Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36616994

RESUMEN

To improve the stability of the bridge structure, we detect bolts in the bridge which cause the symmetry failure of the bridge center. For data acquisition, bolts are small-scale objects under complex background in images, and their feature expression ability is limited. Due to those questions, we propose a new bolt positioning detection based on improved YOLOv5 for bridge structural health monitoring. This paper makes three major contributions. Firstly, according to the calibration anchor boxes of bolts, the size and proportion parameters of the initial anchor boxes are optimized by K-means++ clustering algorithm to solve the initial clustering problem of anchor boxes in object detection. Second, the hypercolumn (HC) technique fuses the low-level global features of the trunk and the high-level local features of three different scales to solve the problem of the inefficient distribution of anchors and insufficient extraction of classification features. In this way, we improve the detection accuracy and speed of bolt detection. Finally, we establish a dataset of bridge bolts through network collection and public datasets, including 1494 images. We compare and verify the new method in the collected bolt dataset. The experimental results show that the precision (P) of the improved YOLOv5x is up to 87.3%, and the average precision (AP) is up to 86.3%, which are 6.5% and 5.9% higher than the original YOLOv5x, respectively.


Asunto(s)
Algoritmos , Calibración , Análisis por Conglomerados
2.
Sensors (Basel) ; 19(15)2019 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-31366022

RESUMEN

Vehicle detection is a challenging task in computer vision. In recent years, numerous vehicle detection methods have been proposed. Since the vehicles may have varying sizes in a scene, while the vehicles and the background in a scene may be with imbalanced sizes, the performance of vehicle detection is influenced. To obtain better performance on vehicle detection, a multi-scale vehicle detection method was proposed in this paper by improving YOLOv2. The main contributions of this paper include: (1) a new anchor box generation method Rk-means++ was proposed to enhance the adaptation of varying sizes of vehicles and achieve multi-scale detection; (2) Focal Loss was introduced into YOLOv2 for vehicle detection to reduce the negative influence on training resulting from imbalance between vehicles and background. The experimental results upon the Beijing Institute of Technology (BIT)-Vehicle public dataset demonstrated that the proposed method can obtain better performance on vehicle localization and recognition than that of other existing methods.

3.
J Xray Sci Technol ; 27(5): 839-856, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31306148

RESUMEN

BACKGROUND: Breast cancer has the highest cancer prevalence rate among the women worldwide. Early detection of breast cancer is crucial for successful treatment and reducing cancer mortality rate. However, tumor detection of breast ultrasound (US) image is still a challenging work in computer-aided diagnosis (CAD). OBJECTIVE: This study aims to develop a novel automated algorithm for breast tumor detection based on deep learning. METHODS: We proposed a new deep learning network named One-step model which have one input and two outputs, the first one was the segmentation result and the other one was used for false-positive reduction. The proposed One-step model includes three key components: Base-net, Seg-net, and Cls-net based on Anchor Box. The model chose DenseNet to construct Base-net, the decoder part of RefineNet as Seg-net, and connected several middle layers of Base-net and Seg-net to Cls-net. From the first output acquired by Base-net and Seg-net, the model detected a series of suspicious lesion regions. Then the second output from the Cls-net was used to recognize and reduce the false-positive regions. RESULTS: Experimental results showed that the new model achieved competitive detection result with 90.78% F1 score, which was 8.55% higher than Single Shot MultiBox Detector (SSD) method. In addition, running new model is also computational efficient and has comparative cost effect as SSD. CONCLUSIONS: We established a novel One-step model which improves location accuracy by generating more precise bounding box via Seg-net and removing false targets by another object detection network (Cls-net). On the other hand, a real-time detection of tumor is achieved by sharing the common Base-net. The experimental results showed that the new model performed well on various irregular and blurred ultrasound images. As a result, this study demonstrated feasibility of applying deep learning scheme to detect breast lesions depicting on US image.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Aprendizaje Profundo , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Ultrasonografía Mamaria/métodos , Algoritmos , Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Mamografía , Redes Neurales de la Computación
4.
Math Biosci Eng ; 17(6): 7772-7786, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-33378919

RESUMEN

As the basic units of the human body structure and function, cells have a considerable influence on maintaining the normal work of the human body. In medical diagnosis, cell examination is an important part of understanding the human function. Incorporating cell examination into medical diagnosis would greatly improve the efficiency of pathological research and patient treatment. In addition, cell segmentation and identification technology can be used to quantitatively analyze and study cellular components at the molecular level. It is conducive to the study of the pathogenesis of diseases and to the formulation of highly effective disease treatment programs. However, because cells are of diverse types, their numbers are huge, and they exist in the order of micrometers, detecting and identifying cells without using a deep learning-based computer program are extremely difficult. Therefore, the use of computers to study and analyze cells has a certain practical value. In this work, target detection theory using deep learning is applied to cell detection. A target recognition network model is built based on the faster region-based convolutional neural network (R-CNN) algorithm, and the anchor box is designed in accordance with the characteristics of the data set. Different design methods influence cell detection results. Using the object detection method based on our novel faster R-CNN framework to detect the cell image can help improve the speed and accuracy of cell detection. The method has considerable advantages in dealing with the identification of flowing cells.


Asunto(s)
Algoritmos , Redes Neurales de la Computación , Humanos , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA