Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Bioorg Chem ; 109: 104700, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33607361

RESUMEN

A chemical investigation of the zoantharian Zoanthus vietnamensis, collected off Taiwan, yielded eleven new alkaloids, 7α-hydroxykuroshine J (1), 18ß-hydroxykuroshine J (2), 5α-hydroxyzoanthenamine (3), 5ß-hydroxyzoanthenamine (4), 14α-hydroxyzoanthenamine (5), 30-hydroxyzoanthenamine (6), 11-dehydroxy-18-epi-kuroshine A (7), 5α-hydroxykuroshine A (8), 7ß-hydroxykuroshine A (9), 11-keto-oxyzoanthamine (10), and 30-hydroxyzoanthamine (11), along with eight known compounds (12-19). The structures of these compounds were identified by detailed spectroscopic data, including HRESIMS, IR, NMR, and UV spectra. All secondary metabolites isolated from Z. vietnamensis were investigated for the anti-angiogenic effect in human endothelial progenitor cells (EPCs). Compounds 6, 7, 11, and 13 exhibited mild anti-angiogenic effect by blocking cell growth and tube formation of EPCs. The neuroprotective potential of four major compounds 12, 14, 15, and 19 against paclitaxel-induced neurotoxicity was evaluated. Pretreatment of 14 and 15 protected paclitaxel-damaged neurite outgrowth of dorsal root ganglion (DRG) neurons, without interfering the cytotoxic activity of paclitaxel on cervical cancer SiHa cells.


Asunto(s)
Alcaloides/farmacología , Antozoos/química , Antineoplásicos/farmacología , Supervivencia Celular/efectos de los fármacos , Neovascularización Patológica/tratamiento farmacológico , Neuronas/efectos de los fármacos , Alcaloides/química , Animales , Antineoplásicos/química , Línea Celular Tumoral , Descubrimiento de Drogas , Ganglios Espinales/citología , Humanos , Ratones , Estructura Molecular , Paclitaxel/toxicidad , Células Madre/efectos de los fármacos
2.
J Biol Inorg Chem ; 25(3): 395-409, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32162071

RESUMEN

New anticancer platinum(II) compounds simultaneously targeting tumor cells and tumor-derived neoangiogenesis, with new DNA interacting mode and large therapeutic window are appealing alternative to improve efficacy of clinical platinum chemotherapeutics. Herein, we describe three novel dinuclear [{Pt(en)Cl}2(µ-L)]2+ complexes with different pyridine-like bridging ligands (L), 4,4'-bipyridine (Pt1), 1,2-bis(4-pyridyl)ethane (Pt2) and 1,2-bis(4-pyridyl)ethene (Pt3), which highly, positively charged aqua derivatives, [{Pt(en)(H2O)}2(µ-L)]4+, interact with the phosphate backbone forming DNA-Pt adducts with an unique and previously undescribed binding mode, called a minor groove covering. The results of this study suggested that the new binding mode of the aqua-Pt(II) complexes with DNA could be attributed to the higher anticancer activities of their chloride analogues. All three compounds, particularly complex [{Pt(en)Cl}2(µ-4,4'-bipy)]Cl2·2H2O (4,4'-bipy is 4,4'-bipyridine) (Pt1), overcame cisplatin resistance in vivo in the zebrafish-mouse melanoma xenograft model, showed much higher therapeutic potential than antiangiogenic drug sunitinib malate, while effectively blocking tumor neovascularization and melanoma cell metastasis. Overall therapeutic profile showed new dinuclear Pt(II) complexes could be novel, effective and safe anticancer agents. Finally, the correlation with the structural characteristics of these complexes can serve as a useful tool for developing new and more effective anticancer drugs.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Antineoplásicos/farmacología , ADN/química , Neovascularización Patológica/tratamiento farmacológico , Compuestos Organoplatinos/farmacología , Piridinas/farmacología , Inhibidores de la Angiogénesis/síntesis química , Inhibidores de la Angiogénesis/química , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Sitios de Unión/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Estructura Molecular , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Compuestos Organoplatinos/síntesis química , Compuestos Organoplatinos/química , Piridinas/química , Viscosidad , Pez Cebra
3.
Mar Drugs ; 17(1)2019 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-30641954

RESUMEN

Sulfated galactofucan (ST-2) was obtained from Sargassum thunbergii. It was then desulfated to obtain ST-2-DS, and autohydrolyzed and precipitated by ethanol to obtain the supernatant (ST-2-S) and precipitate (ST-2-C). ST-2-C was further fractionated by gel chromatography into two fractions, ST-2-H (high molecular weight) and ST-2-L (low molecular weight). Mass spectrometry (MS) of ST-2-DS was performed to elucidate the backbone of ST-2. It was shown that ST-2-DS contained a backbone of alternating galactopyranose residues (Gal)n (n ≤ 3) and fucopyranose residues (Fuc)n. In addition, ST-2-S was also determined by MS to elucidate the branches of ST-2. It was suggested that sulfated fuco-oligomers might be the branches of ST-2. Compared to the NMR spectra of ST-2-H, the spectra of ST-2-L was more recognizable. It was shown that ST-2-L contain a backbone of (Gal)n and (Fuc)n, sulfated mainly at C4 of Fuc, and interspersed with galactose (the linkages were likely to be 1→2 and 1→6). Therefore, ST-2 might contain a backbone of (Gal)n (n ≤ 3) and (Fuc)n. The sulfation pattern was mainly at C4 of fucopyranose and partially at C4 of galactopyranose, and the branches were mainly sulfated fuco-oligomers. Finally, the anti-tumor and anti-angiogenic activities of ST-2 and its derivates were determined. It was shown that the low molecular-weight sulfated galactofucan, with higher fucose content, had better anti-angiogenic and anti-tumor activities.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Antineoplásicos/farmacología , Polisacáridos/farmacología , Sargassum/química , Células A549 , Inhibidores de la Angiogénesis/química , Inhibidores de la Angiogénesis/aislamiento & purificación , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Evaluación Preclínica de Medicamentos , Galactosa/química , Células Endoteliales de la Vena Umbilical Humana , Humanos , Espectroscopía de Resonancia Magnética , Estructura Molecular , Peso Molecular , Polisacáridos/química , Polisacáridos/aislamiento & purificación
4.
Cancer Invest ; 36(4): 211-220, 2018 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-29727200

RESUMEN

Tamoxifen is a first targeted drug that continues to be the gold standard in treatment of estrogen receptor positive breast cancer for almost 50 years. The current review is an update of the paper published in 2012. We provide the new data on the tamoxifen targets that are the key points of signaling cascades activating cellular proliferation, which determines aggressiveness of disease and chemotherapy resistance or sensitivity. Some inspiring clinical cases dealing with tamoxifen efficiency in treatment of different tumors are discussed. Additionally, the review includes data on antiviral, antibacterial, antifungal and antiparasitic activity of tamoxifen.


Asunto(s)
Neoplasias/tratamiento farmacológico , Tamoxifeno/farmacología , Animales , Antineoplásicos Hormonales/farmacología , Humanos , Terapia Molecular Dirigida , Neoplasias/metabolismo , Receptores de Esteroides/metabolismo
5.
Cureus ; 16(3): e55605, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38586722

RESUMEN

Introduction  Nanoparticles, owing to their minuscule size, have become pivotal in diverse scientific endeavors, presenting unique characteristics with applications spanning medicine to environmental science. Selenium nanoparticles (SeNPs) exhibit potential in diverse biomedical uses. Aim This research investigates the potential anti-inflammatory and anticancer properties of SeNPs, which are synthesized using the green synthesis method. This eco-friendly approach aligns with sustainable practices and utilizes clove extract (Syzygium aromaticum). Materials and methods Clove extract facilitates SeNP synthesis via sodium selenite reduction. The characterization methods comprised Fourier-transform infrared (FTIR) spectroscopy, UV-VIS spectroscopy, and scanning electron microscopy (SEM). Assessments covered antioxidant properties, chorioallantoic membrane assay (CAM) assay for antiangiogenic effects, toxicity evaluation, and antibacterial assays. Results Successful synthesis of SeNPs was verified by a UV-visible absorption peak at 256 nm and FTIR peaks around 3500-500 cm -1, and the spherical morphology was confirmed by SEM analysis with EDAX, which indicated the presence of SeNPs and their unique properties. Phytochemical substances are active chemicals that contribute to the properties of SeNPs. The SeNPs exhibited antioxidant activity with an IC50 value of 0.437 µg/mL and antibacterial properties against bacterial pathogen Salmonella species, with a zone of inhibition measuring 19 mm. The CAM assay demonstrated possible antiangiogenic actions, and toxicity testing on Artemia nauplii showed biocompatibility. Conclusion This study underscores the efficient synthesis of SeNPs using clove extract, emphasizing their potential applications. The notable properties of SeNPs emphasize their promise for diverse biomedical and environmental uses.

6.
Bioorg Med Chem Lett ; 23(16): 4552-6, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23845217

RESUMEN

We report herein the synthesis of novel diarylamino-1,3,5-triazine derivatives as FAK (focal adhesion kinase) inhibitors and the evaluation of their anti-angiogenic activity on HUVEC cells. Generally, the effects of these compounds on endothelial cells could be correlated with their kinase inhibitory activity. The most efficient compounds displayed inhibition of viability against HUVEC cells in the micromolar range, as observed with TAE-226, which was designed by Novartis Pharma AG. X-ray crystallographic analysis of the co-crystal structure for compound 34 revealed that the mode of interaction with the FAK kinase domain is highly similar to that observed in the complex of TAE-226.


Asunto(s)
Inhibidores de la Angiogénesis/síntesis química , Inhibidores de la Angiogénesis/farmacología , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Proteína-Tirosina Quinasas de Adhesión Focal/antagonistas & inhibidores , Triazinas/síntesis química , Inhibidores de la Angiogénesis/química , Supervivencia Celular/efectos de los fármacos , Cristalografía por Rayos X , Células Endoteliales/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/química , Células Endoteliales de la Vena Umbilical Humana , Humanos , Estructura Molecular , Morfolinas/química , Morfolinas/farmacología , Triazinas/química , Triazinas/farmacología
7.
Biomed Pharmacother ; 167: 115481, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37703664

RESUMEN

Eleven alkaloids, including five previously undescribed indolizidine alkaloids (1, 2a, 2b, 3a, and 3b) and four new pyrrolidine alkaloids (5-8), were isolated from the roots of Anisodus tanguticus. Of these, two new pairs of enantiomeric alkaloids (2a/2b and 3a/3b) are the first examples of alkaloids containing both indolizidine and pyrrolidine structural fragments. The one-carbon bridge connections with two pyrrolidine rings (6) or with a pyrrolidine ring and a pyridine ring (8) are the first reported from nature. Extensive spectroscopic techniques were used to elucidate their structures, and NMR and ECD calculations were used to determine the absolute configurations. The viability of human umbilical vein endothelial cells (HUVECs) was inhibited by compounds 2a, 2b, 3a, 4b, and 5, and compound 2b exhibited a potential anti-angiogenic effect by inhibiting the proliferation, migration, and tube formation of HUVECs. A chorioallantoic membrane assay also demonstrated the anti-angiogenic activity of 2b. In addition, compounds 2a, 2b, 3a, and 4b exhibited moderate cytotoxicity against A2780 cells.

8.
Biomol Ther (Seoul) ; 31(4): 456-465, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37357018

RESUMEN

Cervical tumors represent a prevalent form of cancer affecting women worldwide; current treatment options involve surgery, radiotherapy, and chemotherapy. Angiogenesis, the process of new blood vessel formation, is a crucial factor in cervical tumor growth. The molecular mechanisms underlying the effects of the liver kinase B1 (LKB1/STK11) tumor suppressor protein on tumor angiogenesis have not been elucidated. Therefore, we investigated the role of LKB1 in cervical tumor angiogenesis both in vitro and in vivo in this study. Our results demonstrated that LKB1 inhibited cervical tumor angiogenesis by suppressing the expression of angiogenesis-related factors such as vascular endothelial growth factor (VEGF) and hypoxia inducible factor-1α. LKB1 directly affected both carcinoma and vascular endothelial cells, resulting in a significant reduction in tumor growth and angiogenesis. Furthermore, LKB1 was found to bind to VEGF receptor 2 (VEGFR-2) and target the VEGFR-2-mediated protein kinase B/mechanistic target of rapamycin signaling pathway in endothelial cells, thereby reducing cervical tumor growth and angiogenesis. Our study provides new insights into the molecular mechanisms underlying the anti-tumor and anti-angiogenic effects of LKB1 in cervical cancer. These findings will help develop new therapeutic strategies for cervical cancer.

9.
J Microbiol Biotechnol ; 32(3): 302-306, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35058400

RESUMEN

A chemical investigation of a culture extract from Streptomyces sp. RK85-270 led to the isolation and characterization of two new oxindoles, RK-270D (1) and E (2). The structures of 1 and 2 were determined by analyzing spectroscopic and spectrometric data from 1D and 2D NMR and High-resolution electrospray ionization mass spectrometry (HRESIMS) experiments. Compound 1 exhibited anti-angiogenic activities against human umbilical vein endothelial cells (HUVECs) without cytotoxicity. Results of Western blot analysis revealed that 1 inhibits VEGF-induced angiogenesis in the HUVECs via VEGFR2/ p38 MAPK-mediated pathway.


Asunto(s)
Streptomyces , Inhibidores de la Angiogénesis/química , Inhibidores de la Angiogénesis/farmacología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Oxindoles/metabolismo , Oxindoles/farmacología
10.
Mol Clin Oncol ; 17(5): 151, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36172002

RESUMEN

Andrographis paniculata (Ap) has been a part of traditional medicine for its anti-inflammatory effects, treatment of snake bites and liver abnormalities. Several investigations have revealed its bioactive components to be andrographolides. The methanolic extracts of leaves from Ap were characterized, the non-andrographolides were identified and screened for anti-proliferative activity. The extracts showed significant toxicity against numerous cancer cells including HeLa, MCF7, BT549, 293 and A549 cells. Anti-proliferative activity and effect on cancer cell invasion (metastatic potential) and cell migration were examined. The extracts revealed significant inhibition of the ability of HeLa cells in repairing the gap created by a vertical wound made on a confluent cell monolayer. Similarly, a 40% reduction in cell migration was observed in presence of the extracts. Significant anti-angiogenic activity in terms of reduced blood capillary formation was observed on the Chorioallantoic membranes of embryonated hen eggs co-inoculated with HeLa cells and the extracts. Analysis of HeLa cells treated with the extracts using flow cytometry indicated the arrest of cell cycle progression at the G2/M phase. Variation in the Bax/Bcl-2 ratio and elevated caspase-3 levels by immunoblotting confirmed cell death induction via the apoptotic pathway. Investigation of the extracts by gas chromatography-mass spectrometry displayed the predominant components to be 2(5H)-Furanone (14.73%), Quinic acid (17.32%), and Phytol (11.43%). These components have been previously known to have anticancer activity, while being studied individually in other plants. This is the first study, to the best of our knowledge, on the anti-proliferative and anti-angiogenic activity of the non-andrographolide components from Ap.

11.
Eur J Pharm Biopharm ; 179: 26-36, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36041595

RESUMEN

Sodium butyrate-loaded nanoparticles coated chitosan (NaBu-loaded nanoparticles/CS) were developed to treat the choroidal neovascularization in wet age-related macular degeneration (AMD). The nanoparticles were produced by double emulsification and solvent evaporation technique, optimized by experimental statistical design, characterized by analytical methods, investigated in terms of in vitro and in vivo ocular biocompatibility, and evaluated as an antiangiogenic system in vivo. The NaBu-loaded nanoparticles/CS were 311.1 ± 3.1 nm in diameter with a 0.208 ± 0.007 polydispersity index; had a +56.3 ± 2.6 mV zeta potential; showed a 92.3 % NaBu encapsulation efficiency; and sustained the drug release over 35 days. The NaBu-loaded nanoparticles/CS showed no toxicity to human retinal pigment epithelium cells (ARPE-19 cells); was not irritant to the chorioallantoic membrane (CAM); did not interfere in the integrity of the retinal layers of rat's eyes, as detected by the Optical Coherence Tomography and histopathology; and inhibited the angiogenesis in CAM assay. The NaBu-loaded nanoparticles/CS could be a therapeutic alternative to limit the neovascularization in AMD.


Asunto(s)
Quitosano , Nanopartículas , Degeneración Macular Húmeda , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Ácido Butírico/uso terapéutico , Humanos , Ratas , Solventes , Degeneración Macular Húmeda/tratamiento farmacológico
12.
Cancers (Basel) ; 13(20)2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34680238

RESUMEN

Growth factors such as vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF) and epidermal growth factor (EGF) are important angiogenesis-mediating factors. They exert their effects not only through their respective receptor tyrosine kinases (RTKs), but they also require molecular pairing with heparan sulfate proteoglycans (HSPGs). Angiogenic growth factors and their signaling pathways are commonly targeted in current anti-angiogenic cancer therapies but have unfortunately insufficient impact on patient survival. Considering their obvious role in pathological angiogenesis, HS-targeting drugs have become an appealing new strategy. Therefore, we aimed to reduce angiogenesis through interference with growth factor-HS binding and downstream signaling using a CXCL9-derived peptide with a high affinity for glycosaminoglycans (GAGs), CXCL9(74-103). We showed that CXCL9(74-103) reduced EGF-, VEGF165- and FGF-2-mediated angiogenic processes in vitro, such as endothelial cell proliferation, chemotaxis, adhesion and sprouting, without exerting cell toxicity. CXCL9(74-103) interfered with growth factor signaling in diverse ways, e.g., by diminishing VEGF165 binding to HS and by direct association with FGF-2. The dependency of CXCL9(74-103) on HS for binding to HMVECs and for exerting its anti-angiogenic activity was also demonstrated. In vivo, CXCL9(74-103) attenuated neovascularization in the Matrigel plug assay, the corneal cauterization assay and in MDA-MB-231 breast cancer xenografts. Additionally, CXCL9(74-103) reduced vascular leakage in the retina of diabetic rats. In contrast, CXCL9(86-103), a peptide with low GAG affinity, showed no overall anti-angiogenic activity. Altogether, our results indicate that CXCL9(74-103) reduces angiogenesis by interfering with multiple HS-dependent growth factor signaling pathways.

13.
Front Chem ; 9: 733350, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34616713

RESUMEN

Seven new clerodane diterpenoids, crassifolins Q-W (1-7), along with five known analogues (8-12), were isolated from the roots of Croton crassifolius. Their structures were identified by comprehensive spectroscopic analysis (UV, IR, NMR, and HR-ESI-MS), and their absolute configurations were determined by ECD spectra and X-ray crystallography. The activities of compounds 1-5 against inflammatory cytokines IL-6 and TNF-α levels on LPS-induced RAW 264.7 macrophages were assessed, and compound 5 showed the most significant activity with the secretion levels of IL-6 and TNF-α at 32.78 and 12.53%, respectively. Moreover, compounds 1-5 were screened for their anti-angiogenesis using a human umbilical vein endothelial cells in vitro mode; the results showed all of them exhibited obvious anti-angiogenesis activities, in particular, compound 5 showed the strongest anti-angiogenesis effect in the range of 6.25-50 µM.

14.
Am J Chin Med ; 49(3): 737-751, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33683188

RESUMEN

Angiogenesis plays a crucial role in tumor growth and metastasis. Vascular endothelial growth factor (VEGF)-stimulated endothelial cell proliferation and migration are critical steps in tumor angiogenesis. Here, we investigated the anti-angiogenic activity of xanthorrhizol, a sesquiterpenoid isolated from the Indonesian medicinal plant Curcuma xanthorrhiza. Xanthorrhizol at noncytotoxic concentrations inhibited the proliferation, migration, and formation of capillary-like tubes in VEGF-treated human umbilical vein endothelial cells (HUVECs). Xanthorrhizol inhibited the phosphorylation of Akt and endothelial nitric oxide synthase (eNOS) and the expression of vascular cell adhesion molecule (VCAM)-1 and E-selectin in VEGF-treated HUVECs. The expression and transcriptional activity of NF-[Formula: see text]B were downregulated by xanthorrhizol in VEGF-treated HUVECs. Furthermore, xanthorrhizol significantly inhibited VEGF-induced angiogenesis in the chorioallantoic membrane of fertilized eggs and Matrigel plugs subcutaneously injected into mice. Xanthorrhizol inhibited tumor volume and tumor-derived angiogenesis in mice inoculated with breast cancer cells. The in vitro and in vivo anti-angiogenic activities of xanthorrhizol were as potent as those of curcumin, a well-known anticancer agent derived from C. longa. Taken together, xanthorrhizol inhibits VEGF-induced angiogenesis of endothelial cells by blocking the activation of the PI3K/Akt/eNOS axis and subsequent upregulation of adhesion molecules induced by the transcriptional activation of NF-[Formula: see text]B. Xanthorrhizol is a promising anti-angiogenic agent and can serve as a beneficial agent to enhance anticancer treatments.


Asunto(s)
Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Expresión Génica/efectos de los fármacos , Expresión Génica/genética , FN-kappa B/metabolismo , Neovascularización Patológica/genética , Neovascularización Patológica/prevención & control , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fenoles/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factor A de Crecimiento Endotelial Vascular/efectos adversos , Animales , Curcuma/química , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Neovascularización Patológica/inducido químicamente , Fenoles/aislamiento & purificación , Fenoles/uso terapéutico , Fosfatidilinositol 3-Quinasas/metabolismo , Fitoterapia , Células Tumorales Cultivadas
15.
Gene ; 786: 145616, 2021 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-33811963

RESUMEN

Breast cancer acts as an assassin among women. According to WHO (world health organisation), about 6, 27,000 deaths have occurred in 2018 due to breast cancer. Since, the evolution of cancer involves many complicated pathway, in this article we have decided to focus on wild type p53. P53 is also called as tumor suppressor gene. As the name suggest, p53 is a real guardian of genome, if it is not mutated or subjected to degradation. It can perform a wide range of activities during cancer progression. It either stimulates or inhibits the genes or proteins that are responsible for cell cycle arrest, apoptosis, anti-angiogenic activity and anti-metastatic activity. At times, the p53 will be unable to produce its action due to various reasons like mutation or degradation by other proteins or degrading ligases. Since, we are focusing on wild type p53, it will be inhibited occasionally by mdm2 resulting in proteosomal degradation of p53. However, this condition can be prevented by possible treatment regimen. With the above points in mind, we have focused on p53 activation, complex formation between p53 and mdm2, and inhibition of the complex in order to free p53 and allow them to perform their action for rehabilitation of cancer. Furthermore, we have also discussed pathways involved in eradicating cancer through p53 activation. By considering the following aspects, hope that p53 can be considered for management of breast cancer.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Neoplasias de la Mama/genética , Progresión de la Enfermedad , Femenino , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Proteína p53 Supresora de Tumor/genética
16.
Plants (Basel) ; 9(8)2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-32824448

RESUMEN

Lemon bottlebrush (Callistemon citrinus (Curtis) Skeels) is one of the most common ornamental plants, diffused worldwide, and characterized by the presence of flowers with an intense red/purple coloration. There is increasing interest in the use and application of anthocyanins for their unique structural/chemical features in both food and pharmaceutical applications. RP-HPLC-DAD-ESI-MS/MS analysis of an enriched fraction of acidified methanolic extract of C. citrinus flowers allow the possibility of identifying, for the first time, the presence of four anthocyanins: cyanidin-3,5-O-diglucoside (cyanin), peonidin-3,5-O-diglucoside (peonin), cyanidin-3-O-glucoside, and cyanidin-coumaroylglucoside-pyruvic acid. Moreover, the evaluation of antioxidant and biological potential showed a remarkable activity of this fraction, able to actively scavenge DPPH, AAPH, and ABTS radicals, and to counteract the ß-carotene-bleaching. In addition, it protects human mononuclear cells from oxidative injuries and prevents angiogenesis (acting in the range of few µg/ml); furthermore, it does not show significant iron-chelating ability (up to 200 µg/mL). The easy way of cultivation, robustness, and adaptability to different environments make the flowers of this plant a useful source of anthocyanins, with remarkable health promoting properties.

17.
Pol J Vet Sci ; 23(4): 571-580, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33480492

RESUMEN

Resveratrol is a polyphenolic compound which is found in many nutrients including grapes, peanuts, raspberries, and apples. Anti-proliferative, anti-angiogenic and apoptotic effects of resveratrol have been shown on various cancer cells. Doxorubicin is considered as one of the most effective anticancer agents and reveals its antitumor activity by induction of apoptosis and inhibition of angiogenesis. Our study reports for the first time the potent ability of resveratrol in combination with doxorubicin to inhibit angiogenesis in vitro and in vivo. The cytotoxic effect of resveratrol (1.56-100 µM), doxorubicin (0.01-0.92 µM) and their combination were analyzed in the human umbilical vein endothelial cells (HUVECs) by ATP assay. In vitro angiogenesis was evaluated using tube formation assay in HUVECs. In vivo anti-angiogenic activity was assessed in a chick chorioallantoic membrane (CAM) model using fertilized chicken eggs. All test groups were compared to thalidomide as a positive control, three concentrations of resveratrol (10-5-2.5 µg/pellet) and a 2 µg/pellet concentration of doxorubicin was examined. All data were evaluated statistically. Resveratrol and doxorubicin alone displayed inhibitory effects on angiogenesis and cell viability at higher doses. However, the combination of resveratrol and doxorubicin exhibited a significant dose-dependent inhibition of CAM angiogenesis in vivo as well as proliferation and tube formation in HUVECs compared to the positive control (±)-thalidomide. Our results suggest that resveratrol in combination with doxorubicin is a novel strategy in the prevention and treatment of angiogenesis.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/farmacología , Neovascularización Fisiológica/efectos de los fármacos , Resveratrol/farmacología , Animales , Antibióticos Antineoplásicos/administración & dosificación , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/farmacología , Antioxidantes/administración & dosificación , Antioxidantes/farmacocinética , Antioxidantes/farmacología , Embrión de Pollo , Membrana Corioalantoides/irrigación sanguínea , Membrana Corioalantoides/efectos de los fármacos , Doxorrubicina/administración & dosificación , Doxorrubicina/farmacocinética , Sinergismo Farmacológico , Células Endoteliales de la Vena Umbilical Humana , Humanos , Resveratrol/administración & dosificación , Resveratrol/farmacocinética
18.
Anticancer Res ; 40(9): 5049-5057, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32878793

RESUMEN

BACKGROUND/AIM: Studies with acridine compounds have reported anticancer effects. Herein, we evaluated the toxicity and antitumor effect of the (E)-1'-((4-chlorobenzylidene)amino)-5'-oxo-1',5'-dihydro-10H-spiro[acridine-9,2'-pyrrole]-4'-carbonitrile (AMTAC-06), a promising anticancer spiro-acridine compound. MATERIALS AND METHODS: The toxicity of AMTAC-06 was evaluated on zebrafish and mice. Antitumor activity was assessed in Ehrlich ascites carcinoma model. Effects on angiogenesis, cytokine levels and cell cycle were also investigated. RESULTS: AMTAC-06 did not induce toxicity on zebrafish and mice (LD50 approximately 5000 mg/kg, intraperitoneally). No genotoxicity was observed on micronucleus assay. AMTAC-06 significantly reduced the total viable Ehrlich tumor cells and increased sub-G1 peak, suggesting apoptosis was triggered. Moreover, the compound significantly decreased the density of peritumoral microvessels, indicating an anti-angiogenic action, possibly dependent on the cytokine modulation (TNF-α, IL-1ß and IFN-γ). No significant toxicological effects were recorded for AMTAC-06 on tumor transplanted animals. CONCLUSION: AMTAC-06 has low toxicity and a significant antitumor activity.


Asunto(s)
Acridinas/farmacología , Inhibidores de la Angiogénesis/farmacología , Antineoplásicos/farmacología , Factores Inmunológicos/farmacología , Compuestos de Espiro/farmacología , Acridinas/química , Inhibidores de la Angiogénesis/química , Animales , Antineoplásicos/química , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Citocinas/metabolismo , Modelos Animales de Enfermedad , Humanos , Factores Inmunológicos/química , Inmunomodulación/efectos de los fármacos , Ratones , Estructura Molecular , Compuestos de Espiro/química , Ensayos Antitumor por Modelo de Xenoinjerto , Pez Cebra
19.
Steroids ; 157: 108596, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32068078

RESUMEN

This paper describes the synthesis of a new A-homo lactam D-homo lactone androstane derivative from dehydroepiandrosterone. To evaluate the impact of the introduction of nitrogen in the parental scaffold on biological activity, a new androstane enamide-type lactam derivative was prepared and characterized. The new compound as well as starting compounds were screened for cytotoxic, anti-angiogenic and anti-inflammatory activities using several human cancer cell lines (MCF-7, MDA-MB-231, PC3, CEM, G-361, HeLa), endothelial (HUVEC) and non-tumour (MRC-5 and BJ) cell lines. Strong cytotoxic and anti-inflammatory activity with a broad therapeutical window was demonstrated by the A-homo lactam D-homo lactone androstane derivative. The induction of apoptosis in treated PC3 cultures was confirmed using apoptotic morphology screening and a fluorescent double-staining method. New A-homo lactam D-homo lactone androstane derivative induced apoptosis more than the tested reference compounds, Formestane and Doxorubicin. An in silico ADME analysis showed that the compounds possess drug-like properties.


Asunto(s)
Androstanos/farmacología , Antiinflamatorios/farmacología , Antineoplásicos Fitogénicos/farmacología , Selectina E/antagonistas & inhibidores , Lactonas/farmacología , Androstanos/química , Androstanos/aislamiento & purificación , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Selectina E/biosíntesis , Humanos , Lactonas/química , Lactonas/aislamiento & purificación , Conformación Molecular , Imagen Óptica , Relación Estructura-Actividad
20.
Int J Nanomedicine ; 15: 4523-4540, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32606692

RESUMEN

PURPOSE: Selenium nanoparticles (SeNP) have several applications in the field of biotechnology, including their use as anti-cancer drugs. The purpose of the present study is to analyze the efficacy of green synthesis on the preparation of SeNP and its effect on their anti-cancer properties. METHODS: A bacterial strain isolated from a freshwater source was shown to efficiently synthesize SeNP with potential therapeutic properties. The quality and stability of the NP were studied by scanning electron microscopy, X-ray diffraction, zeta-potential and FTIR analysis. A cost-effective medium formulation from biowaste having 6% banana peel extract enriched with 0.25 mM tryptophan was used to synthesize the NP. The NP after optimization was used to analyze their anti-tumor and anti-angiogenic activity. For this purpose, first, the cytotoxicity of the NP against cancer cells was analyzed by MTT assay and then chorioallantoic membrane assay was performed to assess anti-angiogenic activity. Further, cell migration assay and clonogenic inhibition assay were performed to test the anti-tumor properties of SeNP. To assess the cytotoxicity of SeNP on healthy RBC, hemolysis assay was performed. RESULTS: The strain identified as Pseudomonas stutzeri (MH191156) produced phenazine carboxylic acid, which aids the conversion of Se oxyanions to reduced NP state, resulting in particles in the size range of 75 nm to 200 nm with improved stability and quality of SeNP, as observed by zeta (ξ) potential of the particles which was found to be -46.2 mV. Cytotoxicity of the SeNP was observed even at low concentrations such as 5 µg/mL against cervical cancer cell line, ie, HeLa cells. Further, neovascularization was inhibited by upto 30 % in CAMs of eggs coinoculated with SeNp when compared with untreated controls, indicating significant anti-angiogenic activity of SeNP. The NP also inhibited the invasiveness of HeLa cells as observed by decreased cell migration and clonogenic proliferation. These observations indicate significant anti-tumor and anti-angiogenic activity of the SeNP in cervical cancer cells. CONCLUSION: P. stutzeri (MH191156) is an efficient source of Se NP production with potential anti-angiogenic and anti-tumor properties, particularly against cervical cancer cells.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Nanopartículas del Metal/química , Pseudomonas stutzeri/metabolismo , Selenio/farmacología , Animales , Antineoplásicos/farmacología , Muerte Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Embrión de Pollo , Costos y Análisis de Costo , Femenino , Células HeLa , Hemólisis/efectos de los fármacos , Humanos , Nanopartículas del Metal/ultraestructura , Fenazinas/química , Reproducibilidad de los Resultados , Espectroscopía Infrarroja por Transformada de Fourier , Electricidad Estática , Neoplasias del Cuello Uterino/irrigación sanguínea , Neoplasias del Cuello Uterino/patología , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA