Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
FASEB J ; 31(1): 148-160, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27677546

RESUMEN

Monocyte/macrophages of patients with mild cognitive impairment (MCI) and Alzheimer disease (AD) are defective in phagocytosis and degradation amyloid ß1-42 (Aß1-42), but are improved by ω-3 fatty acids (ω-3s). The hypothesis of this study was that active Aß1-42 phagocytosis by macrophages prevents brain amyloidosis and thus maintains cognition. We studied the effects of self-supplementation with a drink with ω-3s, antioxidants, and resveratrol on Mini-Mental State Examination (MMSE) scores, macrophage M1M2 phenotype [the ratio of inflammatory cluster of differentiation (CD)54+CD80 and proresolution markers CD163+CD206], and Aß1-42 phagocytosis in patients initially diagnosed as having MCI or subjective cognitive impairment (SCI). At baseline, the median MMSE score in patients in both the apolipoprotein E (ApoE) ε3/ε3 and ApoE ε3/ε4 groups was 26.0 and macrophage Aß1-42 phagocytosis was defective. The MMSE rate of change increased in the ApoE ε3/ε3 group a median 2.2 points per year (P = 0.015 compared to 0) but did not change in the ApoE ε3/ε4 group (P = 0.014 between groups). In the ApoE ε3/ε3 group, all patients remained cognitively stable or improved; in the ApoE ε3/ε4 group, 1 recovered from dementia, but 3 lapsed into dementia. The macrophage phenotype polarized in patients bearing ApoE ε3/ε3 to an intermediate (green zone) M1-M2 type at the rate of 0.226 U/yr, whereas in patients bearing ApoE ε3/ε4, polarization was negative (P = 0.08 between groups). The baseline M1M2 type in the extreme M1 (red zone) or M2 (white zone) was unfavorable for cognitive outcome. Aß1-42 phagocytosis increased in both ApoE groups (P = 0.03 in each groups). In vitro, the lipidic mediator resolvin D1 (RvD1) down regulated the M1 type in patients with ApoE ε3/ε3 but in some patients with ε3/ε4, paradoxically up-regulated the M1 type. Antioxidant/ω-3/resveratrol supplementation was associated with favorable immune and cognitive responses in ApoE ε3/ε3 and individual patients bearing ApoE ε3/ε4, and brings into personalized clinical practice the immune benefits expected from ω-3 mediators called resolvins. The validity of this study is limited by its small size and uncontrolled design.-Famenini, S., Rigali, E. A., Olivera-Perez, H. M., Dang, J., Chang, M T., Halder, R., Rao, R. V., Pellegrini, M., Porter, V., Bredesen, D., Fiala, M. Increased intermediate M1-M2 macrophage polarization and improved cognition in mild cognitive impairment patients on ω-3 supplementation.


Asunto(s)
Trastornos del Conocimiento/tratamiento farmacológico , Cognición/efectos de los fármacos , Ácidos Grasos Omega-3/farmacología , Macrófagos/efectos de los fármacos , Anciano , Anciano de 80 o más Años , Apolipoproteínas E/sangre , Apolipoproteínas E/clasificación , Apolipoproteínas E/metabolismo , Suplementos Dietéticos , Ácidos Grasos Omega-3/administración & dosificación , Femenino , Humanos , Macrófagos/fisiología , Masculino , Persona de Mediana Edad
2.
Amyloid ; 30(3): 249-260, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36541892

RESUMEN

BACKGROUND: Systemic amyloidosis refers to a group of protein misfolding disorders characterized by the extracellular deposition of amyloid fibrils in organs and tissues. For reasons heretofore unknown, amyloid deposits are not recognized by the immune system, and progressive deposition leads to organ dysfunction. METHODS: In vitro and in vivo phagocytosis assays were performed to elucidate the impact of collagen and other amyloid associated proteins (eg serum amyloid p component and apolipoprotein E) had on amyloid phagocytosis. Immunohistochemical and histopathological staining regimens were employed to analyze collagen-amyloid interactions and immune responses. RESULTS: Histological analysis of amyloid-laden tissue indicated that collagen is intimately associated with amyloid deposits. We report that collagen inhibits phagocytosis of amyloid fibrils by macrophages. Treatment of 15 patient-derived amyloid extracts with collagenase significantly enhanced amyloid phagocytosis. Preclinical mouse studies indicated that collagenase treatment of amyloid extracts significantly enhanced clearance as compared to controls, coincident with increased immune cell infiltration of the subcutaneous amyloid lesion. CONCLUSIONS: These data suggest that amyloid-associated collagen serves as a 'don't eat me' signal, thereby hindering clearance of amyloid. Targeted degradation of amyloid-associated collagen could result in innate immune cell recognition and clearance of pathologic amyloid deposits.


Asunto(s)
Amiloide , Placa Amiloide , Animales , Ratones , Amiloide/metabolismo , Placa Amiloide/metabolismo , Fagocitosis/fisiología , Macrófagos/metabolismo , Proteínas Amiloidogénicas/metabolismo , Colágeno/metabolismo
3.
Front Immunol ; 14: 1275372, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37854603

RESUMEN

Introduction: Systemic amyloidosis is a progressive disorder characterized by the extracellular deposition of amyloid fibrils and accessory proteins in visceral organs and tissues. Amyloid accumulation causes organ dysfunction and is not generally cleared by the immune system. Current treatment focuses on reducing amyloid precursor protein synthesis and slowing amyloid deposition. However, curative interventions will likely also require removal of preexisting amyloid deposits to restore organ function. Here we describe a prototypic pan-amyloid binding peptide-antibody fusion molecule (mIgp5) that enhances macrophage uptake of amyloid. Methods: The murine IgG1-IgG2a hybrid immunoglobulin with a pan amyloid-reactive peptide, p5, fused genetically to the N-terminal of the immunoglobulin light chain was synthesized in HEK293T/17 cells. The binding of the p5 peptide moiety was assayed using synthetic amyloid-like fibrils, human amyloid extracts and amyloid-laden tissues as substrates. Binding of radioiodinated mIgp5 with amyloid deposits in vivo was evaluated in a murine model of AA amyloidosis using small animal imaging and microautoradiography. The bioactivity of mIgp5 was assessed in complement fixation and in vitro phagocytosis assays in the presence of patient-derived amyloid extracts and synthetic amyloid fibrils as substrates and in the presence or absence of human serum. Results: Murine Igp5 exhibited highly potent binding to AL and ATTR amyloid extracts and diverse types of amyloid in formalin-fixed tissue sections. In the murine model of systemic AA amyloidosis, 125I-mIgp5 bound rapidly and specifically to amyloid deposits in all organs, including the heart, with no evidence of non-specific uptake in healthy tissues. The bioactivity of the immunoglobulin Fc domain was uncompromised in the context of mIgp5 and served as an effective opsonin. Macrophage-mediated uptake of amyloid extract and purified amyloid fibrils was enhanced by the addition of mIgp5. This effect was exaggerated in the presence of human serum coincident with deposition of complement C5b9. Conclusion: Immunostimulatory, amyloid-clearing therapeutics can be developed by incorporating pan-amyloid-reactive peptides, such as p5, as a targeting moiety. The immunologic functionality of the IgG remains intact in the context of the fusion protein. These data highlight the potential use of peptide-antibody fusions as therapeutics for all types of systemic amyloidosis.


Asunto(s)
Amiloidosis , Placa Amiloide , Ratones , Animales , Humanos , Modelos Animales de Enfermedad , Células HEK293 , Amiloidosis/metabolismo , Amiloide/metabolismo , Proteínas Amiloidogénicas/metabolismo , Péptidos/metabolismo , Cadenas Ligeras de Inmunoglobulina
4.
J Alzheimers Dis ; 72(2): 401-412, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31594217

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is associated with the accumulation of amyloid-ß (Aß) within senile plaques in the brain and neuroinflammation, possibly driven by the activation of the NLRP3 inflammasome. Nucleoside reverse transcriptase inhibitors (NRTI) hamper the NLRP3 inflammasome assembly. OBJECTIVE: We utilized an in vitro model reproducing the Aß-driven inflammation seen in AD to analyze whether stavudine (D4T), a prototypical NRTI, modulates Aß-mediated inflammasome activation and the ability of macrophages to eliminate Aß via phagocytosis and autophagy. METHODS: THP-1-derived macrophages were stimulated in vitro with Aß42 or with Aß42 after LPS-priming in the presence/absence of D4T. NLRP3 and TREM2 expression was analyzed by RT-PCR; phagocytosis, as well as ASC-Speck formation, was analyzed by Amnis FlowSight Imaging; NLRP3-produced cytokines were quantified by ELISA and, finally, autophagy was analyzed by measuring p-ERK1/2, p-AKT, beclin, p70-S6Kinase, and Lamp by ELISA and western blot. RESULTS: IL-1ß, IL-18, and caspase-1 were increased whereas Aß phagocytosis and TREM2 were reduced in LPS+Aß42-stimulated cells. D4T reduced NLRP3 assembly as well as IL-18 and caspase-1 production, but did not affect IL-1ß production and TREM2 expression. Notably, whereas D4T reduced Aß phagocytosis, Aß autophagy by macrophages was stimulated by D4T, as witnessed by the down-modulation of ERK1/2 and AKT phosphorylation and the upregulation of beclin, LAMP, and p70-S6K, their downstream targets. CONCLUSION: In this in vitro model of AD, D4T reduces NLRP3 inflammasome-associated inflammation and stimulates Aß autophagy by macrophages. It will be interesting to verify the possibly beneficial effects of D4T in the clinical scenario.


Asunto(s)
Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/farmacología , Autofagia/efectos de los fármacos , Inflamasomas/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Inhibidores de la Transcriptasa Inversa/farmacología , Estavudina/farmacología , Células Cultivadas , Citocinas/metabolismo , Activación Enzimática/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Macrófagos/efectos de los fármacos , Glicoproteínas de Membrana/antagonistas & inhibidores , Glicoproteínas de Membrana/biosíntesis , Fagocitosis/efectos de los fármacos , Receptores Inmunológicos/antagonistas & inhibidores , Receptores Inmunológicos/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA