Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 299(8): 104955, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37354973

RESUMEN

Recovery from COVID-19 depends on the ability of the host to effectively neutralize virions and infected cells, a process largely driven by antibody-mediated immunity. However, with the newly emerging variants that evade Spike-targeting antibodies, re-infections and breakthrough infections are increasingly common. A full characterization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mechanisms counteracting antibody-mediated immunity is therefore needed. Here, we report that ORF8 is a virally encoded SARS-CoV-2 factor that controls cellular Spike antigen levels. We show that ORF8 limits the availability of mature Spike by inhibiting host protein synthesis and retaining Spike at the endoplasmic reticulum, reducing cell-surface Spike levels and recognition by anti-SARS-CoV-2 antibodies. In conditions of limited Spike availability, we found ORF8 restricts Spike incorporation during viral assembly, reducing Spike levels in virions. Cell entry of these virions then leaves fewer Spike molecules at the cell surface, limiting antibody recognition of infected cells. Based on these findings, we propose that SARS-CoV-2 variants may adopt an ORF8-dependent strategy that facilitates immune evasion of infected cells for extended viral production.


Asunto(s)
COVID-19 , Regulación Viral de la Expresión Génica , Evasión Inmune , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , Anticuerpos Antivirales , COVID-19/inmunología , COVID-19/virología , Evasión Inmune/genética , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Regulación Viral de la Expresión Génica/genética , Células A549 , Células HEK293 , Retículo Endoplásmico/virología , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/inmunología
2.
J Gen Virol ; 105(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38861287

RESUMEN

Increased human-to-human transmission of monkeypox virus (MPXV) is cause for concern, and antibodies directed against vaccinia virus (VACV) are known to confer cross-protection against Mpox. We used 430 serum samples derived from the Scottish patient population to investigate antibody-mediated cross-neutralization against MPXV. By combining electrochemiluminescence immunoassays with live-virus neutralization assays, we show that people born when smallpox vaccination was routinely offered in the United Kingdom have increased levels of antibodies that cross-neutralize MPXV. Our results suggest that age is a risk factor of Mpox infection, and people born after 1971 are at higher risk of infection upon exposure.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Monkeypox virus , Mpox , Vacuna contra Viruela , Humanos , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Vacuna contra Viruela/inmunología , Vacuna contra Viruela/administración & dosificación , Adulto , Persona de Mediana Edad , Monkeypox virus/inmunología , Adulto Joven , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Mpox/inmunología , Mpox/prevención & control , Femenino , Adolescente , Anciano , Masculino , Protección Cruzada/inmunología , Escocia , Factores de Edad , Pruebas de Neutralización , Niño , Vacunación , Viruela/prevención & control , Viruela/inmunología , Preescolar , Reacciones Cruzadas , Anciano de 80 o más Años
3.
J Infect Dis ; 227(1): 40-49, 2022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-35920058

RESUMEN

Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), humans have been exposed to distinct SARS-CoV-2 antigens, either by infection with different variants, and/or vaccination. Population immunity is thus highly heterogeneous, but the impact of such heterogeneity on the effectiveness and breadth of the antibody-mediated response is unclear. We measured antibody-mediated neutralization responses against SARS-CoV-2Wuhan, SARS-CoV-2α, SARS-CoV-2δ, and SARS-CoV-2ο pseudoviruses using sera from patients with distinct immunological histories, including naive, vaccinated, infected with SARS-CoV-2Wuhan, SARS-CoV-2α, or SARS-CoV-2δ, and vaccinated/infected individuals. We show that the breadth and potency of the antibody-mediated response is influenced by the number, the variant, and the nature (infection or vaccination) of exposures, and that individuals with mixed immunity acquired by vaccination and natural exposure exhibit the broadest and most potent responses. Our results suggest that the interplay between host immunity and SARS-CoV-2 evolution will shape the antigenicity and subsequent transmission dynamics of SARS-CoV-2, with important implications for future vaccine design.


Neutralizing antibodies provide protection against viruses and are generated because of vaccination or prior infections. The main target of anti-SARS-CoV-2 neutralizing antibodies is a protein called spike, which decorates the viral particle and mediates viral entry into cells. As SARS-CoV-2 evolves, mutations accumulate in the spike protein, allowing the virus to escape antibody-mediated immunity and decreasing vaccine effectiveness. Multiple SARS-CoV-2 variants have appeared since the start of the COVID-19 pandemic, causing various waves of infection through the population and infecting­in some cases­people that had been previously infected or vaccinated. Because the antibody response is highly specific, individuals infected with different variants are likely to have different repertoires of neutralizing antibodies. We studied the breadth and potency of the antibody-mediated response against different SARS-CoV-2 variants using sera from vaccinated people as well as from people infected with different variants. We show that potency of the antibody response against different SARS-CoV-2 variants depends on the particular variant that infected each person, the exposure type (infection or vaccination) and the number and order of exposures. Our study provides insight into the interplay between virus evolution and immunity, as well as important information for the development of better vaccination strategies.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Anticuerpos , Vacunación , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Glicoproteína de la Espiga del Coronavirus
4.
Infection ; 50(6): 1475-1481, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35403960

RESUMEN

BACKGROUND: The immune response to COVID-19-vaccination differs between naïve vaccinees and those who were previously infected with SARS-CoV-2. Longitudinal quantitative and qualitative serological differences in these two distinct immunological subgroups in response to vaccination are currently not well studied. METHODS: We investigate a cohort of SARS-CoV-2-naïve and COVID-19-convalescent individuals immediately after vaccination and 6 months later. We use different enzyme-linked immunosorbent assay (ELISA) variants and a surrogate virus neutralization test (sVNT) to measure IgG serum titers, IgA serum reactivity, IgG serum avidity and neutralization capacity by ACE2 receptor competition. RESULTS: Anti-receptor-binding domain (RBD) antibody titers decline over time in dually vaccinated COVID-19 naïves whereas titers in single dose vaccinated COVID-19 convalescents are higher and more durable. Similarly, antibody avidity is considerably higher among boosted COVID-19 convalescent subjects as compared to dually vaccinated COVID-19-naïve subjects. Furthermore, sera from boosted convalescents inhibited the binding of spike-protein to ACE2 more efficiently than sera from dually vaccinated COVID-19-naïve subjects. CONCLUSIONS: Long-term humoral immunity differs substantially between dually vaccinated SARS-CoV-2-naïve and COVID-19-convalescent individuals. Booster vaccination after COVID-19 induces a more durable humoral immune response in terms of magnitude and quality as compared to two-dose vaccination in a SARS-CoV-2-naïve background.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevención & control , Inmunidad Humoral , Enzima Convertidora de Angiotensina 2 , Inmunoglobulina G , Anticuerpos Antivirales , Anticuerpos Neutralizantes
5.
Infection ; 50(2): 439-446, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34562263

RESUMEN

BACKGROUND: The long-term course of immunity among individuals with a history of COVID-19, in particular among those who received a booster vaccination, has not been well defined so far. METHODS: SARS-CoV-2-specific antibody levels were measured by ELISA over 1 year among 136 health care workers infected during the first COVID-19 wave and in a subgroup after booster vaccination approximately 1 year later. Furthermore, spike-protein-reactive memory T cells were quantified approximately 7 months after the infection and after booster vaccination. Thirty healthy individuals without history of COVID-19 who were routinely vaccinated served as controls. RESULTS: Levels of SARS-CoV-2-specific IgM- and IgA-antibodies showed a rapid decay over time, whereas IgG-antibody levels decreased more slowly. Among individuals with history of COVID-19, booster vaccination induced very high IgG- and to a lesser degree IgA-antibodies. Antibody levels were significantly higher after booster vaccination than after recovery from COVID-19. After vaccination with a two-dose schedule, healthy control subjects developed similar antibody levels as compared to individuals with history of COVID-19 and booster vaccination. SARS-CoV-2-specific memory T cell counts did not correlate with antibody levels. None of the study participants suffered from a reinfection. CONCLUSIONS: Booster vaccination induces high antibody levels in individuals with a history of COVID-19 that exceeds by far levels observed after recovery. SARS-CoV-2-specific antibody levels of similar magnitude were achieved in healthy, COVID-19-naïve individuals after routine two-dose vaccination.


Asunto(s)
COVID-19 , Anticuerpos Antivirales , COVID-19/prevención & control , Estudios de Seguimiento , Humanos , SARS-CoV-2 , Vacunación
6.
J Infect Dis ; 214(2): 300-10, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27056953

RESUMEN

BACKGROUND: The relevance of antibodies (Abs) in the defense against Mycobacterium tuberculosis infection remains uncertain. We investigated the role of Abs to the mycobacterial capsular polysaccharide arabinomannan (AM) and its oligosaccharide (OS) fragments in humans. METHODS: Sera obtained from 29 healthy adults before and after primary or secondary bacillus Calmette-Guerin (BCG) vaccination were assessed for Ab responses to AM via enzyme-linked immunosorbent assays, and to AM OS epitopes via novel glycan microarrays. Effects of prevaccination and postvaccination sera on BCG phagocytosis and intracellular survival were assessed in human macrophages. RESULTS: Immunoglobulin G (IgG) responses to AM increased significantly 4-8 weeks after vaccination (P < .01), and sera were able to opsonize BCG and M. tuberculosis grown in both the absence and the presence of detergent. Phagocytosis and intracellular growth inhibition were significantly enhanced when BCG was opsonized with postvaccination sera (P < .01), and these enhancements correlated significantly with IgG titers to AM (P < .05), particularly with reactivity to 3 AM OS epitopes (P < .05). Furthermore, increased phagolysosomal fusion was observed with postvaccination sera. CONCLUSIONS: Our results provide further evidence for a role of Ab-mediated immunity to tuberculosis and suggest that IgG to AM, especially to some of its OS epitopes, could contribute to the defense against mycobacterial infection in humans.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Mananos/inmunología , Mycobacterium tuberculosis/crecimiento & desarrollo , Mycobacterium tuberculosis/inmunología , Proteínas Opsoninas/inmunología , Fagocitosis , Adulto , Anticuerpos Antibacterianos/metabolismo , Vacuna BCG/administración & dosificación , Vacuna BCG/inmunología , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunoglobulina G/inmunología , Inmunoglobulina G/metabolismo , Mananos/metabolismo , Análisis por Micromatrices , Viabilidad Microbiana , Mycobacterium tuberculosis/fisiología , Proteínas Opsoninas/metabolismo , Unión Proteica
7.
Biosensors (Basel) ; 13(3)2023 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-36979583

RESUMEN

The evaluation of serological responses to COVID-19 is crucial for population-level surveillance, developing new vaccines, and evaluating the efficacy of different immunization programs. Research and development of point-of-care test technologies remain essential to improving immunity assessment, especially for SARS-CoV-2 variants that partially evade vaccine-induced immune responses. In this work, an impedimetric biosensor based on the immobilization of the recombinant trimeric wild-type spike protein (S protein) on zinc oxide nanorods (ZnONRs) was employed for serological evaluation. We successfully assessed its applicability using serum samples from spike-based COVID-19 vaccines: ChAdOx1-S (Oxford-AstraZeneca) and BNT162b2 (Pfizer-BioNTech). Overall, the ZnONRs/ spike-modified electrode displayed accurate results for both vaccines, showing excellent potential as a tool for assessing and monitoring seroprevalence in the population. A refined outcome of this technology was achieved when the ZnO immunosensor was functionalized with the S protein from the P.1 linage (Gamma variant). Serological responses against samples from vaccinated individuals were acquired with excellent performance. Following studies based on traditional serological tests, the ZnONRs/spike immunosensor data reveal that ChAdOx1-S vaccinated individuals present significantly less antibody-mediated immunity against the Gamma variant than the BNT162b2 vaccine, highlighting the great potential of this point-of-care technology for evaluating vaccine-induced humoral immunity against different SARS-CoV-2 strains.


Asunto(s)
COVID-19 , Vacunas , Óxido de Zinc , Humanos , Vacuna BNT162 , SARS-CoV-2 , Vacunas contra la COVID-19 , Estudios Seroepidemiológicos , COVID-19/diagnóstico , Anticuerpos , Anticuerpos Antivirales
8.
Cells ; 11(22)2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36429090

RESUMEN

The scope of immune monitoring is to define the existence, magnitude, and quality of immune mechanisms operational in a host. In clinical trials and praxis, the assessment of humoral immunity is commonly confined to measurements of serum antibody reactivity without accounting for the memory B cell potential. Relying on fundamentally different mechanisms, however, passive immunity conveyed by pre-existing antibodies needs to be distinguished from active B cell memory. Here, we tested whether, in healthy human individuals, the antibody titers to SARS-CoV-2, seasonal influenza, or Epstein-Barr virus antigens correlated with the frequency of recirculating memory B cells reactive with the respective antigens. Weak correlations were found. The data suggest that the assessment of humoral immunity by measurement of antibody levels does not reflect on memory B cell frequencies and thus an individual's potential to engage in an anamnestic antibody response against the same or an antigenically related virus. Direct monitoring of the antigen-reactive memory B cell compartment is both required and feasible towards that goal.


Asunto(s)
COVID-19 , Infecciones por Virus de Epstein-Barr , Gripe Humana , Humanos , SARS-CoV-2 , Herpesvirus Humano 4 , Anticuerpos Antivirales , Células B de Memoria , Estaciones del Año
9.
J Exp Zool A Ecol Integr Physiol ; 333(10): 756-766, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32798287

RESUMEN

As a free-living larval stage of a vertebrate, tadpoles are good subjects for the study of the development of physiological systems and the study of evolutionarily conserved, context-dependent responses to variable environments. While the basic components of innate and adaptive immune defenses in tadpoles are known, the impact of glucocorticoids on immune defenses in tadpoles is not well-studied. We completed four experiments to assess effects of elevation of corticosterone on humoral innate defenses and antibody-mediated immunity in southern leopard frog tadpoles (Lithobates sphenocephalus). To test humoral innate defense within the tadpoles exposed to short-term and long-term elevation of glucocorticoids, we exposed tadpoles to exogenous corticosterone for different lengths of time in each experiment (0-84 days). We used bacterial killing assays to assess humoral innate immune defense. To test antibody-mediated immune responses, we again exposed tadpoles to exogenous corticosterone, while also exposing them to Aeromonas hydrophila. We used A. hydrophila ELISA comparing IgM and IgY responses among groups. Plasma from corticosterone-dosed tadpoles killed more A. hydrophila than control tadpoles each following a short-term (14 day) and long-term (56 day) exposure to exogenous corticosterone. Conversely, corticosterone-dosed tadpoles had significantly lower IgM and IgY against A. hydrophila after 12 weeks. Our fourth experiment revealed that the lower IgY response is a product of weaker, delayed isotype switching compared with controls. These results show that elevated corticosterone has differential effects on innate and acquired immunity in larval southern leopard frogs, consistent with patterns in more derived vertebrates and in adult frogs.


Asunto(s)
Corticosterona/farmacología , Inmunidad Humoral/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Rana pipiens/inmunología , Aeromonas hydrophila/inmunología , Animales , Actividad Bactericida de la Sangre/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Larva , Rana pipiens/sangre , Rana pipiens/fisiología
10.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 32(3): 255-261, 2020 May 07.
Artículo en Zh | MEDLINE | ID: mdl-32468787

RESUMEN

OBJECTIVE: To investigate the effect of gender on hepatic pathology and antibody-mediated immunity in Schistosoma japonicum-infected C57BL/6 mice. METHODS: Female and male C57BL/6 mice were infected with S. japonicum, and the hepatic pathological changes were observed using HE and picrosirius red staining in mice 8 weeks post-infection. The serum specific IgG antibody levels against the soluble adult worm antigen (SWA) and soluble egg antigen (SEA) were measured in mice using enzyme-linked immunosorbent assay (ELISA), and the percentages of follicular helper T (Tfh) cells and regulatory T (Treg) cells were detected in mouse spleen and lymph nodes using flow cytometry. RESULTS: HE staining showed no significant difference in the mean area of a single hepatic egg granuloma between female and male mice 8 weeks post-infection with S. japonicum [(28.050 ± 3.576) × 104 µm2 vs. (26.740 ± 4.093) × 104 µm2; t = 0.241, P = 0.821], and picrosirius red staining revealed no statistical differences between female and male mice in terms of the mean proportion of picrosirius red stained hepatic tissues [(7.667 ± 1.856)% vs. (7.667 ± 1.764)%; t = 0, P = 1] or the mean optical density [(0.023 ± 0.003) vs. (0.027 ± 0.007); t = 0.447, P = 0.678]. ELISA detected no significant differences in the serum IgG antibody levels against SWA [(2.098 ± 0.037) vs. (1.970 ± 0.071); t = 1.595, P = 0.162] or SEA [(3.738 ± 0.039) vs. (3.708 ± 0.043); t = 0.512, P = 0.623] between female and male mice 8 weeks post-infection with S. japonicum. Flow cytometry detected significantly greater percentages of Tfh cells in the spleen [female mice, (8.645 ± 1.356)% vs. (1.730 ± 0.181)%, t = 5.055, P = 0.002; male mice, (8.470 ± 1.161)% vs. (1.583 ± 0.218)%, t = 5.829, P = 0.001] and lymph nodes [female mice, (3.218 ± 0.153)% vs. (1.095 ± 0.116)%, t = 11.040, P < 0.001; male mice, (3.673 ± 0.347)% vs. (0.935 ± 0.075)%, t = 8.994, P = 0.001) of both female and male mice 8 weeks post-infection with S. japonicum than in uninfected mice; however, no significant differences were seen between female and male mice 8 weeks post-infection with S. japonicum in terms of the percentages of Tfh cells in the spleen [(8.645 ± 1.356)% vs. (8.470 ± 1.161)%; t = 0.098, P = 0.925] or lymph nodes [(3.218 ± 0.153)% vs. (3.673 ± 0.347)%; t = 1.332, P = 0.241]. There was no significant difference in the proportion of Treg cells in the spleen of male mice between infected and uninfected mice [(10.060 ± 0.361)% vs. (10.130 ± 0.142)%; t = 0.174, P = 0.867], while a higher proportion of Treg cells was seen in the spleen of female mice 8 weeks post-infection with S. japonicum than in uninfected mice [(10.530 ± 0.242)% vs. (9.450 ± 0.263)%; t = 3.021, P = 0.023]. There was no significant difference in the proportion of Treg cells in the spleen between female and male mice infected with S. japonicum [(10.530 ± 0.242)% vs. (10.060 ± 0.361)%; t =1.077, P = 0.323]. In addition, the proportions of Treg cells were significantly greater in the lymph node of S. japonicum -infected female [(17.150 ± 0.805)% vs. (13.100 ± 0.265)%; t = 4.781, P = 0.003] and male mice [(18.550 ± 0.732)% vs. (12.630 ± 0.566)%; t = 6.402, P = 0.001] than in uninfected mice; however, no significant difference was seen between female and male mice 8 weeks post-infection [(17.150 ± 0.805)% vs. (18.550 ± 0.732)%; t = 1.287, P = 0.246]. CONCLUSIONS: There are no gender-specific hepatic pathological changes or antibody-mediated immunity in C57BL/6 mice post-infection with S. japonicum.


Asunto(s)
Esquistosomiasis Japónica , Animales , Anticuerpos/sangre , Femenino , Hígado/inmunología , Hígado/parasitología , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Schistosoma japonicum , Esquistosomiasis Japónica/inmunología , Esquistosomiasis Japónica/patología , Factores Sexuales , Linfocitos T Reguladores/inmunología
11.
Acta Biomater ; 108: 1-21, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32268235

RESUMEN

Vaccines activate suitable immune responses to fight against diseases but can possess limitations such as compromised efficacy and immunogenic responses, poor stability, and requirement of adherence to multiple doses. 'Nanovaccines' have been explored to elicit a strong immune response with the advantages of nano-sized range, high antigen loading, enhanced immunogenicity, controlled antigen presentation, more retention in lymph nodes and promote patient compliance by a lower frequency of dosing. Various types of nanoparticles with diverse pathogenic or foreign antigens can help to overcome immunotolerance and alleviate the need of booster doses as required with conventional vaccines. Nanovaccines have the potential to induce both cell-mediated and antibody-mediated immunity and can render long-lasting immunogenic memory. With such properties, nanovaccines have shown high potential for the prevention of infectious diseases such as acquired immunodeficiency syndrome (AIDS), malaria, tuberculosis, influenza, and cancer. Their therapeutic potential has also been explored in the treatment of cancer. The various kinds of nanomaterials used for vaccine development and their effects on immune system activation have been discussed with special relevance to their implications in various pathological conditions. STATEMENT OF SIGNIFICANCE: Interaction of nanoparticles with the immune system has opened multiple avenues to combat a variety of infectious and non-infectious pathological conditions. Limitations of conventional vaccines have paved the path for nanomedicine associated benefits with a hope of producing effective nanovaccines. This review highlights the role of different types of nanovaccines and the role of nanoparticles in modulating the immune response of vaccines. The applications of nanovaccines in infectious and non-infectious diseases like malaria, tuberculosis, AIDS, influenza, and cancers have been discussed. It will help the readers develop an understanding of mechanisms of immune activation by nanovaccines and design appropriate strategies for novel nanovaccines.


Asunto(s)
Nanopartículas , Vacunas , Anticuerpos , Presentación de Antígeno , Antígenos , Humanos
12.
ACS Biomater Sci Eng ; 5(3): 1332-1342, 2019 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33405651

RESUMEN

As the focus has shifted from traditional killed or live, attenuated vaccines toward subunit vaccines, improvements in vaccine safety have been confronted with low immunogenicity of protein antigens. This issue has been addressed by synthesizing and designing a wide variety of antigen carriers and adjuvants, such as Toll-like receptor agonists (e.g., MPLA, CpG). Studies have focused on optimizing adjuvants for improved cellular trafficking, cytosolic availability, and improved antigen presentation. In this work, we describe the design of novel amphiphilic pentablock copolymer (PBC) adjuvants that exhibit high biocompatibility and reversible pH- and temperature-sensitive micelle formation. We demonstrate improved humoral immunity in mice in response to single-dose immunization with PBC micelle adjuvants compared with soluble antigen alone. With the motive of exploring the mechanism of action of these PBC micelles, we studied intracellular trafficking of these PBC micelles with a model antigen and demonstrated that the PBC micelles associate with the antigen and enhance its cytosolic delivery to antigen-presenting cells. We posit that these PBC micelles operate via immune-enhancing mechanisms that are different from that of traditional Toll-like receptor activating adjuvants. The metabolic profile of antigen-presenting cells stimulated with traditional adjuvants and the PBC micelles also suggests distinct mechanisms of action. A key finding from this study is the low production of nitric oxide and reactive oxygen species by antigen-presenting cells when stimulated by PBC micelle adjuvants in sharp contrast to TLR adjuvants. Together, these studies provide a basis for rationally developing novel vaccine adjuvants that are safe, that induce low inflammation, and that can efficiently deliver antigen to the cytosol.

13.
Expert Rev Vaccines ; 17(3): 189-196, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29382292

RESUMEN

INTRODUCTION: As the quest for an effective blood stage malaria vaccine continues, there is increasing reliance on the use of controlled human malaria infections (CHMI) in non-endemic settings to test vaccine efficacy at the earliest possible time. This is seen as a way to accelerate vaccine research and quickly eliminate candidates with poor efficacy. Areas covered: The data from these studies need to be carefully examined and interpreted in light of the very different roles that antibody and cellular immunity play in protection and within the context of the distinct clinical sensitivities of volunteers living in malaria-non-endemic countries compared to those living in endemic countries. With current strategies, it is likely that vaccines with protective immunological 'signatures' will be missed and potentially good candidates discarded. Expert commentary: Efficacy data from early phase vaccine trials in non-endemic countries should not be used to decide whether or not to proceed to vaccine trials in endemic countries.


Asunto(s)
Ensayos Clínicos como Asunto/métodos , Vacunas contra la Malaria/administración & dosificación , Malaria/prevención & control , Diseño de Fármacos , Humanos , Inmunidad Celular/inmunología , Malaria/epidemiología , Malaria/inmunología , Vacunas contra la Malaria/inmunología , Sujetos de Investigación , Factores de Tiempo
14.
Front Immunol ; 9: 3005, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30619354

RESUMEN

Neutrophils are abundant in the circulation and are one of the immune system's first lines of defense against infection. There has been substantial work carried out investigating the role of neutrophils in malaria and it is clear that during infection neutrophils are activated and are capable of clearing malaria parasites by a number of mechanisms. This review focuses on neutrophil responses to human malarias, summarizing evidence which helps us understand where neutrophils are, what they are doing, how they interact with parasites as well as their potential role in vaccine mediated immunity. We also outline future research priorities for these, the most abundant of leukocytes.


Asunto(s)
Vacunas contra la Malaria/inmunología , Malaria/inmunología , Activación Neutrófila/inmunología , Neutrófilos/inmunología , Plasmodium/inmunología , Animales , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Modelos Animales de Enfermedad , Trampas Extracelulares/inmunología , Trampas Extracelulares/parasitología , Humanos , Recuento de Leucocitos , Malaria/sangre , Malaria/parasitología , Malaria/terapia , Vacunas contra la Malaria/administración & dosificación , Activación Neutrófila/efectos de los fármacos , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Neutrófilos/parasitología , Fagocitosis/inmunología , Plasmodium/patogenicidad , Especies Reactivas de Oxígeno/metabolismo
15.
AIDS Res Hum Retroviruses ; 34(2): 206-217, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28982260

RESUMEN

The induction of both neutralizing antibodies and non-neutralizing antibodies with effector functions, for example, antibody-dependent cellular cytotoxicity (ADCC), is desired in the search for effective vaccines against HIV-1. In the pursuit of novel immunogens capable of inducing an efficient antibody response, rabbits were immunized with selected antigens using different prime-boost strategies. We immunized 35 different groups of rabbits with Env antigens from clinical HIV-1 subtypes A and B, including immunization with DNA alone, protein alone, and DNA prime with protein boost. The rabbit sera were screened for ADCC activity using a GranToxiLux-based assay with human peripheral blood mononuclear cells as effector cells and CEM.NKRCCR5 cells coated with HIV-1 envelope as target cells. The groups with the highest ADCC activity were further characterized for cross-reactivity between HIV-1 subtypes. The immunogen inducing the most potent and broadest ADCC response was a trimeric gp140. The ADCC activity was highest against the HIV-1 subtype corresponding to the immunogen. The ADCC activity did not necessarily reflect neutralizing activity in the pseudovirus-TZMbl assay, but there was an overall correlation between the two antiviral activities. We present a rabbit vaccination model and an assay suitable for screening HIV-1 vaccine candidates for the induction of ADCC-mediating antibodies in addition to neutralizing antibodies. The antigens and/or immunization strategies capable of inducing antibodies with ADCC activity did not necessarily induce neutralizing activity and vice versa. Nevertheless, we identified vaccine candidates that were able to concurrently induce both types of responses and that had ADCC activity that was cross-reactive between different subtypes. When searching for an effective vaccine candidate, it is important to evaluate the antibody response using a model and an assay measuring the desired function.


Asunto(s)
Vacunas contra el SIDA/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos , Anticuerpos Anti-VIH/sangre , VIH-1/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Vacunas contra el SIDA/administración & dosificación , Vacunas contra el SIDA/aislamiento & purificación , Animales , Anticuerpos Neutralizantes/sangre , Reacciones Cruzadas , Femenino , Infecciones por VIH/virología , VIH-1/aislamiento & purificación , Humanos , Esquemas de Inmunización , Leucocitos Mononucleares/inmunología , Masculino , Conejos , Vacunas de ADN/administración & dosificación , Vacunas de ADN/inmunología , Vacunas de ADN/aislamiento & purificación , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/aislamiento & purificación , Productos del Gen env del Virus de la Inmunodeficiencia Humana/aislamiento & purificación
16.
AIDS Res Hum Retroviruses ; 33(8): 859-868, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28314374

RESUMEN

Antibodies that cross-react with multiple HIV-1 envelopes (Envs) are useful reagents for characterizing Env proteins and for soluble Env capture and purification assays. We previously reported 10 murine monoclonal antibodies induced by group M consensus Env, CON-6 immunization. Each demonstrated broad cross-reactivity to recombinant Envs. Here we characterized the Env epitopes to which they bind. Seven mapped to linear epitopes in gp120, five at the Env N-terminus, and two at the Env C-terminus. One antibody, 13D7, bound at the gp120 N-terminus (aa 30-42), reacted with HIV-1-infected CD4+ T cells, and when expressed in a human IgG1 backbone, mediated antibody-dependent cellular cytotoxicity. Antibody 18F11 bound at the gp120 C-terminus (aa 445-459) and reactivity was glycan dependent. Antibodies 13D7, 3B3, and 16H3 bound to 100 percent of HIV-1 Envs tested in ELISA and sodium dodecyl sulfate/polyacrylamide gel electrophoresis/western blot analysis. These data define the epitopes of monoclonal antibody reagents for characterization of recombinant Envs, one epitope of which is also expressed on the surface of HIV-1-infected CD4+ T cells.


Asunto(s)
Vacunas contra el SIDA/inmunología , Anticuerpos Monoclonales/inmunología , Secuencia de Consenso , Epítopos/inmunología , Anticuerpos Anti-VIH/inmunología , VIH-1/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Vacunas contra el SIDA/administración & dosificación , Animales , Anticuerpos Monoclonales/aislamiento & purificación , Citotoxicidad Celular Dependiente de Anticuerpos , Mapeo Epitopo , Epítopos/genética , Anticuerpos Anti-VIH/aislamiento & purificación , Ratones Endogámicos BALB C , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética
17.
Immunol Lett ; 185: 90-92, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28288805

RESUMEN

Abnormal immune activation, particularly of a humoral nature, has consistently been described in the etiopathogenesis of autism spectrum disorders (ASD). In this journal, Mead and Ashwood (2015) reviewed immune abnormalities in autism and linked them to severity of classic autistic symptoms. However, there remains a lack of clarity as to how environmental risk factors in ASD may contribute to such immunophenotypes. The evidence presented herein highlights these immune deficits of a humoral nature in ASD. Moreover, aligned with prior research showing a link between chronic air pollution and suppression of humoral immunity, the author of this commentary has proposed that environmental exposure to pervasive air pollutants, particularly nitrous oxide (N2O), may target several anti-inflammatory biomarkers, including alpha 7 nicotinic acetylcholine receptor (α7nAChR) inhibition and stimulation of kappa opioid receptor (KOR) activity. Given that these physiological targets, in particular, may promote the oft-noted humoral immunophenotypes in ASD, including B cell survival and muted antibody responses, this correspondence supports an existing line of evidence that air pollution, and particularly exposure to environmental N2O, may be an important etiological risk factor in ASD.


Asunto(s)
Trastorno del Espectro Autista/inmunología , Linfocitos B/inmunología , Inmunidad Humoral , Receptores Opioides kappa/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Trastorno del Espectro Autista/epidemiología , Exposición a Riesgos Ambientales/efectos adversos , Humanos , Terapia de Inmunosupresión , Óxido Nitroso/efectos adversos , Factores de Riesgo
18.
Ecol Evol ; 5(11): 2203-14, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26078857

RESUMEN

White-nose syndrome (WNS) is a fungal disease caused by Pseudogymnoascus destructans (Pd) that affects bats during hibernation. Although millions of bats have died from WNS in North America, mass mortality has not been observed among European bats infected by the fungus, leading to the suggestion that bats in Europe are immune. We tested the hypothesis that an antibody-mediated immune response can provide protection against WNS by quantifying antibodies reactive to Pd in blood samples from seven species of free-ranging bats in North America and two free-ranging species in Europe. We also quantified antibodies in blood samples from little brown myotis (Myotis lucifugus) that were part of a captive colony that we injected with live Pd spores mixed with adjuvant, as well as individuals surviving a captive Pd infection trial. Seroprevalence of antibodies against Pd, as well as antibody titers, was greater among little brown myotis than among four other species of cave-hibernating bats in North America, including species with markedly lower WNS mortality rates. Among little brown myotis, the greatest titers occurred in populations occupying regions with longer histories of WNS, where bats lacked secondary symptoms of WNS. We detected antibodies cross-reactive with Pd among little brown myotis naïve to the fungus. We observed high titers among captive little brown myotis injected with Pd. We did not detect antibodies against Pd in Pd-infected European bats during winter, and titers during the active season were lower than among little brown myotis. These results show that antibody-mediated immunity cannot explain survival of European bats infected with Pd and that little brown myotis respond differently to Pd than species with higher WNS survival rates. Although it appears that some species of bats in North America may be developing resistance to WNS, an antibody-mediated immune response does not provide an explanation for these remnant populations.

19.
Dev Comp Immunol ; 43(1): 114-20, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24252519

RESUMEN

Immunoglobulins and immune cells are critical components of colostral immunity; however, their transfer to and function in the neonate, especially maternal lymphocytes, is unclear. Cell-mediated and antibody-mediated immunity in sow blood and colostrum and piglet blood before (PS) and after (AS) suckling were assessed to investigate transfer and function of maternal immunity in the piglet. CD4, CD8, and γδ lymphocytes were found in sow blood and colostrum and piglet blood PS and AS; each had a unique T lymphocyte profile. Immunoglobulins were detected in sow blood, colostrum, and in piglet blood AS; the immunoglobulin profile of piglet serum AS mimicked that of sow serum. These results suggest selectivity in lymphocyte concentration into colostrum and subsequent lymphocyte transfer into the neonate, but that immunoglobulin transfer is unimpeded. Assessment of colostral natural killer activity and antigen-specific proliferation revealed that colostral cells are capable of influencing the innate and specific immune response of neonatal pigs.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Calostro/inmunología , Inmunoglobulinas/metabolismo , Células Asesinas Naturales/inmunología , Porcinos/inmunología , Inmunidad Adaptativa , Animales , Animales Recién Nacidos , Animales Lactantes , Antígenos/inmunología , Linfocitos T CD8-positivos , Proliferación Celular , Células Cultivadas , Femenino , Inmunidad Celular , Inmunidad Humoral , Inmunidad Innata , Inmunidad Materno-Adquirida , Embarazo , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo
20.
Hum Vaccin Immunother ; 9(2): 294-9, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23291934

RESUMEN

If new scientific knowledge is to be more efficiently generated and applied toward the advancement of health, human safety must be more effectively addressed in the conduct of research. Given the present difficulties of accurately predicting biological outcomes of novel interventions in vivo, the imperative of human safety suggests the development of novel pharmaceutical products in tandem with their prospective antidotes in anticipation of possible adverse events, to render the risks of initial clinical trials more acceptable from a regulatory standpoint. Antibody-mediated immunity provides a generally applicable mechanistic basis for developing antidotes to both biologicals and small-molecule drugs (such that antibodies may serve as antidotes to pharmaceutical agents as a class including other antibodies) and also for the control and prevention of both infectious and noninfectious diseases via passive or active immunization. Accordingly, the development of prophylactic or therapeutic passive-immunization strategies using antipeptide antibodies is a plausible prelude to the development of corresponding active-immunization strategies using peptide-based vaccines. In line with this scheme, global proliferation of antibody- and vaccine-production technologies, especially those that obviate dependence on the cold chain for storage and transport of finished products, could provide geographically distributed breakout capability against emerging and future health challenges.


Asunto(s)
Anticuerpos/aislamiento & purificación , Anticuerpos/farmacología , Antídotos/aislamiento & purificación , Antídotos/farmacología , Productos Biológicos/antagonistas & inhibidores , Inmunización Pasiva/métodos , Productos Biológicos/aislamiento & purificación , Productos Biológicos/farmacología , Ensayos Clínicos como Asunto , Descubrimiento de Drogas/tendencias , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA