Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.159
Filtrar
Más filtros

Intervalo de año de publicación
1.
Infect Immun ; 92(4): e0048323, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38501672

RESUMEN

Aspergillus fumigatus (A. fumigatus) is one of the common pathogens of fungal keratitis. Fungal growth and invasion cause excessive inflammation and corneal damage, leading to severe vision loss. Neutrophils are the primary infiltrating cells critical for fungal clearance. Cathelicidin [LL-37 in humans and cathelicidin-related antimicrobial peptide (CRAMP) in mice], a natural antimicrobial peptide, can directly inhibit the growth of many pathogens and regulate immune responses. However, the role of cathelicidin and its effect on neutrophils in A. fumigatus keratitis remain unclear. By establishing A. fumigatus keratitis mouse models, we found that cathelicidin was increased in A. fumigatus keratitis. It could reduce fungal loads, lower clinical scores, and improve corneal transparency. Restriction of CRAMP on fungal proliferation was largely counteracted in CD18-/- mice, in which neutrophils cannot migrate into infected sites. When WT neutrophils were transferred into CD18-/- mice, corneal fungal loads were distinctly reduced, indicating that neutrophils are vital for CRAMP-mediated resistance. Furthermore, cathelicidin promoted neutrophils to phagocytose and degrade conidia both in vitro and in vivo. CXC chemokine receptor 2 (CXCR2) was reported to be a functional receptor of LL-37 on neutrophils. CXCR2 antagonist SB225002 or phospholipase C (PLC) inhibitor U73122 weakened LL-37-induced phagocytosis. Meanwhile, LL-37 induced PLC γ phosphorylation, which was attenuated by SB225002. SB225002 or the autophagy inhibitors Bafilomycin-A1 and 3-Methyladenine weakened LL-37-induced degradation of conidia. Transmission electron microscopy (TEM) observed that LL-37 increased autophagosomes in Aspergillus-infected neutrophils. Consistently, LL-37 elevated autophagy-associated protein expressions (Beclin-1 and LC3-II), but this effect was weakened by SB225002. Collectively, cathelicidin reduces fungal loads and improves the prognosis of A. fumigatus keratitis. Both in vitro and in vivo, cathelicidin promotes neutrophils to phagocytose and degrade conidia. LL-37/CXCR2 activates PLC γ to amplify neutrophils' phagocytosis and induces autophagy to eliminate intracellular conidia.


Asunto(s)
Aspergillus fumigatus , Queratitis , Compuestos de Fenilurea , Humanos , Animales , Ratones , Neutrófilos , Antifúngicos/metabolismo , Catelicidinas , Fosfolipasa C gamma/metabolismo , Queratitis/microbiología , Pronóstico , Ratones Endogámicos C57BL
2.
Curr Issues Mol Biol ; 46(3): 2480-2496, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38534773

RESUMEN

In the present work, we evaluated the antifungal activities of two novel ebselen analogs, N-allyl-benzisoselenazol-3(2H)-one (N-allyl-bs) and N-3-methylbutylbenzisoselenazol-3(2H)-one (N-3mb-bs). Colorimetric and turbidity assays were performed to determine the minimum inhibitory concentration (MIC) of these compounds in S1 (fluconazole-sensitive) and S2 (fluconazole-resistant) strains of C. albicans. N-3mb-bs was more active than the N-allyl-bs compound. It is noteworthy that the concentration of N-3mb-bs observed to inhibit fungal growth by 50% (18.2 µM) was similar to the concentration observed to inhibit the activity of the yeast plasma membrane H+-ATPase (Pma1p) by 50% (19.6 µM). We next implemented a mouse model of vulvovaginal candidiasis (VVC) using the S1 strain and examined the mouse and yeast proteins present in the vaginal lavage fluid using proteomics. The yeast proteins detected were predominately glycolytic enzymes or virulence factors associated with C. albicans while the mouse proteins present in the lavage fluid included eosinophil peroxidase, desmocollin-1, and gasdermin-A. We then utilized the N-3mb-bs compound (12.5 mg/kg) in the mouse VVC model and observed that it significantly reduced the vaginal fungal burden, histopathological changes in vagina tissue, and expression of myeloperoxidase (MPO). All in all, the present work has identified a potentially promising drug candidate for VVC treatment.

3.
Microb Pathog ; 193: 106750, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38906491

RESUMEN

The antifungal activity of Serratia plymuthica CCGG2742, a bacterial strain isolated from grapes berries skin, against a phytopathogenic fungus isolated from blueberries was evaluated in vitro and in vivo. In order to characterize the wild fungal isolate, phylogenetic analysis using concatenated DNA sequences from the RPB2 and TEF1 genes and of the ITS region was performed, allowing the identification of the fungal isolate that was called Alternaria tenuissima CC17. Hyphae morphology, mycelium ultrastructure, conidia and reproductive structures were in agreement with the phylogenetic analysis. The antifungal activity of the S. plymuthica strain was dependent on the composition of the culture medium. The greatest inhibition of mycelial growth of A. tenuissima CC17 by S. plymuthica CCGG2742 was observed on YTS medium, which lacks of an easily assimilable carbon source. Fungal growth medium supplemented with 50 % of bacterial supernatant decreased the conidia germination of A. tenuissima CC17 up to 32 %. Preventive applications of S. plymuthica CCGG2742 to blueberries and tomato leaves at conidia:bacteria ratio of 1:100, protected in 77.8 ± 4.6 % and 98.2 ± 0.6 % to blueberries and tomato leaves from infection caused by A. tenuissima CC17, respectively. To the best of our knowledge, this is the first report on the antifungal activity of S. plymuthica against A. tenuissima, which could be used as a biological control agent of plant diseases caused by this fungal species. In addition, the results of this work could be a starting point to attribute the real importance of A. tenuissima as a pathogen of blueberries in Chile, which until now had been considered almost exclusively to A. alternata. Likewise, this research could be relevant to start developing highly effective strategies based on S. plymuthica CCGG2742 for the control of this important phytopathogenic fungus.


Asunto(s)
Alternaria , Antibiosis , Filogenia , Enfermedades de las Plantas , Serratia , Esporas Fúngicas , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Alternaria/crecimiento & desarrollo , Alternaria/genética , Serratia/genética , Serratia/fisiología , Esporas Fúngicas/crecimiento & desarrollo , Micelio/crecimiento & desarrollo , Antifúngicos/farmacología , Solanum lycopersicum/microbiología , Hifa/crecimiento & desarrollo , Medios de Cultivo/química , Hojas de la Planta/microbiología , Vitis/microbiología
4.
Microb Pathog ; 188: 106544, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38246313

RESUMEN

Fungi are opportunistic eukaryotic entities often taking advantage of susceptibilities offered by a host due to its immunocompromised status, changed microbiome, or ruptured physical barriers and eventually cause infections. They either invade the skin superficially or are deep-seated. Superficial mycosis affects the skin, hair, and nails inhabiting the outermost layer, stratum corneum. In the present study, we report a case of superficial mycosis (onychomycosis in particular) in a 45-year-old immunocompetent man who was an ex-defense personnel and presently serving as a security guard at the University of Jammu, District Jammu, Jammu and Kashmir, India. The infection evolved 17 years ago and negatively affected the quality of life of the patient. For the identification of the causal agent, direct microscopy, cultural, micro-morphological, molecular characterization (ITS sequencing), and phylogenetic analysis were taken into account. A mucoralean fungal species, Thamnostylum piriforme, was isolated from the fingernails (left hand) of the investigated patient, which represents a new global report as the causal agent of superficial mycosis. In vitro antifungal susceptibility testing showed T. piriforme sensitivity to itraconazole, amphotericin B and ketoconazole while resistance to fluconazole. Careful selection of optimal therapy for fungal infection based primarily on correct identification and antifungal susceptibility testing could provide effective results during treatment against these opportunistic human fungal pathogens.


Asunto(s)
Antifúngicos , Dermatomicosis , Mucorales , Masculino , Humanos , Persona de Mediana Edad , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Filogenia , Calidad de Vida , Pruebas de Sensibilidad Microbiana , Itraconazol/farmacología , Itraconazol/uso terapéutico , Dermatomicosis/tratamiento farmacológico
5.
Microb Pathog ; 194: 106819, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39067493

RESUMEN

Macrophomina phaseolina is a wide host ranged soil-borne fungal plant pathogen. It infects more than 500 host plant species belonging to 100 families. Many important oil-seed and leguminous crops are known to be attacked by this devastating plant pathogen. In the present study, antifungal potential of flowers of a leguminous tree Acacia nilotica subsp. indica, was assessed against this pathogen through bioassays guided fractionation. Initially, methanolic extracts of 1 %-5 % of leaf, flower, root-bark and stem-bark of the plant species under consideration were evaluated for their antifungal potential against the target pathogen. Among these, the best antifungal activity was shown by flower extract. The reduction in growth of the test fungal strain was 27-49 %, 4-40 % and 2-27 % due to flower, root-bark and leaf extracts, respectivey, over control. Flower extract was partitioned using n-hexane, chloroform, ethyl acetate and n-butanol as the solvents. Bioassays guided study of these fractions of methanolic extract of flower revealed that high antifungal potential was shown by n-hexane and chloroform fractions against M. phaseolina causing 26-53 % and 28-50 % decline in fungal biomass, respectively, as compared to that of control. GC-MS analysis of chloroform fraction revealed the presence of 27 compounds in this fraction. Among these cyclopentanol,-1-methyl (10.93 %) was the predominant compound followed by methyl, 4,4-dimethyl butanoate (7.04 %), 1-pentanol (6.80 %), 2-propanol, 1-cyclopropyl (6.11 %), 1H,imidazole-4-5-dihydro-2-methyl (5.93 %), trichloroethane (5.91 %), carbonic acid-ethyl hexyl ester (4.59 %), 1,4-butandiol,2,3-bis(methylene)- (4.54 %) and [S]-3,4-dimethyl pentanol (4.48 %).

6.
Arch Microbiol ; 206(5): 222, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38642140

RESUMEN

Animal feed is vulnerable to fungal infections, and the use of bio-preserving probiotics has received increasing attention. In contrast to Lactobacillus and Bifidobacteria spp., fewer Bacillus spp. have been recognized as antifungal probiotics. Therefore, our objective was to screen antifungal strains and provide more Bacillus candidates to bridge this gap. Here, we screened 56 bacterial strains for cyclic lipopeptide genes and conducted an antifungal assay with Aspergillus niger as a representative fungus. We found that a Bacillus strain Bacillus amyloliquefaciens PM415, isolated from pigeon manure, exhibited the highest fungal inhibition activity as demonstrated by the confrontation assay and morphological observation under scanning electron microscope (SEM). Preliminary safety assessment and probiotic characterization revealed its non-pathogenic feature and stress tolerance capability. Whole genome sequencing of Bacillus amyloliquefaciens PM415 revealed a genome size of 4.16 Mbp and 84 housekeeping genes thereof were used for phylogenetic analysis showing that it is most closely related to Bacillus amyloliquefaciens LFB112. The in silico analysis further supported its non-pathogenic feature at the genomic level and revealed potential biosynthetic gene clusters responsible for its antifungal property. RNA-seq analysis revealed genome-wide changes in transportation, amino acid metabolism, non-ribosomal peptides (NRPs) biosynthesis and glycan degradation during fungal antagonism. Our results suggest that Bacillus amyloliquefaciens PM415 is a safe and effective probiotic strain that can prevent fungal growth in animal feeds.


Asunto(s)
Bacillus amyloliquefaciens , Bacillus , Probióticos , Animales , Bacillus amyloliquefaciens/química , Antifúngicos/farmacología , Antifúngicos/metabolismo , Filogenia
7.
Arch Microbiol ; 206(7): 334, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951200

RESUMEN

Ionic liquids (ILs) are interesting chemical compounds that have a wide range of industrial and scientific applications. They have extraordinary properties, such as the tunability of many of their physical properties and, accordingly, their activities; and the ease of synthesis methods. Hence, they became important building blocks in catalysis, extraction, electrochemistry, analytics, biotechnology, etc. This study determined antifungal activities of various imidazolium-based ionic liquids against yeast Saccharomyces cerevisiae via minimum inhibitory concentration (MIC) estimation method. Increasing the length of the alkyl group attached to the imidazolium cation, enhanced the antifungal activity of the ILs, as well as their ability of the disruption of the cell membrane integrity. FTIR studies performed on the S. cerevisiae cells treated with the ILs revealed alterations in the biochemical composition of these cells. Interestingly, the alterations in fatty acid content occurred in parallel with the increase in the activity of the molecules upon the increase in the length of the attached alkyl group. This trend was confirmed by statistical analysis and machine learning methodology. The classification of antifungal activities based on FTIR spectra of S. cerevisiae cells yielded a prediction accuracy of 83%, indicating the pharmacy and medicine industries could benefit from machine learning methodology. Furthermore, synthesized ionic compounds exhibit significant potential for pharmaceutical and medical applications.


Asunto(s)
Antifúngicos , Membrana Celular , Imidazoles , Líquidos Iónicos , Pruebas de Sensibilidad Microbiana , Saccharomyces cerevisiae , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/química , Líquidos Iónicos/farmacología , Líquidos Iónicos/química , Imidazoles/farmacología , Imidazoles/química , Antifúngicos/farmacología , Antifúngicos/química , Membrana Celular/efectos de los fármacos , Espectroscopía Infrarroja por Transformada de Fourier
8.
Arch Microbiol ; 206(3): 133, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38430254

RESUMEN

In recent years, the study of essential oils as antifungal alternatives and their encapsulation to increase their properties for greater effects has been tested. In this work, nanoparticles of chitosan-Schinus molle L. essential oil (CS-PEO-Np) with a size of 260 ± 31.1 nm were obtained by ionic gelation and evaluated in some growth phases of Aspergillus flavus, a toxigenic fungus. At a concentration of 250 µg/mL of CS-PEO-Np, the A. flavus mycelial growth was inhibited at 97.1% with respect to control, at 96 h of incubation; the germination and viability of spores were inhibited at 74.8 and 40%, respectively, after exposure to 500 µg/mL of these nanomaterials, at 12 h of incubation. The fluorescence images of stained spores with DAPI showed the affectations caused by nanoparticles in the cell membrane, vacuoles and vacuolar content, cell wall, and nucleic acids. For both nanoparticles, CS-Np and CS-PEO-Np, no mutagenic effect was observed in Salmonella Typhimurium; also, the phytotoxic assay showed low-to-moderate toxicity toward seeds, which was dependent on the nanoparticle's concentration. The acute toxicity of CS-PEO-Np to A. salina nauplii was considered low in comparison to CS-Np (control), which indicates that the incorporation of Schinus molle essential oil into nanoparticles of chitosan is a strategy to reduce the toxicity commonly associated with nanostructured materials. The nanoparticulated systems of CS-PEO-Np represent an effective and non-toxic alternative for the control of toxigenic fungi such as A. flavus by delaying the initial growth stage.


Asunto(s)
Quitosano , Nanopartículas , Aceites Volátiles , Aceites Volátiles/farmacología , Aspergillus flavus , Quitosano/farmacología , Schinus , Antifúngicos/toxicidad , Antifúngicos/metabolismo
9.
Arch Microbiol ; 206(3): 97, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38349544

RESUMEN

Cordyceps militaris is a well-known medicinal mushroom in Asian countries. This edible fungus has been widely exploited for traditional medicine and functional food production. C. militaris is a heterothallic fungus that requires both the mating-type loci, MAT1-1 and MAT1-2, for fruiting body formation. However, recent studies also indicated two groups of C. militaris, including monokaryotic strains carrying only MAT1-1 in their genomes and heterokaryotic strains harboring both MAT1-1 and MAT1-2. These strain groups are able to produce fruiting bodies under suitable cultivating conditions. In previous work, we showed that monokaryotic strains are more stable than heterokaryotic strains in fruiting body formation through successive culturing generations. In this study, we report a high cordycepin-producing monokaryotic C. militaris strain (HL8) collected in Vietnam. This strain could form normal fruiting bodies with high biological efficiency and contain a cordycepin content of 14.43 mg/g lyophilized fruiting body biomass. The ethanol extraction of the HL8 fruiting bodies resulted in a crude extract with a cordycepin content of 69.15 mg/g. Assays of cytotoxic activity on six human cancer cell lines showed that the extract inhibited the growth of all these cell lines with the IC50 values of 6.41-11.51 µg/mL. Notably, the extract significantly reduced cell proliferation and promoted apoptosis of breast cancer cells. Furthermore, the extract also exhibited strong antifungal activity against Malassezia skin yeasts and the citrus postharvest pathogen Penicillium digitatum. Our work provides a promising monokaryotic C. militaris strain as a bioresource for medicine, cosmetics, and fruit preservation.


Asunto(s)
Antineoplásicos , Cordyceps , Neoplasias , Penicillium , Humanos , Penicillium/genética , Cuerpos Fructíferos de los Hongos
10.
Protein Expr Purif ; : 106562, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39094814

RESUMEN

Previous studies have demonstrated the presence of chitinase in Bacillus velezensis through extensive genomic sequencing and experimental analyses. However, the detailed structure, functional roles, and antifungal activity of these chitinases remain poorly characterized. In this study, genomic screening identified three genes-chiA, chiB, and lpmo10-associated with chitinase degradation in B. velezensis S161. These genes encode chitinases ChiA and ChiB, and lytic polysaccharide monooxygenase LPMO10. Both ChiA and ChiB contain two CBM50 binding domains and one catalytic domain, whereas LPMO10 includes a signal peptide and a single catalytic domain. The chitinases ChiA, its truncated variant ChiA2, and ChiB were heterologously expressed in Escherichia coli. The purified enzymes efficiently degraded colloidal chitin and inhibited the spore germination of Penicillium digitatum. Notably, even after losing one CBM50 domain, the resultant enzyme, consisting of the remaining CBM50 domain and the catalytic domain, maintained its colloidal chitin hydrolysis and antifungal activity, indicating commendable stability. These results underscore the role of B. velezensis chitinases in suppressing plant pathogenic fungi and provide a solid foundation for developing and applying chitinase-based biocontrol strategies.

11.
Artículo en Inglés | MEDLINE | ID: mdl-38359091

RESUMEN

A novel filamentous actinobacterium designated strain 4-36T showing broad-spectrum antifungal activity was isolated from a coal mining site in Mongolia, and its taxonomic position was determined using polyphasic approach. Optimum growth occurred at 30 °C, pH 7.5 and in the absence of NaCl. Aerial and substrate mycelia were abundantly formed on agar media. The colour of aerial mycelium was white and diffusible pigments were not formed. Phylogenetic analyses based on 16S rRNA gene sequence showed that strain 4-36T formed a distinct clade within the genus Amycolatopsis. The 16S rRNA gene sequence similarity showed that the strain was mostly related to Amycolatopsis lexingtonensis DSM 44544T and Amycolatopsis rifamycinica DSM 46095T with 99.3 % sequence similarity. However, the highest digital DNA-DNA hybridization value to closest species was 44.1 %, and the highest average nucleotide identity value was 90.2 %, both of which were well below the species delineation thresholds. Chemotaxonomic properties were typical of the genus Amycolatopsis, as the major fatty acids were C15 : 0, iso-C16 : 0 and C16 : 0, the cell-wall diamino acid was meso-diaminopimelic acid, the quinone was MK-9(H4), and the main polar lipids were diphosphatidylglycerol, phosphatidylmethanolamine and phosphatidylethanolamine. The in silico prediction of chemotaxonomic markers was also carried out by phylogenetic analysis. The genome mining for biosynthetic gene clusters of secondary metabolites in strain 4-36T revealed the presence of 34 gene clusters involved in the production of polyketide synthase, nonribosomal peptide synthetase, ribosomally synthesized and post-translationally modified peptide, lanthipeptide, terpenes, siderophore and many other unknown clusters. Strain 4-36T showed broad antifungal activity against several filamentous fungi. The phenotypic, biochemical and chemotaxonomic properties indicated that the strain could be clearly distinguished from other species of Amycolatopsis, and thus the name Amycolatopsis mongoliensis sp. nov. is proposed accordingly (type strain, 4-36T=KCTC 39526T=JCM 30565T).


Asunto(s)
Actinomycetales , Minas de Carbón , Ácidos Grasos/química , Amycolatopsis , Antifúngicos/farmacología , Filogenia , ARN Ribosómico 16S/genética , Mongolia , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Composición de Base , Análisis de Secuencia de ADN , Fosfolípidos/química
12.
Int Microbiol ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38819732

RESUMEN

The scarce antifungal arsenal, changes in the susceptibility profile of fungal agents, and lack of adherence to treatment have contributed to the increase of cases of dermatomycoses. In this context, new antimicrobial substances have gained importance. Chalcones are precursors of the flavonoid family that have multiple biological activities, have high tolerability by humans, and easy synthesis. In this study, we evaluated the in vitro antifungal activity, alone and in combination with conventional antifungal drugs, of the VS02-4'ethyl chalcone-derived compound against dermatophytes and Candida spp. Susceptibility testing was carried out by broth microdilution. Experiments for determination of the target of the compound on the fungal cell, time-kill kinetics, and toxicity tests in Galleria mellonella model were also performed. Combinatory effects were evaluated by the checkerboard method. Results showed high activity of the compound VS02-4'ethyl against dermatophytes (MIC of 7.81-31.25 µg/ml). The compound targeted the cell membrane, and the time-kill test showed the compound continues to exert gradual activity after 5 days on dermatophytes, but no significant activity on Candida. Low toxicity was observed at 250 mg/kg. Excellent results were observed in the combinatory test, where VS02-4'ethyl showed synergistic interactions with itraconazole, fluconazole, terbinafine, and griseofulvin, against all isolates tested. Although further investigation is needed, these results revealed the great potential of chalcone-derived compounds against fungal infections for which treatments are long and laborious.

13.
Int Microbiol ; 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39068607

RESUMEN

Numerous bioactive compounds have been reported to be produced by the members of the genus Streptomyces. During our previous studies, Streptomyces sp. strain 196 was tested for its antimicrobial activity, and bioactive compounds produced by this strain were characterized LC-MS and 1H NMR. To examine the antifungal potential of strain 196 is the goal of the current investigation. Present investigation is focused on exploring antifungal activity of extract of strain 196 (196EA) on membrane disruption potential against two fungi Candida albicans ATCC 90028 and Aspergillus flavus ITCC 5599. Results revealed that the MIC value is higher for A. flavus than for C. albicans which is 450 µg/mL and 250 µg/mL, respectively. Disc diffusion and spot assay also correspond to the values of the MIC for their respective pathogen. In growth curve analysis, lag and log phase are significantly affected by the extract of strain 196. The effects of extract from strain 196 on plasma membrane disruption of Candida albicans and Aspergillus flavus were analyzed in terms of ergosterol quantification assay, cellular leakage, proton efflux measurement (PM-ATPase), plasma membrane integrity assay (PI), and DNA damage assay (DAPI). Results shown that the extract of strain 196 has the potential to inhibit the cell membrane of the both pathogenic fungi which was further confirmed with the help of scanning electron microscopic (SEM) studies.

14.
Microb Cell Fact ; 23(1): 107, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609931

RESUMEN

Cryptococcus neoformans has been designated as critical fungal pathogens by the World Health Organization, mainly due to limited treatment options and the prevalence of antifungal resistance. Consequently, the utilization of novel antifungal agents is crucial for the effective treatment of C. neoformans infections. This study exposed that the minimum inhibitory concentration (MIC) of isobavachalcone (IBC) against C. neoformans H99 was 8 µg/mL, and IBC dispersed 48-h mature biofilms by affecting cell viability at 16 µg/mL. The antifungal efficacy of IBC was further validated through microscopic observations using specific dyes and in vitro assays, which confirmed the disruption of cell wall/membrane integrity. RNA-Seq analysis was employed to decipher the effect of IBC on the C. neoformans H99 transcriptomic profiles. Real-time quantitative reverse transcription PCR (RT-qPCR) analysis was performed to validate the transcriptomic data and identify the differentially expressed genes. The results showed that IBC exhibited various mechanisms to impede the growth, biofilm formation, and virulence of C. neoformans H99 by modulating multiple dysregulated pathways related to cell wall/membrane, drug resistance, apoptosis, and mitochondrial homeostasis. The transcriptomic findings were corroborated by the antioxidant analyses, antifungal drug sensitivity, molecular docking, capsule, and melanin assays. In vivo antifungal activity analysis demonstrated that IBC extended the lifespan of C. neoformans-infected Caenorhabditis elegans. Overall, the current study unveiled that IBC targeted multiple pathways simultaneously to inhibit growth significantly, biofilm formation, and virulence, as well as to disperse mature biofilms of C. neoformans H99 and induce cell death.


Asunto(s)
Chalconas , Criptococosis , Cryptococcus neoformans , Animales , Cryptococcus neoformans/genética , Antifúngicos/farmacología , RNA-Seq , Simulación del Acoplamiento Molecular , Biopelículas , Caenorhabditis elegans
15.
Pharm Res ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39078577

RESUMEN

PURPOSE: The primary problem with climbazole (CLB), a broad-spectrum imidazole antifungal drug, is its low water solubility. In order to increase its water solubility and antifungal activity, three new multi-component crystals were synthesized in this work, and the intermolecular interactions were systematically studied. This work helps to optimize the CLB product formulation and extend its application prospects. METHODS: In this work, three novel multi-component crystals, CLB-malonic acid (CLB-MA) salt, CLB-succinic acid (CLB-SA) cocrystal and CLB-adipic acid (CLB-AA) cocrystal, were successfully synthesized. And the crystal structure, thermodynamic properties, solubility, dissolution, hygroscopicity, and antifungal activity of the three multi-component crystals were fully characterized by single-crystal X-ray diffraction (SCXRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic water vapor adsorption (DVS) and powder dissolution tests, etc. The molecular interactions and molecular stacking in multi-component crystals were studied by Hirshfeld surface (HS), molecular surface electrostatic potential (MEP), interaction region indication (IRI) and atom and molecule (AIM) techniques. RESULTS: The results show that the three multi-component crystals have good moisture resistance stability, and their water solubility is 6-22 times that of pure CLB. Meanwhile, the measurement of the minimum inhibitory concentration (MIC) proves that the cocrystal/salt has a stronger antifungal activity than climbazole. Quantum chemistry calculations of crystal structure visualized and quantified the interactions that exist in multi-component crystals, and explored the microscopic mechanisms underlying the different performance of multi-component crystals.

16.
Naturwissenschaften ; 111(4): 36, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951264

RESUMEN

Gut microbial communities are part of the regulatory array of various processes within their hosts, ranging from nutrition to pathogen control. Recent evidence shows that dung beetle's gut microbial communities release substances with antifungal activity. Because of the enormous diversity of gut microorganisms in dung beetles, there is a possibility of discovering novel compounds with antifungal properties. We tested the antifungal activity mediated by gut microbial communities of female dung beetles against nine phytopathogenic fungi strains (Colletotrichum asianum-339, C. asianum-340, C. asianum-1, C. kahawae-390, C. karstii-358, C. siamense-220, Fusarium oxysporum-ATCC338, Nectria pseudotrichia-232, Verticillium zaelandica-22). Our tests included the gut microbial communities of three species of dung beetles: Canthon cyanellus (roller beetle), Digitonthophagus gazella (burrower beetle), and Onthophagus batesi (burrower beetle), and we followed the dual confrontation protocol, i.e., we challenged each fungal strain with the microbial communities of each species of beetles in Petri dishes containing culture medium. Our results showed that gut microbial communities of the three dung beetle species exhibit antifungal activity against at least seven of the nine phytopathogenic fungal strains. The gut microbial communities of Onthophagus batesi significantly decreased the mycelial growth of the nine phytopathogenic fungi strains; the gut microbial communities of Canthon cyanellus and Digitonthophagus gazella significantly reduced the mycelial growth of seven strains. These results provide a basis for investigating novel antifungal substances within gut microbial communities of dung beetles.


Asunto(s)
Antifúngicos , Escarabajos , Hongos , Microbioma Gastrointestinal , Animales , Escarabajos/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Antifúngicos/farmacología , Hongos/efectos de los fármacos , Femenino
17.
Bioorg Med Chem ; 97: 117543, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38071944

RESUMEN

In order to develop antifungal drugs, a series of novel azole analogues were designed and synthesized based on our previous work. Most of the target compounds had broad-spectrum antifungal activity, which showed excellent to moderate inhibitory activity against the tested strains, except A. fum 0504656. Among these, compounds B3, B7, B8, B11, B12 and E9 showed excellent activity against C. alb Y0109 and C. alb SC5314 (with the MIC80: 0.0156 ug/mL). In addition, compound B3 showed the best inhibitory activity against fluconazole-resistant strains C. alb 901 and C. alb 904, and had low toxicity against NIH/3T3 cells at the effective MIC range against fungi. Structure-activity relationship and docking studies of the derivatives suggest that the presence of the 2-fluoro-4-hydroxyphenyl and 1,2,3-triazole group enhance the antifungal activity of the compounds, which may be related to the interaction of the key groups with the amino acids surrounding the target enzyme.


Asunto(s)
Antifúngicos , Azoles , Animales , Ratones , Antifúngicos/química , Azoles/farmacología , Candida albicans , Pruebas de Sensibilidad Microbiana , Fluconazol/farmacología , Relación Estructura-Actividad
18.
J Pept Sci ; 30(1): e3533, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37431279

RESUMEN

Aurein1.2 is secreted by the Australian tree frog Litoria aurea and is active against a broad range of infectious microbes including bacteria, fungi, and viruses. Its antifungal potency has garnered considerable interest in developing novel classes of natural antifungal agents to fight pathogenic infection by fungi. However, serious pharmacological hurdles remain, hindering its clinical translation. To alleviate its susceptibility to proteolytic degradation and improve its antifungal activity, six conformationally locked peptides were synthesized through hydrocarbon stapling modification and evaluated for their physicochemical and antifungal parameters. Among them, SAU2-4 exhibited significant improvement in helicity levels, protease resistance, and antifungal activity compared to the template linear peptide Aurein1.2. These results confirmed the prominent role of hydrocarbon stapling modification in the manipulation of peptide pharmacological properties and enhanced the application potential of Aurein1.2 in the field of antifungal agent development.


Asunto(s)
Antifúngicos , Péptidos , Antifúngicos/farmacología , Antifúngicos/química , Australia , Péptidos/farmacología , Péptidos/química , Hidrocarburos/química , Bacterias , Pruebas de Sensibilidad Microbiana
19.
J Biochem Mol Toxicol ; 38(1): e23548, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37867459

RESUMEN

Four novel antimony (III) and bismuth(III) complexes of the kind Cl-Sb-O-C(OR)-CH(CH3 )C-NH-(CH2 )2 -NH-C(CH3 )CH:C(OR)-O [where R = -CH3 , M = Sb (1a); R = -C2 H5 , M = Sb (1b); R = -CH3, M = Bi (1c); R = -C2 H5 , M = Bi (1d)] were successfully prepared by reacting antimony(III)chloride and bismuth(III)chloride with sodium salt of ß-enamino esters in 1:1 stoichiometry, which were further structurally characterized by physicochemical and IR, 1 H, 13 C NMR spectral and mass spectrometry. Structural analysis revealed that all four derivatives of both antimony and bismuth display octahedarl geometry which has been optimized through computational studies. These derivatives along with their parent ligands were subsequently assayed in vitro for antibacterial (Bacillus subtilis, Pseudomonas aeruginosa) and antifungal (Aspergillus niger and Candida albicans) activities. Synthesized complexes were more efficacious in terms of biological activities as compared to parent ligands Further synthesized compounds were evaluated for their in vitro cytotoxic activity against lung cancer cell line A549 using MTT method. IC50 value for all four complexes was determined and all of them are found active. Computational studies of the representative complexes have been done using B3LYP/631-G* basis sets to provide optimized geometry.


Asunto(s)
Antiinfecciosos , Antineoplásicos , Antimonio/farmacología , Bismuto/farmacología , Bismuto/química , Teoría Funcional de la Densidad , Cloruros , Antiinfecciosos/farmacología , Antiinfecciosos/química , Pruebas de Sensibilidad Microbiana
20.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38509027

RESUMEN

AIMS: In this work, we aimed to isolate marine bacteria that produce metabolites with antifungal properties. METHODS AND RESULTS: Paenibacillus polymyxa 188 was isolated from a marine sediment sample, and it showed excellent antifungal activity against many fungi pathogenic to plants (Fusarium tricinctum, Pestalotiopsis clavispora, Fusarium oxysporum, F. oxysporum f. sp. Cubense (Foc), Curvularia plantarum, and Talaromyces pinophilus) and to humans (Aspergillus terreus, Penicillium oxalicum, and Microsphaeropsis arundinis). The antifungal compounds produced by P. polymyxa 188 were extracted and analyzed using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The complete genome sequence and biosynthetic gene clusters of P. polymyxa 188 were characterized and compared with those of other strains. A total of 238 carbohydrate-active enzymes (CAZymes) were identified in P. polymyxa 188. Two antibiotic gene clusters, fusaricidin and tridecaptin, exist in P. polymyxa 188, which is different from other strains that typically have multiple antibiotic gene clusters. CONCLUSIONS: Paenibacilluspolymyxa 188 was identified with numerous biosynthetic gene clusters, and its antifungal ability against pathogenic fungi was verified.


Asunto(s)
Paenibacillus polymyxa , Paenibacillus , Humanos , Paenibacillus polymyxa/metabolismo , Antifúngicos/química , Antibacterianos/metabolismo , Paenibacillus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA