RESUMEN
Rapid and accurate quantification of low-abundance protein biomarkers in biofluids can transform the diagnosis of a range of pathologies, including infectious diseases. Here, we harness ultrabright plasmonic fluors as "digital nanolabels" and demonstrate the detection and quantification of subfemtomolar concentrations of human IL-6 and SARS-CoV-2 alpha and variant proteins in clinical nasopharyngeal swab and saliva samples from COVID-19 patients. The resulting digital plasmonic fluor-linked immunosorbent assay (digital p-FLISA) enables detection of SARS-CoV-2 nucleocapsid protein, both in solution and in live virions. Digital p-FLISA outperforms the "gold standard" enzyme-linked immunosorbent assay (ELISA), having a nearly 7000-fold lower limit-of-detection, and outperforms a commercial antigen test, having over 5000-fold improvement in analytical sensitivity. Detection and quantification of very low concentrations of target proteins holds potential for early detection of pathological conditions, treatment monitoring, and personalized medicine.
Asunto(s)
COVID-19 , Humanos , Ensayo de Inmunoadsorción Enzimática , COVID-19/diagnóstico , Fluoroinmunoensayo , SARS-CoV-2 , Biomarcadores , Sensibilidad y EspecificidadRESUMEN
We devised a model to interpret discordant SARS-CoV-2 test results. We estimate that, during March 2020-May 2022, a patient in the United States who received a positive rapid antigen test result followed by a negative nucleic acid test result had only a 15.4% (95% CI 0.6%-56.7%) chance of being infected.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Estados Unidos/epidemiología , COVID-19/diagnóstico , Prueba de COVID-19 , Pruebas Diagnósticas de Rutina , Sensibilidad y EspecificidadRESUMEN
BACKGROUND: During the COVID-19 pandemic, antigen diagnostic tests were frequently used for screening, triage, and diagnosis. Novel instrument-based antigen tests (iAg tests) hold the promise of outperforming their instrument-free, visually-read counterparts. Here, we provide a systematic review and meta-analysis of the SARS-CoV-2 iAg tests' clinical accuracy. METHODS: We systematically searched MEDLINE (via PubMed), Web of Science, medRxiv, and bioRxiv for articles published before November 7th, 2022, evaluating the accuracy of iAg tests for SARS-CoV-2 detection. We performed a random effects meta-analysis to estimate sensitivity and specificity and used the QUADAS-2 tool to assess study quality and risk of bias. Sub-group analysis was conducted based on Ct value range, IFU-conformity, age, symptom presence and duration, and the variant of concern. RESULTS: We screened the titles and abstracts of 20,431 articles and included 114 publications that fulfilled the inclusion criteria. Additionally, we incorporated three articles sourced from the FIND website, totaling 117 studies encompassing 95,181 individuals, which evaluated the clinical accuracy of 24 commercial COVID-19 iAg tests. The studies varied in risk of bias but showed high applicability. Of 24 iAg tests from 99 studies assessed in the meta-analysis, the pooled sensitivity and specificity compared to molecular testing of a paired NP swab sample were 76.7% (95% CI 73.5 to 79.7) and 98.4% (95% CI 98.0 to 98.7), respectively. Higher sensitivity was noted in individuals with high viral load (99.6% [95% CI 96.8 to 100] at Ct-level ≤ 20) and within the first week of symptom onset (84.6% [95% CI 78.2 to 89.3]), but did not differ between tests conducted as per manufacturer's instructions and those conducted differently, or between point-of-care and lab-based testing. CONCLUSION: Overall, iAg tests have a high pooled specificity but a moderate pooled sensitivity, according to our analysis. The pooled sensitivity increases with lower Ct-values (a proxy for viral load), or within the first week of symptom onset, enabling reliable identification of most COVID-19 cases and highlighting the importance of context in test selection. The study underscores the need for careful evaluation considering performance variations and operational features of iAg tests.
Asunto(s)
Antígenos Virales , Prueba Serológica para COVID-19 , COVID-19 , SARS-CoV-2 , Sensibilidad y Especificidad , Humanos , COVID-19/diagnóstico , COVID-19/virología , SARS-CoV-2/inmunología , Prueba Serológica para COVID-19/métodos , Antígenos Virales/inmunología , Antígenos Virales/análisis , Prueba de COVID-19/métodosRESUMEN
INTRODUCTION: In case of pneumonia, some biological findings are suggestive for Legionnaire's disease (LD) including C-reactive protein (CRP). A low level of CRP is predictive for negative Legionella Urinary-Antigen-Test (L-UAT). METHOD: Observational retrospective study in Nord-Franche-Comté Hospital with external validation in Besançon University Hospital, France which included all adults with L-UAT performed during January 2018 to December 2022. The objective was to determine CRP optimal threshold to predict a L-UAT negative result. RESULTS: URINELLA included 5051 patients (83 with positive L-UAT). CRP optimal threshold was 131.9 mg/L, with a negative predictive value (NPV) at 100%, sensitivity at 100% and specificity at 58.0%. The AUC of the ROC-Curve was at 88.7% (95% CI, 86.3-91.1). External validation in Besançon Hospital patients showed an AUC at 89.8% (95% CI, 85.5-94.1) and NPV, sensitivity and specificity was respectively 99.9%, 97.6% and 59.1% for a CRP threshold at 131.9 mg/L; after exclusion of immunosuppressed patients, index sensitivity and NPV reached also 100%. CONCLUSION: In case of pneumonia suspicion with a CRP level under 130 mg/L (independently of the severity) L-UAT is useless in immunocompetent patients with a NPV at 100%. We must remain cautious in patients with symptoms onset less than 48 h before CRP dosage.
Asunto(s)
Proteína C-Reactiva , Legionella pneumophila , Enfermedad de los Legionarios , Humanos , Enfermedad de los Legionarios/diagnóstico , Enfermedad de los Legionarios/microbiología , Legionella pneumophila/aislamiento & purificación , Proteína C-Reactiva/análisis , Estudios Retrospectivos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Sensibilidad y Especificidad , Serogrupo , Adulto , Francia , Curva ROC , Valor Predictivo de las PruebasRESUMEN
OBJECTIVES: Rapid management of patients with respiratory tract infections in hospital emergency departments is one of the main objectives since the concurrent circulation of respiratory viruses following the SARS-CoV-2 pandemic. The use of new combined point-of-care antigen tests for detecting influenza A/B and SARS-CoV-2 represents an advantage in response time over the molecular tests. The objective was to evaluate the suitability of the CLINITEST® Rapid Covid-19 + Influenza Antigen test (Siemens Healthineers, Germany) (RCIA test) by measuring the sensitivity, specificity, Cohen's kappa, and cut-off values. METHODS: Nasopharyngeal samples were collected from a randomised group of symptomatic patients of all ages at emergency department during January-February 2023. In parallel, these patients were screened for influenza A/B, and SARS-CoV-2 using RT-PCR. The Ct (cycle threshold) values were collected for positive [RT-PCR (+) /RCIA test (+)] and false negative [(RT-PCR (+) /RCIA test (-)] samples. A subanalysis was performed in the paediatric population (< 16 years-old). RESULTS: We included 545 patients (55.8% females) with a median age of 7 years-old (IQR: 1-66.5). The RCIA test showed a sensitivity of 59.7% [95%CI: 46.9-67.33] for influenza A, 65.6% [95%CI: 49.5-80.3] for influenza B, and 76.9% [95%CI: 45.8-84.8] for SARS-CoV-2. The specificity was between 90.7%-99.7% with a moderate/high level of agreement with RT-PCR (kappa score: 0.6-0.8) for the three respiratory viruses included in the RCIA test. CONCLUSIONS: The sensitivity of the RCIA test is insufficient for screening of patients, including patients with low Ct values (Ct > 20). Despite its good specificity and Cohen's kappa value, its use as a screening test is not comparable to RT-PCR systems in the ED environment with a high number of false negative results.
Asunto(s)
Antígenos Virales , COVID-19 , Servicio de Urgencia en Hospital , Gripe Humana , SARS-CoV-2 , Sensibilidad y Especificidad , Humanos , Gripe Humana/diagnóstico , Gripe Humana/virología , COVID-19/diagnóstico , Femenino , Masculino , Adulto , Persona de Mediana Edad , Anciano , Adolescente , SARS-CoV-2/inmunología , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/genética , Antígenos Virales/análisis , Niño , Adulto Joven , Nasofaringe/virología , Preescolar , Virus de la Influenza B/aislamiento & purificación , Virus de la Influenza B/inmunología , Virus de la Influenza A/aislamiento & purificación , Virus de la Influenza A/inmunología , Lactante , Pruebas en el Punto de Atención , Prueba Serológica para COVID-19/métodos , Estudios de Cohortes , Anciano de 80 o más AñosRESUMEN
BACKGROUND: Prostate cancer is projected to account for the greatest proportion of cancer-related burden among men with HIV. However, incidence is reportedly lower than in men without HIV, potentially due to differences in screening. Factors influencing receipt of screening in men with HIV are unknown. We described receipt of prostate-specific antigen (PSA) testing and assessed factors for association with receipt of PSA test. METHODS: Demographics, measures of HIV and related care, and non-HIV care were assessed for association with receipt of first PSA test in men ≥40 years old each calendar year in 2000-2020 using univariable and multivariable Poisson regression. Models were additionally stratified by calendar period to identify changes in determinants of PSA test as prostate cancer screening guidelines changed. RESULTS: Men (n = 2,063) 72% Non-Hispanic Black, median age of 47 (IQR: 41, 53), contributed median of 4.7 years (IQR: 2.3, 10.0) of follow-up. Receipt of antiretroviral therapy (aIRR = 1.33; 95% CI: 1.14, 1.55), engagement in HIV care (aIRR = 2.09; 95% CI: 1.66, 2.62), history of testosterone-replacement therapy (aIRR = 1.34; 95% CI: 1.19, 1.50), urologist evaluation (aIRR = 1.66; 95% CI: 1.35, 2.05), and receipt of PSA test in preceding two years (no elevated PSA aIRR = 2.37; 95% CI: 2.16, 2.61; elevated PSA aIRR = 4.35; 95% CI: 3.24, 5.84) were associated with PSA testing in men aged 50 or older. Associations varied across calendar time. CONCLUSION: Findings suggest men with greater interaction with healthcare are more likely to receive PSA test. Measures of control of HIV did not appear to influence the decision to screen.
Asunto(s)
Detección Precoz del Cáncer , Infecciones por VIH , Antígeno Prostático Específico , Neoplasias de la Próstata , Humanos , Masculino , Persona de Mediana Edad , Infecciones por VIH/diagnóstico , Neoplasias de la Próstata/diagnóstico , Detección Precoz del Cáncer/estadística & datos numéricos , Antígeno Prostático Específico/sangre , Estados Unidos/epidemiología , Adulto , Tamizaje Masivo/estadística & datos numéricos , Población Urbana/estadística & datos numéricosRESUMEN
The Omicron variant of concern has a high level of mutations in different genes that has raised awareness about the performance of immunological products such as vaccines and antigen detection kits. In this systematic review and meta-analysis, we investigated whether Omicron had a significant influence on rapid antigen test (RAT) performance in comparison to PCR. We registered this systematic review and meta-analysis in PROSPERO with the registration number CRD42022355510. We searched PubMed, Scopus, Embase, and Web of Science databases systematically to 1 August 2022. After article screening, we assessed the quality of the included studies based on the JBI checklist. Following data extraction, we performed a meta-analysis using R software. We included 18 qualified articles presenting sufficient data about RATs performance in comparison to RT-PCR in Omicron infections. The pooled specificity and sensitivity of RATs were 1.000 (0.997-1.000) and 0.671 (0.595-0.721), respectively. The FDA-approved kits showed a better performance than WHO-approved ones with a sensitivity of 0.728 (0.620-0.815). The use of RATs with nasal swabs showed a higher sensitivity compared with nasopharyngeal swabs. The sensitivity for samples with a CT-value >25 was 0.108 (0.048-0.227). Rapid antigen tests show impaired performance for COVID-19 diagnosis when the Omicron variant is circulating, particularly in samples with low viral loads.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Prueba de COVID-19RESUMEN
BACKGROUND: While numerous studies have evaluated the real-world performance of rapid antigen tests (RATs), data on the effect of Omicron sublineages such as XBB and reinfections on RAT performance is limited. We assessed the performance of RATs and factors associated with RAT-negative results among individuals who tested SARS-CoV-2-positive by reverse transcription-polymerase chain reaction (RT-PCR). METHODS: We conducted a retrospective study among Singapore residents who underwent testing for SARS-CoV-2 with RAT (Acon Flowflex or SD Biosensor) and RT-PCR in the same clinical encounter between 9 May 2022 and 21 November 2022. RT-PCR served as a reference standard for RAT performance. Logistic regression was used to estimate the odds ratios (OR) of factors associated with negative RAT results among RT-PCR-positive cases. RESULTS: Of 8,620 clinical encounters analysed, 3,519 (40.8%) were SARS-CoV-2-positive on RT-PCR. Overall sensitivity and specificity of RAT was 84.6% (95% CI 83.3-85.7%) and 99.4% (95% CI 99.1-99.6%) respectively. Acon Flowflex consistently achieved higher sensitivity and specificity than SD Biosensor test kit. Among RT-PCR-positive cases, individuals who had a previous documented SARS-CoV-2 infection, coinfection with another respiratory pathogen or tested ≥ 6 days from symptom onset had higher odds of testing RAT-negative, but the associations were attenuated after adjustment for cycle threshold values (proxy for viral load). There was no significant difference in RAT performance between Omicron sublineages BA.2, BA.5 and XBB.1. CONCLUSION: Diagnostic performance of RAT was not affected by changes in predominant circulating Omicron sublineages. However, reinfection cases may be under ascertained by RAT. In individuals with a previous SARS-CoV-2 infection episode or symptom onset ≥ 6 days prior to testing, a confirmatory RT-PCR may be considered if there is high clinical suspicion.
Asunto(s)
Prueba Serológica para COVID-19 , COVID-19 , SARS-CoV-2 , Sensibilidad y Especificidad , COVID-19/diagnóstico , SARS-CoV-2/genética , SARS-CoV-2/inmunología , SARS-CoV-2/aislamiento & purificación , Humanos , Masculino , Estudios Retrospectivos , Singapur , Adulto , Persona de Mediana Edad , Femenino , Prueba Serológica para COVID-19/métodos , Anciano , Adulto Joven , Prueba de Ácido Nucleico para COVID-19/métodosRESUMEN
OBJECTIVES: Many reverse transcription polymerase chain reaction (RT-PCR) methods exist that can detect SARS-CoV-2 RNA in different matrices. RT-PCR is highly sensitive, although viral RNA may be detected long after active infection has taken place. SARS-CoV-2 proteins have shorter detection windows hence their detection might be more meaningful. Given salivary droplets represent a main source of transmission, we explored the detection of viral RNA and protein using four different detection platforms including SISCAPA peptide immunoaffinity liquid chromatography-mass spectrometry (SISCAPA-LC-MS) using polyclonal capture antibodies. METHODS: The SISCAPA-LC MS method was compared to RT-PCR, RT-loop-mediated isothermal amplification (RT-LAMP), and a lateral flow rapid antigen test (RAT) for the detection of virus material in the drool saliva of 102 patients hospitalised after infection with SARS-CoV-2. Cycle thresholds (Ct) of RT-PCR (E gene) were compared to RT-LAMP time-to-positive (TTP) (NE and Orf1a genes), RAT optical densitometry measurements (test line/control line ratio) and to SISCAPA-LC-MS for measurements of viral protein. RESULTS: SISCAPA-LC-MS showed low sensitivity (37.7â¯%) but high specificity (89.8â¯%). RAT showed lower sensitivity (24.5â¯%) and high specificity (100â¯%). RT-LAMP had high sensitivity (83.0â¯%) and specificity (100.0â¯%). At high initial viral RNA loads (<20 Ct), results obtained using SISCAPA-LC-MS correlated with RT-PCR (R2 0.57, p-value 0.002). CONCLUSIONS: Detection of SARS-CoV-2 nucleoprotein in saliva was less frequent than the detection of viral RNA. The SISCAPA-LC-MS method allowed processing of multiple samples in <150â¯min and was scalable, enabling high throughput.
Asunto(s)
COVID-19 , Espectrometría de Masas , Técnicas de Diagnóstico Molecular , ARN Viral , SARS-CoV-2 , Saliva , Humanos , Saliva/virología , Saliva/química , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/inmunología , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/virología , ARN Viral/análisis , Espectrometría de Masas/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Masculino , Sensibilidad y Especificidad , Femenino , Persona de Mediana Edad , Fosfoproteínas/análisis , Fosfoproteínas/inmunología , Proteínas de la Nucleocápside de Coronavirus/análisis , Proteínas de la Nucleocápside de Coronavirus/inmunología , Antígenos Virales/análisis , Antígenos Virales/inmunología , Adulto , Cromatografía Liquida/métodosRESUMEN
Despite the recent decrease in overall prevalence of Helicobacter pylori infection, morbidity and mortality rates associated with gastric cancer remain high. The antimicrobial resistance developments and treatment failure are fueling the global burden of H. pylori-associated gastric complications. Accurate diagnosis remains the opening move for treatment and eradication of infections caused by microorganisms. Although several reports have been published on diagnostic approaches for H. pylori infection, most lack the data regarding diagnosis from a clinical perspective. Therefore, we provide an intensive, comprehensive, and updated description of the currently available diagnostic methods that can help clinicians, infection diagnosis professionals, and H. pylori researchers working on infection epidemiology to broaden their understanding and to select appropriate diagnostic methods. We also emphasize appropriate diagnostic approaches based on clinical settings (either clinical diagnosis or mass screening), patient factors (either age or other predisposing factors), and clinical factors (either upper gastrointestinal bleeding or partial gastrectomy) and appropriate methods to be considered for evaluating eradication efficacy. Furthermore, to cope with the increasing trend of antimicrobial resistance, a better understanding of its emergence and current diagnostic approaches for resistance detection remain inevitable.
Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Pruebas Respiratorias/métodos , Técnicas de Laboratorio Clínico , Farmacorresistencia Bacteriana , Infecciones por Helicobacter/complicaciones , Infecciones por Helicobacter/diagnóstico , Infecciones por Helicobacter/tratamiento farmacológico , Humanos , Sensibilidad y EspecificidadRESUMEN
We evaluated the performance of rapid antigen (RAg) and antibody (RAb) microfluidic diagnostics with serial sampling of 71 participants at 6 visits over 2 months following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Rapid tests showed strong agreement with laboratory references (κAg = 81.0%; κAb = 87.8%). RAg showed substantial concordance to both virus growth in culture and PCR positivity 0-5 days since symptom onset (κAg-culture = 60.1% and κAg-PCR = 87.1%). PCR concordance to virus growth in culture was similar (κPCR-culture = 70.0%), although agreement between RAg and culture was better overall (κAg-culture = 45.5% vs κPCR-culture = 10.0%). Rapid antigen and antibody testing by microfluidic immunofluorescence platform are highly accurate for characterization of acute infection.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Prueba de COVID-19 , Técnicas de Laboratorio Clínico , Microfluídica , Sensibilidad y Especificidad , Anticuerpos , Reacción en Cadena de la PolimerasaRESUMEN
BACKGROUND: The Centers for Disease Control and Prevention recommends serial rapid antigen assay collection within congregate facilities. Although modeling and observational studies from communities and long-term care facilities have shown serial collection provides adequate sensitivity and specificity, the accuracy within correctional facilities remains unknown. METHODS: Using Connecticut Department of Correction data from 21 November 2020 to 15 June 2021, we estimated the accuracy of a rapid assay, BinaxNOW (Abbott), under 3 collection strategies: single test collection and serial collection of 2 and 3 tests separated by 1-4 days. The sensitivity and specificity of the first (including single), second, and third serially collected BinaxNOW tests were estimated relative to RT-PCRs collected ≤1 day of the BinaxNOW test. The accuracy metrics of the testing strategies were then estimated as the sum (sensitivity) and product (specificity) of tests in each strategy. RESULTS: Of the 13 112 residents who contributed ≥1 BinaxNOW test during the study period, 3825 contributed ≥1 RT-PCR paired BinaxNOW test. In relation to RT-PCR, the 3-rapid-antigen-test strategy had a sensitivity of 95.9% (95% CI: 93.6-97.5%) and specificity of 98.3% (95% CI: 96.7-99.1%). The sensitivities of the 2- and 1-rapid-antigen-test strategies were 88.8% and 66.8%, and the specificities were 98.5% and 99.4%, respectively. The sensitivity was higher among symptomatic residents and when RT-PCRs were collected before BinaxNOW tests. CONCLUSIONS: We found serial antigen test collection resulted in high diagnostic accuracy. These findings support serial collection for outbreak investigation, screening, and when rapid detection is required (such as intakes or transfers).
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Prueba de COVID-19 , Pruebas Inmunológicas , Sensibilidad y Especificidad , Instalaciones Correccionales , Antígenos ViralesRESUMEN
We screened 65 longitudinally collected nasal swab samples from 31 children aged 0-16 years who were positive for severe acute respiratory syndrome coronavirus 2 Omicron BA.1. By day 7 after onset of symptoms, 48% of children remained positive by rapid antigen test. In a sample subset, we found 100% correlation between antigen test results and virus culture.
Asunto(s)
COVID-19 , Humanos , Niño , COVID-19/diagnóstico , SARS-CoV-2 , Pruebas InmunológicasRESUMEN
Point-of-care antigen tests are an important tool for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection, yet are less clinically sensitive than real-time reverse-transcription polymerase chain reaction (RT-PCR), affecting their efficacy as screening procedures. Our goal in this analysis was to see whether we could improve this sensitivity by considering antigen test results in combination with other relevant information, namely exposure status and reported symptoms. In November 2020, we collected 3,419 paired upper respiratory specimens tested by RT-PCR and the Abbott BinaxNOW (Abbott Laboratories, Abbott Park, Illinois) antigen test at 2 community testing sites in Pima County, Arizona. We used symptom, exposure, and antigen-testing data to evaluate the sensitivity and specificity of various symptom definitions in predicting RT-PCR positivity. Our analysis yielded 6 novel multisymptom case definitions with and without antigen test results, the best of which overall achieved a Youden's J index of 0.66, as compared with 0.53 for antigen testing alone. Using a random forest as a guide, we show that this definition, along with our others, does not lose the ability to generalize well to new data despite achieving optimal performance in our sample. Our methodology is broadly applicable, and our code is publicly available to aid public health practitioners in developing or fine-tuning their own case definitions.
Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Arizona , Salud Pública , Sensibilidad y Especificidad , Antígenos ViralesRESUMEN
BACKGROUND: Rapid and accurate diagnosis of individuals with SARS-CoV-2 infection is an effective way to prevent and control the spread of COVID-19. Although the detection of SARS-CoV-2 viral RNA by RT-qPCR is the gold standard for COVID-19 testing, the use of antigen-detecting rapid diagnostic tests (Ag-RDTs) is emerging as a complementary surveillance tool as Omicron case numbers skyrocket worldwide. However, the results from Ag-RDTs are less accurate in individuals with low viral loads. RESULTS: To develop a highly sensitive and accurate Ag-RDT, 90 monoclonal antibodies were raised from guinea pigs immunized with SARS CoV-2 nucleocapsid protein (CoV-2-NP). By applying a capture antibody recognizing the structural epitope of the N-terminal domain of CoV-2-NP and a detection antibody recognizing the C-terminal tail of CoV-2-NP to an automated chemiluminescence flow-through membrane immunoassay device, we developed a novel Ag-RDT, CoV-2-POCube. The CoV-2-POCube exclusively recognizes CoV-2-NP variants but not the nucleocapsid proteins of other human coronaviruses. The CoV-2-POCube achieved a limit of detection sensitivity of 0.20 ~ 0.66 pg/mL of CoV-2-NPs, demonstrating more than 100 times greater sensitivity than commercially available SARS-CoV-2 Ag-RDTs. CONCLUSIONS: CoV-2-POCube has high analytical sensitivity and can detect SARS-CoV-2 variants in 15 min without observing the high-dose hook effect, thus meeting the need for early SARS-CoV-2 diagnosis with lower viral load. CoV-2-POCube is a promising alternative to currently available diagnostic devices for faster clinical decision making in individuals with suspected COVID-19 in resource-limited settings.
Asunto(s)
Anticuerpos Monoclonales , COVID-19 , Humanos , Animales , Cobayas , SARS-CoV-2 , Prueba de COVID-19 , COVID-19/diagnóstico , Sensibilidad y Especificidad , InmunoensayoRESUMEN
SARS-CoV-2 nucleocapsid protein (NP) is the main target for COVID-19-diagnostic PCR and antigen rapid diagnostic tests (Ag-RDTs). Ag-RDTs are more convenient than PCR tests for point-of-care testing or self-testing to identify the SARS-CoV-2 antigen. The sensitivity and specificity of this method depends mainly on the affinity and specificity of NP-binding antibodies; therefore, antigen-antibody binding is key elements for the Ag-RDTs. Here, we applied the high-throughput antibody isolation platform that has been utilized to isolate therapeutic antibodies against rare epitopes. Two NP antibodies were identified to recognize non-overlapping epitopes with high affinity. One antibody specifically binds to SARS-CoV-2 NP, and the other rapidly and tightly binds to SARS-CoV-2 NP with cross-reactivity to SARS-CoV NP. Furthermore, these antibodies were compatible with a sandwich enzyme-linked immunosorbent assay that exhibited enhanced sensitivity for NP detection compared to the previously isolated NP antibodies. Thus, the NP antibody pair is applicable to more sensitive and specific Ag-RDTs, highlighting the utility of a high-throughput antibody isolation platform for diagnostics development.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Nucleocápside , Anticuerpos Antivirales , Epítopos , Sensibilidad y EspecificidadRESUMEN
Rapid antigen tests (RATs) have become an invaluable tool for combating the COVID-19 pandemic. However, concerns have been raised regarding the ability of existing RATs to effectively detect emerging SARS-CoV-2 variants. We compared the performance of 10 commercially available, emergency use authorized RATs against the Delta and Omicron SARS-CoV-2 variants using both individual patient and serially diluted pooled clinical samples. The RATs exhibited lower sensitivity for Omicron samples when using PCR cycle threshold (CT) value (a rough proxy for RNA concentration) as the comparator. Interestingly, however, they exhibited similar sensitivity for Omicron and Delta samples when using quantitative antigen concentration as the comparator. We further found that the Omicron samples had lower ratios of antigen to RNA, which offers a potential explanation for the apparent lower sensitivity of RATs for that variant when using C T value as a reference. Our findings underscore the complexity in assessing RAT performance against emerging variants and highlight the need for ongoing evaluation in the face of changing population immunity and virus evolution.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Pandemias , ARNRESUMEN
The duration of SARS-CoV-2 genomic RNA shedding is much longer than that of infectious SARS-CoV-2 in most COVID-19 patients. It is very important to determine the relationship between test results and infectivity for efficient isolation, contact tracing, and post-isolation. We characterized the duration of viable SARS-CoV-2, viral genomic and subgenomic RNA (gRNA and sgRNA), and rapid antigen test positivity in nasal washes, oropharyngeal swabs, and feces of experimentally infected Syrian hamsters. The duration of viral genomic RNA shedding is longer than that of viral subgenomic RNA, and far longer than those of rapid antigen test (RAgT) and viral culture positivity. The rapid antigen test results were strongly correlated with the viral culture results. The trend of subgenomic RNA is similar to that of genomic RNA, and furthermore, the subgenomic RNA load is highly correlated with the genomic RNA load. IMPORTANCE Our findings highlight the high correlation between rapid antigen test and virus culture results. The rapid antigen test would be an important supplement to real-time reverse transcription-RCR (RT-PCR) in early COVID-19 screening and in shortening the isolation period of COVID-19 patients. Because the subgenomic RNA load can be predicted from the genomic RNA load, measuring sgRNA does not add more benefit to determining infectivity than a threshold determined for gRNA based on viral culture.
Asunto(s)
COVID-19 , ARN Viral , SARS-CoV-2 , Animales , COVID-19/diagnóstico , COVID-19/virología , Cricetinae , Heces/virología , Genómica , Humanos , Mesocricetus , ARN Viral/análisis , ARN Viral/genética , SARS-CoV-2/genética , Esparcimiento de VirusRESUMEN
During the ongoing COVID-19 pandemic, rapid and reliable detection of SARS-CoV-2 is important to enable proper care of patients and to prevent further transmission. The aim of this study was to evaluate the performance of the Roche SARS-CoV-2 Rapid Antigen Test (Ag-RDT) in an emergency care setting during a high pandemic period. The analytical performance of the Ag-RDT was compared to real-time reverse transcriptase polymerase chain reaction (rRT-PCR). A total of 132 patient samples, previously analyzed with rRT-PCR, were reanalyzed with the Ag-RDT. Tenfold serial dilutions of five different patient strains containing the pangolin variants BA.1, BA.2, B.1.1.7, B.1.160, and B.1.177 were analyzed in parallel with the Ag-RDT and rRT-PCR. A clinical evaluation was performed in which 1911 consecutive patients admitted to the emergency wards in Region Gävleborg, Sweden, were included. Paired samples were collected and analyzed with the Ag-RDT on-site and with rRT-PCR at the microbiology laboratory. The overall sensitivity and specificity of the Ag-RDT in the clinical evaluation were 71.3% and 99.7%, respectively. When samples with cycle threshold (Ct) values above 30 were excluded, the sensitivity was 86.5%. Eleven of the admitted patients who were positive for both the Ag-RDT and rRT-PCR (Ct-range 16.9-30.4) showed no symptoms of COVID-19. Using the Ag-RDT shortened the detection time by an average of 11 h. The Ag-RDT is a useful tool for preliminary screening of SARS-CoV-2 because it enables rapid detection in infectious individuals and therefore, can counteract unnecessary spread of infection at an early stage.
Asunto(s)
Prueba de COVID-19 , COVID-19 , Animales , Humanos , Antígenos Virales , Pandemias , Pangolines , SARS-CoV-2 , Sensibilidad y Especificidad , SueciaRESUMEN
Diagnosis by rapid antigen tests (RATs) is useful for early initiation of antiviral treatment. Because RATs are easy to use, they can be adapted for self-testing. Several kinds of RATs approved for such use by the Japanese regulatory authority are available from drug stores and websites. Most RATs for COVID-19 are based on antibody detection of the SARS-CoV-2 N protein. Since Omicron and its subvariants have accumulated several amino acid substitutions in the N protein, such amino acid changes might affect the sensitivity of RATs. Here, we investigated the sensitivity of seven RATs available in Japan, six of which are approved for public use and one of which is approved for clinical use, for the detection of BA.5, BA.2.75, BF.7, XBB.1, and BQ.1.1, as well as the delta variant (B.1.627.2). All tested RATs detected the delta variant with a detection level between 7500 and 75 000 pfu per test, and all tested RATs showed similar sensitivity to the Omicron variant and its subvariants (BA.5, BA.2.75, BF.7, XBB.1, and BQ.1.1). Human saliva did not reduce the sensitivity of the RATs tested. Espline SARS-CoV-2 N showed the highest sensitivity followed by Inspecter KOWA SARS-CoV-2 and V Trust SARS-CoV-2 Ag. Since the RATs failed to detect low levels of infectious virus, individuals whose specimens contained less infectious virus than the detection limit would be considered negative. Therefore, it is important to note that RATs may miss individuals shedding low levels of infectious virus.