Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.420
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(7): e2220419120, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36749718

RESUMEN

The growing demands for high-energy density electrical energy storage devices stimulate the coupling of conversion-type cathodes and lithium (Li) metal anodes. While promising, the use of these "Li-free" cathodes brings new challenges to the Li anode interface, as Li needs to be dissolved first during cell operation. In this study, we have achieved a direct visualization and comprehensive analysis of the dynamic evolution of the Li interface. The critical metrics of the interfacial resistance, Li growth, and solid electrolyte interface (SEI) distribution during the initial dissolution/deposition processes were systematically investigated by employing multidimensional analysis methods. They include three-electrode impedance tests, in situ atomic force microscopy, scanning electrochemical microscopy, and cryogenic scanning transmission electron microscopy. The high-resolution imaging and real-time observations show that a loose, diffuse, and unevenly distributed SEI is formed during the initial dissolution process. This leads to the dramatically fast growth of Li during the subsequent deposition, deviating from Fick's law, which exacerbates the interfacial impedance. The compactness of the interfacial structure and enrichment of electrolyte species at the surface during the initial deposition play critical roles in the long-term stability of Li anodes, as revealed by operando confocal Raman spectroscopic mapping. Our observations relate to ion transfer, morphological and structural evolution, and Li (de)solvation at Li interfaces, revealing the underlying pathways influenced by the initial dissolution process, which promotes a reconsideration of anode investigations and effective protection strategies.

2.
Proc Natl Acad Sci U S A ; 120(32): e2306835120, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37523542

RESUMEN

The electrochemical oxidation process has the unique advantage of in-situ •OH generation for deep mineralization of organic pollutants, which is expected to provide a solution for the globally decentralized wastewater treatment and reuse. However, it is still a great challenge to develop low-cost anodes with ultrahigh •OH yield and low energy consumption. Here, a low-cost and stable mixed metal oxide (MMO) anode (Cu-Sb-SnO2) developed by a simple and scalable preparation process presents extremely high organic pollutants degradation efficiency and low energy consumption. The tetracycline degradation kinetics constant of the Cu-Sb-SnO2 system (0.362 min-1) was 9 to 45 times higher than that of other prepared anodes, which is superior to the existing anodes reported so far. The experimental results and theoretical calculations indicate that the Cu-Sb-SnO2 has moderate oxygen evolution potential, larger water adsorption energy, and lower reaction energy barrier, which is conducive to selective water oxidation to generate •OH. Notably, it is systematically and comprehensively confirmed that the generation of •OH triggered by in situ electrogenerated Cu(III) increased •OH steady-state concentration by over four times. Furthermore, the doped Cu species can play a key role in promoting charge transfer as an "electronic porter" between Sn and Sb in the electrocatalytic process by adjusting the electronic structure of the Sb-SnO2 electrode. This work paves the way for the development of MMO anodes utilizing the advantage of the Cu redox shuttle.

3.
Proc Natl Acad Sci U S A ; 119(40): e2210203119, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161916

RESUMEN

Hard carbon is regarded as the most promising anode material for sodium-ion (Na-ion) batteries, owing to its advantages of high abundance, low cost, and low operating potential. However, the rate capability and cycle life span of hard carbon anodes are far from satisfactory, severely hindering its industrial applications. Here, we demonstrate that the desolvation process defines the Na-ion diffusion kinetics and the formation of a solid electrolyte interface (SEI). The 3A zeolite molecular sieve film on the hard carbon is proposed to develop a step-by-step desolvation pathway that effectively reduces the high activation energy of the direct desolvation process. Moreover, step-by-step desolvation yields a thin and inorganic-dominated SEI with a lower activation energy for Na+ transport. As a result, it contributes to greatly improved power density and cycling stability for both ester and ether electrolytes. When the above insights are applied, the hard carbon anode achieves the longest life span and minimum capacity fading rate at all evaluated current densities. Moreover, with the increase in current densities, an improved plateau capacity ratio is observed. This step-by-step desolvation strategy comprehensively enhances various properties of hard carbon anodes, which provides the possibility of building practical Na-ion batteries with high power density, high energy density, and durability.

4.
Nano Lett ; 24(32): 9839-9845, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39087826

RESUMEN

Hard carbon (HC) is a promising anode candidate for Na-ion batteries (NIBs) because of its excellent Na-storage performance, abundance, and low cost. However, a precise understanding of its Na-storage behavior remains elusive. Herein, based on the D2O/H2SO4-based TMS results collected on charged/discharged state HC electrodes, detailed Na-storage mechanisms (the Na-storage states and active sites in different voltage regions), specific SEI dynamic evolution process (formation, rupture, regeneration and loss), and irreversible capacity contribution (dead Na0, NaH, etc.) were elucidated. Moreover, by employing the online electrochemical mass spectrometry (OEMS) to monitor the gassing behavior of HC-Na half-cell during the overdischarging process, a surprising rehydrogen evolution reaction (re-HER) process at around 0.02 V vs Na+/Na was identified, indicating the occurrence of Na-plating above 0 V vs Na+/Na. Additionally, the typical fluorine ethylene carbonate (FEC) additive was demonstrated to reduce the accumulation of dead Na0 and inhibit the re-HER process triggered by plated Na.

5.
Nano Lett ; 24(14): 4055-4063, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38554070

RESUMEN

Aqueous rechargeable zinc-based batteries hold great promise for energy storage applications, with most research utilizing zinc foils as the anode. Conversely, the high tunability of zinc powder (Zn-P) makes it an ideal choice for zinc-based batteries, seamlessly integrating with current battery production technologies. However, challenges such as contact loss, dendrite formation, and a high tendency for corrosion significantly hamper the performance enhancement of Zn-P anodes. This review provides an overview of strategies adopted from various perspectives, including zinc powder optimization, electrode engineering, and electrolyte modification, to address these issues. Additionally, it explores the limitations of existing research and offers valuable insights into potential future directions for further advancements in Zn-P anodes.

6.
Small ; 20(6): e2305793, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37771177

RESUMEN

Gradient-structured materials hold great promise in the areas of batteries and electrocatalysis. Here, yolk-shell gradient-structured SiOx -based anode (YSG-SiOx /C@C) derived from periodic mesoporous organosilica spheres (PMOs) through a selective etching method is reported. Capitalizing on the poor hydrothermal stability of inorganic silica in organic-inorganic hybrid silica spheres, the inorganic silica component in the hybrid spheres is selectively etched to obtain yolk-shell-structured PMOs. Subsequently, the yolk-shell PMOs are coated with carbon to fabricate YSG-SiOx /C@C. YSG-SiOx /C@C is comprised of a core with uniform distribution of SiOx and carbon at the atomic scale, a middle void layer, and outer layers of SiOx and amorphous carbon. This unique gradient structure and composition from inside to outside not only enhances the electrical conductivity of the SiOx anode and reduces the side reactions, but also reserves void space for the expansion of SiOx , thereby effectively mitigating the stress caused by volumetric effect. As a result, YSG-SiOx /C@C exhibits exceptional cycling stability and rate capability. Specifically, YSG-SiOx /C@C maintains a specific capacity of 627 mAh g-1 after 400 cycles at 0.5 A g-1 , and remains stable even after 550 cycles at current density of 2 A g-1 , achieving a specific capacity of 519 mAh g-1 .

7.
Small ; 20(11): e2306939, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37929662

RESUMEN

The performance of zinc-ion batteries is severely hindered by the uncontrolled growth of dendrites and the severe side reactions on the zinc anode interface. To address these challenges, a weak-water-coordination electrolyte is realized in a peptone-ZnSO4 -based electrolyte to simultaneously regulate the solvation structure and the interfacial environment. The peptone molecules have stronger interaction with Zn2+ ions than with water molecules, making them more prone to coordinate with Zn2+ ions and then reducing the active water in the solvated sheath. Meantime, the peptone molecules selectively adsorb on the Zn metal surface, and then are reduced to form a stable solid-electrolyte interface layer that can facilitate uniform and dense Zn deposition to inhabit the dendritic growth. Consequently, the Zn||Zn symmetric cell can exhibit exceptional cycling performance over 3200 h at 1.0 mA cm-2 /1.0 mAh cm-2 in the peptone-ZnSO4 -based electrolyte. Moreover, when coupled with a Na2 V6 O16 ·3H2 O cathode, the cell exhibits a long lifespan of 3000 cycles and maintains a high capacity retention rate of 84.3% at 5.0 A g-1 . This study presents an effective approach for enabling simultaneous regulation of the solvation structure and interfacial environment to design a highly reversible Zn anode.

8.
Small ; 20(11): e2308209, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37880867

RESUMEN

Orientation guidance has shown its cutting edges in electrodeposition modulation to promote Zn anode stability toward commercialized standards. Nevertheless, large-scale orientational deposition is handicapped by the competition between Zn-ion reduction and mass transfer. Herein, a holistic electrolyte additive protocol is put forward via incorporating bio-derived dextrin molecules into a zinc sulfate electrolyte bath. Electrochemical tests in combination with molecular dynamics simulations demonstrate the alleviation of concentration polarization throughout accelerating Zn2+ diffusion and retarding their reduction. The predominant (101) texture on inert current collectors (i.e., Cu, Ti, and stainless steel) and (101)/(002) textures on Zn foils afford homogeneous electrical field distribution, which is contributed by the work difference to form the 2D nucleus and the adsorption of dextrin molecules, respectively. Consequently, the symmetric cell harvests a longevous cycling lifespan of over 4000 h at 0.5 mA cm-2 /0.5 mAh cm-2 while the Zn@Cu electrode sustains for 240 h at a high depth of discharge of 40%.

9.
Small ; 20(12): e2307557, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37946707

RESUMEN

Although zinc metal anode is promising for zinc-ion batteries (ZIBs) owing to high energy density, its reversibility is significantly obstructed by uncontrolled dendrite growth and parasitic reactions. Optimizing electrolytes is a facile yet effective method to simultaneously address these issues. Herein, 2-(N-morpholino)ethanesulfonic acid (MES), a pH buffer as novel additive, is initially introduced into conventional ZnSO4 electrolyte to ensure a dendrite-free zinc anode surface, enabling a stable Zn/electrolyte interface, which is achieved by controlling the solvated sheath through H2O poor electric double layer (EDL) derived from zwitterionic groups. Moreover, this zwitterionic additive can balance localized H+ concentration of the electrolyte system, thus preventing parasitic reactions in damaging electrodes. DFT calculation proves that the MES additive has a strong affinity with Zn2+ and induces uniform deposition along (002) orientation. As a result, the Zn anode in MES-based electrolyte exhibits exceptional plating/stripping lifespan with 1600 h at 0.5 mA cm-2 (0.5 mAh cm-2) and 430 h at 5.0 mA cm-2 (5.0 mAh cm-2) while it maintains high coulombic efficiency of 99.8%. This work proposes an effective and facile approach for designing dendrite-free anode for future aqueous Zn-based storage devices.

10.
Small ; 20(7): e2305686, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37727094

RESUMEN

Highly porous carbon materials with a rationally designed pore structure can be utilized as reservoirs for metal or nonmetal components. The use of small-sized metal or metal compound nanoparticles, completely encapsulated by carbon materials, has attracted significant attention as an effective approach to enhancing sodium ion storage properties. These materials have the ability to mitigate structural collapse caused by volume expansion during the charging process, enable short ion transport length, and prevent polysulfide elution. In this study, a concept of highly porous carbon-coated carbon nanotube (CNT) porous microspheres, which serve as excellent reservoir materials is suggested and a porous microsphere is developed by encapsulating iron sulfide nanocrystals within the highly porous carbon-coated CNTs using a sulfidation process. Furthermore, various sulfidation processes to determine the optimal method for achieving complete encapsulation are investigated by comparing the morphologies of diverse iron sulfide-carbon composites. The fully encapsulated structure, combined with the porous carbon, provides ample space to accommodate the significant volume changes during cycling. As a result, the porous iron sulfide-carbon-CNT composite microspheres exhibited outstanding cycling stability (293 mA h g-1 over 600 cycles at 1 A g-1 ) and remarkable rate capability (100 mA h g-1 at 5 A g-1 ).

11.
Small ; 20(13): e2307026, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37972253

RESUMEN

Achieving stable Zn plating/stripping under high current density and large area capacity remains a major challenge for metal Zn anodes. To address this issue, common filter paper is utilized to construct 3D carbon fiber skeleton film modified with gradient Cu nanoparticles (CFF@Cu). The original zincophobic hydrophilic CFF is transformed into gradient zincophilic and reversed gradient hydrophilic composite, due to the gradient distribution of Cu nanoparticles. When CFF@Cu is placed above Zn foil as an auxiliary anode, Zn foil anode exhibits stable, reversible, and dendrite-free Zn plating/stripping for 1200 h at 10 mA cm-2 and 2 mAh cm-2, 2000 h at 2 mA cm-2 and 2 mAh cm-2, 340 h at 10 mA cm-2 and 10 mAh cm-2. Additionally, nucleation barrier of Zn, Zn2+ transport and deposition kinetics are improved. The deposits on the Zn foil anode become homogeneous, dense, and fine. Side reactions and by-products are effectively inhibited. The excellent performance is mainly attributed to the gradient zincophilic field in 3D CFF. A portion of Zn2+ is captured by Cu and deposited within CFF@Cu from bottom to top, which reduces and homogenizes Zn2+ flux on Zn foil, as well as weakens and homogenizes electric field on Zn foil.

12.
Small ; 20(1): e2304558, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37649197

RESUMEN

Near-neutral zinc-air batteries (ZABs) have garnered significant research interest due to their high energy density, exceptional electrochemical reversibility, and adaptability to ambient air. However, these batteries suffer from substantial electrochemical polarization, low energy efficiency, and poor rate performance. In this study, a mesoporous carbon (meso-C) with a high specific surface area (1081 m2 g-1 ) and abundant porous structure for the cathode of near-neutral ZABs using a scalable synthesis method is prepared. The meso-C-based cathode is endowed with stable hydrophobicity and abundant electrochemical active sites, which considerably improve the energy efficiency, rate performance, and cycle life of the battery compare to commercial carbon black-based cathode when applied to near-neutral ZABs with 1 mol kg-1 (1 m) zinc acetate and 1 m zinc trifluoromethanesulfonate electrolytes. Additionally, the mesopores of meso-C facilitate the construction of better three-phase reaction interfaces and contribute to better electrochemical reversibility. The work presents a general and scalable approach for carbon materials in the cathode of near-neutral ZABs.

13.
Small ; : e2311779, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38530085

RESUMEN

Micrometer-sized Si particles are beneficial to practical lithium-ion batteries in regard to low cost and high volumetric energy density in comparison with nanostructured Si anodes. However, both the issues of electrical contact loss and overgrowth of solid electrolyte interface for microscale Si induced by colossal volume change still remain to be addressed. Herein, a scalable and template-free method is introduced to fabricate yolk-shell structured Si anode from commercially available Si microparticles. The void is created via a one-step alkali etching process with the remaining silicon core as the yolk, and a double-walled shell is formed from simultaneous in situ growth of the conformal native oxide layer and subsequent carbon coating. In this configuration, the well-defined void spaces allow the Si core to expand without compromising structural integrity, while the double-walled shell acts as a static capsule to confine silicon fragments despite likely particle fracture. Therefore, electrical connectivity is maintained on both the particle and electrode level during deep galvanostatic cycling, and the solid-electrolyte interface is stabilized on the shell surface. Owing to the benefits of tailored design, excellent cycling stability (capacity retention of 95% after 100 cycles) and high coulombic efficiency (99.5%) are realized in a practical full-cell demonstration.

14.
Small ; 20(29): e2400085, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38329164

RESUMEN

Modulating the solvation structure of hydrated zinc ions using organic additives stands as a pragmatic approach to suppress dendrite formation and corrosion on zinc metal anodes (ZMAs), thereby enhancing the rechargeability of aqueous Zn-ion batteries. However, fundamental screening principles for organic additives with diverse molecular structures remain elusive, especially for isomers with the same molecular formula. This study delves into the impact of three isomeric hexagonal alcohols (mannitol, sorbitol, and galactitol) as additives in adjusting Zn2+ solvation structural behaviors within ZnSO4 baseline electrolytes. Electrical measurements and molecular simulations reveal the specific molecular structure of mannitol, which features interweaving electron clouds between adjacent hydroxyl groups, achieving a high local electron cloud density. This phenomenon significantly enhances desolvation abilities, thus establishing a more stable anode/electrolyte interface chemistry. Even at 5 mA cm-2 for 2.5 mAh cm-2 capacity, Zn||Zn symmetric cells with mannitol-regulated electrolyte display an impressive 1170 h lifespan, far exceeding those with other isomer additives and is nearly tenfold longer than that with a pure ZnSO4 electrolyte (120 h). Rather than strictly adhering to focusing on chemical composition, this study with emphasis on optimizing molecular structure offers a promising untapped dimension to screen more efficient additives to enhance the reversibility of ZMAs.

15.
Small ; 20(32): e2401478, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38528390

RESUMEN

Constructing a porous structure is considered an appealing strategy to improve the electrochemical properties of carbon anodes for potassium-ion batteries (PIBs). Nevertheless, the correlation between electrochemical K-storage performance and pore structure has not been well elucidated, which hinders the development of high-performance carbon anodes. Herein, various porous carbons are synthesized with porosity structures ranging from micropores to micro/mesopores and mesopores, and systematic investigations are conducted to establish a relationship between pore characteristics and K-storage performance. It is found that micropores fail to afford accessible active sites for K ion storage, whereas mesopores can provide abundant surface adsorption sites, and the enlarged interlayer spacing facilitates the intercalation process, thus resulting in significantly improved K-storage performances. Consequently, PCa electrode with a prominent mesoporous structure achieves the highest reversible capacity of 421.7 mAh g-1 and an excellent rate capability of 191.8 mAh g-1 at 5 C. Furthermore, the assembled potassium-ion hybrid capacitor realizes an impressive energy density of 151.7 Wh kg-1 at a power density of 398 W kg-1. The proposed work not only deepens the understanding of potassium storage in carbon materials with distinctive porosities but also paves a path toward developing high-performance anodes for PIBs with customized energy storage capabilities.

16.
Small ; : e2403062, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940238

RESUMEN

Aqueous Zn-ion batteries (ZIBs) are considered to be one of the most promising energy storage devices in the post-lithium-ion era with fast ionic conductivity, safety, and low cost. However, excessive accumulation of zinc dendrites will fracture and produce dead zinc, resulting in the unsatisfied utilization rate of Zn anodes, which greatly restricts the lifespan of the battery and reduces the reversibility. In this paper, by constructing a protective layer of ZnSnO3 hollow nanospheres in situ growth on the surface of the Zn anode, more zincophilic sites are established on the electrode surface. It demonstrates that uniform deposition of Zn ions by deepening the binding energy with Zn ion and its unique hollow structure shortens the diffusion distance of Zn ions and enhances the reaction kinetics. The assembled Zn-ion hybrid supercapacitor (ZHSC) of ZnSnO3@Zn//AC achieved a long-term lifespan with 4000 cycles at a current density of 10 mA cm-2 with a Coulombic efficiency of 99.31% and capacity retention of 79.6%. This work offers a new path for advanced Zn anodes interphase supporting the long cycle life with large capacities and improving electrochemical reversibility.

17.
Small ; : e2403831, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949398

RESUMEN

Lithium metal batteries are regarded as promising candidates for next-generation energy storage systems. However, their anodes are susceptible to interfacial instability due to significant volume changes, which significantly impacts the cycle life of lithium metal batteries. Here, a rapid method for the fabrication of 3D-hosts with interface modified layers is reported. A simple infiltration and heating process enables the transformation of copper foam into Zn-BDC-modified copper foam within 1 min, rendering it suitable for use as a current collector for lithium metal anodes. The Zn-BDC nanosheets with high lithiophilicity are uniformly distributed on the surface of the current collector, facilitating the uniform deposition of lithium and reducing the volume change. Consequently, the half cell exhibits a remarkably low overpotential (26 mV) at a current-density of 4 mA cm-2 and is cycled stably for 1000 h. Furthermore, it demonstrates a significant enhancement in performance in the LiFePO4 full cell. This study provides a crucial reference on the connection between the interfacial modification of the current collector and the lithium deposition behavior, which promotes the practicalization of lithium metal anodes.

18.
Small ; : e2401491, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38751305

RESUMEN

The design and fabrication of a lithiophilic skeleton are highly important for constructing advanced Li metal anodes. In this work, a new lithiophilic skeleton is reported by planting metal sulfides (e.g., Ni3S2) on vertical graphene (VG) via a facile ultrafast Joule heating (UJH) method, which facilitates the homogeneous distribution of lithiophilic sites on carbon cloth (CC) supported VG substrate with firm bonding. Ni3S2 nanoparticles are homogeneously anchored on the optimized skeleton as CC/VG@Ni3S2, which ensures high conductivity and uniform deposition of Li metal with non-dendrites. By means of systematic electrochemical characterizations, the symmetric cells coupled with CC/VG@Ni3S2 deliver a steady long-term cycle within 14 mV overpotential for 1800 h (900 cycles) at 1 mA cm-2 and 1 mAh cm-2. Meanwhile, the designed CC/VG@Ni3S2-Li||LFP full cell shows notable electrochemical performance with a capacity retention of 92.44% at 0.5 C after 500 cycles and exceptional rate performance. This novel synthesis strategy for metal sulfides on hierarchical carbon-based materials sheds new light on the development of high-performance lithium metal batteries (LMBs).

19.
Small ; 20(5): e2306428, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37759404

RESUMEN

Silicon (Si) is considered a promising commercial material for the next-generation of high-energy density lithium-ion battery (LIB) due to its high theoretical capacity. However, the severe volume changes and the poor conductivity hinder the practical application of Si anode. Herein, a novel core-shell heterostructure, Si as the core and V3 O4 @C as the shell (Si@V3 O4 @C), is proposed by a facile solvothermal reaction. Theoretical simulations have shown that the in-situ-formed V3 O4 layer facilitates the rapid Li+ diffusion and lowers the energy barrier of Li transport from the carbon shell to the inner core. The 3D network structure constructed by amorphous carbon can effectively improve electronic conductivity and structural stability. Benefiting from the rationally designed structure, the optimized Si@V3 O4 @C electrode exhibits an excellent cycling stability of 1061.1 mAh g-1 at 0.5 A g-1 over 700 cycles (capacity retention of 70.0%) with an average Coulombic efficiency of 99.3%. In addition, the Si@V3 O4 @C||LiFePO4 full cell shows a superior capacity retention of 78.7% after 130 cycles at 0.5 C. This study opens a novel way for designing high-performance silicon anode for advanced LIBs.

20.
Small ; 20(5): e2305964, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37759425

RESUMEN

Hosts hold great prospects for addressing the dendrite growth and volume expansion of the Li metal anode, but Li dendrites are still observable under the conditions of high deposition capacity and/or high current density. Herein, a nitrogen-doped graphene mesh (NGM) is developed, which possesses a conductive and lithiophilic scaffold for efficient Li deposition. The abundant nanopores in NGM can not only provide sufficient room for Li deposition, but also speed up Li ion transport to achieve a high-rate capability. Moreover, the evenly distributed N dopants on the NGM can guide the uniform nucleation of Li so that to inhibit dendrite growth. As a result, the composite NGM@Li anode shows satisfactory electrochemical performances for Li-S batteries, including a high capacity of 600 mAh g-1 after 300 cycles at 1 C and a rate capacity of 438 mAh g-1 at 3 C. This work provides a new avenue for the fabrication of graphene-based hosts with large areal capacity and high-rate capability for Li metal batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA