughput experiments, statistical methods are often too simplistic to understand the complexity of gene expression. Specifically, existing methods do not test allele-specific expression (ASE) of a gene as a whole and variation in ASE within a gene across exons separately and simultaneously. RESULTS: We propose a generalized linear mixed model to close these gaps, incorporating variations due to genes, single nucleotide polymorphisms (SNPs), and biological replicates. To improve reliability of statistical inferences, we assign priors on each effect in the model so that information is shared across genes in the entire genome. We utilize Bayesian model selection to test the hypothesis of ASE for each gene and variations across SNPs within a gene. We apply our method to four tissue types in a bovine study to de novo detect ASE genes in the bovine genome, and uncover intriguing predictions of regulatory ASEs across gene exons and across tissue types. We compared our method to competing approaches through simulation studies that mimicked the real datasets. The R package, BLMRM, that implements our proposed algorithm, is publicly available for download at https://github.com/JingXieMIZZOU/BLMRM . CONCLUSIONS: We will show that the proposed method exhibits improved control of the false discovery rate and improved power over existing methods when SNP variation and biological variation are present. Besides, our method also maintains low computational requirements that allows for whole genome analysis.


Asunto(s)
Polimorfismo de Nucleótido Simple , Alelos , Animales , Teorema de Bayes , Bovinos , Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Modelos Logísticos , Modelos Genéticos , Reproducibilidad de los Resultados
15.
Pflugers Arch ; 471(5): 719-733, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30740621

RESUMEN

Hypertrophic cardiomyopathy (HCM) is mainly caused by mutations in sarcomeric proteins. Thirty to forty percent of identified mutations are found in the ventricular myosin heavy chain (ß-MyHC). A common mechanism explaining how numerous mutations in several different proteins induce a similar HCM-phenotype is unclear. It was proposed that HCM-mutations cause hypercontractility, which for some mutations is thought to result from mutation-induced unlocking of myosin heads from a so-called super-relaxed state (SRX). The SRX was suggested to be related to the "interacting head motif," i.e., pairs of myosin heads folded back onto their S2-region. Here, we address these structural states of myosin in context of earlier work on weak binding cross-bridges. However, not all HCM-mutations cause hypercontractility and/or are involved in the interacting head motif. But most likely, all mutations alter the force generating mechanism, yet in different ways, possibly including inhibition of SRX. Such functional-hyper- and hypocontractile-changes are the basis of our previously proposed concept stating that contractile imbalance due to unequal fractions of mutated and wildtype protein among individual cardiomyocytes over time will induce cardiomyocyte disarray and fibrosis, hallmarks of HCM. Studying ß-MyHC-mutations, we found substantial contractile variability from cardiomyocyte to cardiomyocyte within a patient's myocardium, much higher than in controls. This was paralleled by a similarly variable fraction of mutant MYH7-mRNA (cell-to-cell allelic imbalance), due to random, burst-like transcription, independent for mutant and wildtype MYH7-alleles. Evidence suggests that HCM-mutations in other sarcomeric proteins follow the same disease mechanism.


Asunto(s)
Cardiomiopatía Hipertrófica/metabolismo , Contracción Miocárdica , Miocitos Cardíacos/metabolismo , Desequilibrio Alélico , Animales , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/fisiopatología , Humanos , Mutación , Miocitos Cardíacos/fisiología
16.
Pflugers Arch ; 471(5): 781-793, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30456444

RESUMEN

Mutations in cardiac myosin binding protein C (MYBPC3) represent the most frequent cause of familial hypertrophic cardiomyopathy (HCM), making up approximately 50% of identified HCM mutations. MYBPC3 is distinct among other sarcomere genes associated with HCM in that truncating mutations make up the vast majority, whereas nontruncating mutations predominant in other sarcomere genes. Several studies using myocardial tissue from HCM patients have found reduced abundance of wild-type MYBPC3 compared to control hearts, suggesting haploinsufficiency of full-length MYBPC3. Further, decreased mutant versus wild-type mRNA and lack of truncated mutant MYBPC3 protein has been demonstrated, highlighting the presence of allelic imbalance. In this review, we will begin by introducing allelic imbalance and haploinsufficiency, highlighting the broad role each plays within the spectrum of human disease. We will subsequently focus on the roles allelic imbalance and haploinsufficiency play within MYBPC3-linked HCM. Finally, we will explore the implications of these findings on future directions of HCM research. An improved understanding of allelic imbalance and haploinsufficiency may help us better understand genotype-phenotype relationships in HCM and develop novel targeted therapies, providing exciting future research opportunities.


Asunto(s)
Cardiomiopatía Hipertrófica/genética , Proteínas Portadoras/genética , Haploinsuficiencia , Animales , Cardiomiopatía Hipertrófica/metabolismo , Proteínas Portadoras/metabolismo , Humanos
19.
Cancer Sci ; 108(3): 427-434, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28083970

RESUMEN

Tumor tissue consists of a heterogeneous cell population. The allelic imbalance (AI) ratio, determined in isolated tumor glands, is a good index of tumor heterogeneity. However, associations of the patterns of AI and microsatellite instability (MSI) development, observed in most cases of colorectal cancer (CRC), with tumor progression have not been reported previously. In this study, we examined whether CRC genetic profiles stratified by a combination of the AI ratio and MSI facilitate categorization of CRC, and whether these genetic profiles are associated with specific molecular alterations in CRC. A crypt isolation method was used to isolate DNA from tumors and normal glands obtained from 147 sporadic CRCs. AI and MSI statuses were determined using PCR-based microsatellite analysis and stratified based on AI ratio and MSI status. DNA methylation status (high methylation, intermediate methylation and low methylation status and mutations in KRAS, BRAF, and TP53 were examined. In addition, mucin markers were immunostained. Based on this analysis, four subgroups were categorized. Subgroup 1 was characterized by a high MSI status and BRAF mutation; subgroup 2 was closely associated with a high AI ratio, which accumulated during the early phases of colorectal carcinogenesis, and TP53 mutation; subgroup 3 was associated with a low AI ratio, seen during the later phases of colorectal carcinogenesis, and KRAS mutation; and subgroup 4 was defined as a minor subgroup. These results confirmed that classification of distinct molecular profiles provides important insights into colorectal carcinogenesis.


Asunto(s)
Neoplasias Colorrectales/genética , Metilación de ADN/genética , Inestabilidad de Microsatélites , Repeticiones de Microsatélite/genética , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteína p53 Supresora de Tumor/genética , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias Colorrectales/clasificación , Neoplasias Colorrectales/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mucinas/inmunología , Mutación/genética , Reacción en Cadena de la Polimerasa
20.
J Muscle Res Cell Motil ; 38(3-4): 291-302, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-29101517

RESUMEN

HCM, the most common inherited cardiac disease, is mainly caused by mutations in sarcomeric genes. More than a third of the patients are heterozygous for mutations in the MYH7 gene encoding for the ß-myosin heavy chain. In HCM-patients, expression of the mutant and the wildtype allele can be unequal, thus leading to fractions of mutant and wildtype mRNA and protein which deviate from 1:1. This so-called allelic imbalance was detected in whole tissue samples but also in individual cells. There is evidence that the severity of HCM not only depends on the functional effect of the mutation itself, but also on the fraction of mutant protein in the myocardial tissue. Allelic imbalance has been shown to occur in a broad range of genes. Therefore, we aimed to examine whether the MYH7-alleles are intrinsically expressed imbalanced or whether the allelic imbalance is solely associated with the disease. We compared the expression of MYH7-alleles in non-HCM donors and in HCM-patients with different MYH7-missense mutations. In the HCM-patients, we identified imbalanced as well as equal expression of both alleles. Also at the protein level, allelic imbalance was determined. Most interestingly, we also discovered allelic imbalance and balance in non-HCM donors. Our findings therefore strongly indicate that apart from mutation-specific mechanisms, also non-HCM associated allelic-mRNA expression regulation may account for the allelic imbalance of the MYH7 gene in HCM-patients. Since the relative amount of mutant mRNA and protein or the extent of allelic imbalance has been associated with the severity of HCM, individual analysis of the MYH7-allelic expression may provide valuable information for the prognosis of each patient.


Asunto(s)
Alelos , Desequilibrio Alélico , Miosinas Cardíacas , Cardiomiopatía Hipertrófica , Regulación Enzimológica de la Expresión Génica , Cadenas Pesadas de Miosina , Sarcómeros , Adulto , Miosinas Cardíacas/biosíntesis , Miosinas Cardíacas/genética , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/metabolismo , Cardiomiopatía Hipertrófica/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Cadenas Pesadas de Miosina/biosíntesis , Cadenas Pesadas de Miosina/genética , Sarcómeros/genética , Sarcómeros/metabolismo , Sarcómeros/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA