Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 579
Filtrar
Más filtros

Intervalo de año de publicación
1.
Bioorg Chem ; 143: 107009, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38070474

RESUMEN

Joining the global effort to eradicate tuberculosis, one of the deadliest infectious killers in the world, we disclose in this paper the design and synthesis of new indolinone-tethered benzothiophene hybrids 6a-i and 7a-i as potential anti-tubercular agents. The MICs were determined in vitro for the synthesized compounds against the sensitive M. tuberculosis strain ATCC 25177. Potent compounds 6b, 6d, 6f, 6h, 7a, 7b, 7d, 7f, 7h and 7i were furtherly assessed versus resistant MDR-TB and XDR-TB. Structure activity relationship investigation of the synthesized compounds was illustrated, accordingly. Superlative potency was unveiled for compound 6h (MIC = 0.48, 1.95 and 7.81 µg/mL for ATCC 25177 sensitive TB strain, resistant MDR-TB and XDR-TB, respectively). Moreover, validated in vivo pharmacokinetic study was performed for the most potent derivative 6h revealing superior pharmacokinetic profile over the reference drug. For further exploration of the anti-tubercular mechanism of action, molecular docking was carried out for the former compound in DprE1 active site as one of the important biological targets of TB. The binding mode and the docking score uncovered exceptional binding when compared to the co-crystallized ligand suggesting that it maybe the underlying target for its outstanding anti-tubercular potency.


Asunto(s)
Tuberculosis Extensivamente Resistente a Drogas , Mycobacterium tuberculosis , Tiofenos , Tuberculosis Resistente a Múltiples Medicamentos , Humanos , Antituberculosos/química , Simulación del Acoplamiento Molecular , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Relación Estructura-Actividad , Pruebas de Sensibilidad Microbiana
2.
Ann Clin Microbiol Antimicrob ; 23(1): 68, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39097716

RESUMEN

BACKGROUND: Disseminated non-tuberculous mycobacteria (dNTM) infections are mostly reported among individuals with an underlying congenital or acquired immunodeficiency or receiving immunosuppressive treatment, but are rarely documented in otherwise healthy subjects. CASE PRESENTATION: We describe a case of recurrent disseminated mycobacterial infection in an apparently immunocompetent Chinese woman. Mycobacterium szulgai and Mycobacterium avium-complex were identified in distinct episodes. Long-term antimycobacterial therapy was administered given the occurrence of recurrent events when off-treatment. Successful management over more than 10 years and immunologic data are reported. CONCLUSIONS: This case-report highlights that dNTM should be suspected also among apparently immunocompetent hosts and that thorough assessment of underling immune-impairments is helpful to define patients' management. Long-term antimycobacterial therapy and close monitoring is required to grant successful outcomes in case of recurrent dNTM infections.


Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Micobacterias no Tuberculosas , Recurrencia , Humanos , Femenino , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/microbiología , Micobacterias no Tuberculosas/efectos de los fármacos , Antibacterianos/uso terapéutico , Complejo Mycobacterium avium/efectos de los fármacos , China , Adulto , Resultado del Tratamiento , Persona de Mediana Edad , Pueblos del Este de Asia
3.
Biochem J ; 480(14): 1129-1146, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37435857

RESUMEN

5,10-Methylenetetraydrofolate reductase (MTHFR) is a key enzyme in folate metabolism. MSMEG_6649, a non-canonical MTHFR from Mycobacterium smegmatis, was previously reported as a monomeric protein lacking the flavin coenzyme. However, the structural basis for its unique flavin-independent catalytic mechanism remains poorly understood. Here, we determined the crystal structures of apo MTHFR MSMEG_6649 and its complex with NADH from M. smegmatis. Structural analysis revealed that the groove formed by the loops 4 and 5 of non-canonical MSMEG_6649 interacting with FAD was significantly larger than that of canonical MTHFR. Meanwhile, the NADH-binding site in MSMEG_6649 is highly similar to the FAD binding site in canonical MTHFR, suggesting that NADH plays the same role (immediate hydride donor for methylenetetraydrofolate) as FAD in the catalytic reaction. Using biochemical analysis, molecular modeling, and site-directed mutagenesis, the critical residues participating in the binding of NADH and the substrate 5,10-methylenetetrahydrofolate as well as the product 5-methyltetrahydrofolate were identified and validated. Taken together, this work not only provides a good starting point for understanding the potential catalytic mechanism for MSMEG_6649, but also identifies an exploitable target for the development of anti-mycobacterial drugs.


Asunto(s)
Metilenotetrahidrofolato Reductasa (NADPH2) , NAD , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Metilenotetrahidrofolato Reductasa (NADPH2)/química , Metilenotetrahidrofolato Reductasa (NADPH2)/metabolismo , NAD/metabolismo , Oxidorreductasas , Coenzimas , Flavinas
4.
Arch Pharm (Weinheim) ; : e2400597, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39263819

RESUMEN

In previous studies, we demonstrated the potent activity of a library of 25 N,N'-disubstituted diamines (NNDDA) toward Trypanosomatid and Apicomplexa parasites. Considering the structure similarity between this collection and SQ109, an antituberculosis compound, and its compelling antiparasitic properties, we aimed to repurpose this library for tuberculosis treatment. We assayed this collection against Mycobacterium tuberculosis H37Rv and M. avium, obtaining several compounds with MIC values below 10 µM. The most active analogs were also evaluated against M. smegmatis, a non-pathogenic species, and the non-tuberculosis mycobacteria M. abscessus, M. kansasii, and M. fortuitum. 3c stands out as the lead mycobacterial compound of the collection, with potent activity against M. tuberculosis (minimal inhibitory concentration [MIC] = 3.4 µM) and moderate activity against M. smegmatis, M. kansasii, and M. fortuitum (all with MIC values of 26.8 µM). To unravel the mechanism of action, we employed the web-based platform Polypharmacology Browser 2 (PPB2), obtaining carbonic anhydrases as potential drug targets. Nevertheless, none of the compounds displayed experimental inhibition. In summary, our study confirms the validity of the repurposing approach and underscores the antimycobacterial potential of NNDDA compounds, especially the analog 3c, setting a stepping stone for further studies.

5.
Arch Pharm (Weinheim) ; 357(8): e2400171, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38710636

RESUMEN

This study presents an exploration of the chemical space around derivatives of 3-benzamidopyrazine-2-carboxamides, previously identified as potent antimycobacterial compounds with predicted binding to mycobacterial prolyl-transfer RNA synthetase. New urea derivatives (Series-1) were generally inactive, probably due to their preference for cis-trans conformation (confirmed by density functional theory calculations and experimentally by nuclear overhauser effect spectroscopy NMR). Series-2 (3-benzamidopyrazine-2-carboxamides with disubstituted benzene ring) demonstrated that substituents larger than fluorine are not tolerated in the ortho position of the benzene ring. This series brought two new compounds (21: R = 2-F, 4-Cl and 22: R = 2-F, 4-Br) with in vitro activity against Mycobacterium tuberculosis H37Rv as well as multidrug-resistant clinical isolates, with minimum inhibitory concentration ranging from 6.25 to 25 µg/mL. The lactone-type derivatives 4H-pyrazino[2,3-d][1,3]oxazin-4-ones (Series-3) were inactive, but solvent stability studies of compound 29 indicated that they might be developed to usable lactone prodrugs of inhibitors of mycobacterial aspartate decarboxylase (PanD).


Asunto(s)
Antituberculosos , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis , Relación Estructura-Actividad , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/enzimología , Antituberculosos/farmacología , Antituberculosos/química , Antituberculosos/síntesis química , Estructura Molecular , Aminoacil-ARNt Sintetasas/antagonistas & inhibidores , Aminoacil-ARNt Sintetasas/metabolismo , Pirazinas/farmacología , Pirazinas/química , Pirazinas/síntesis química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Relación Dosis-Respuesta a Droga
6.
Molecules ; 29(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38999023

RESUMEN

A series of 21 new 7'H-spiro[azetidine-3,5'-furo [3,4-d]pyrimidine]s substituted at the pyrimidine ring second position were synthesized. The compounds showed high antibacterial in vitro activity against M. tuberculosis. Two compounds had lower minimum inhibitory concentrations against Mtb (H37Rv strain) compared with isoniazid. The novel spirocyclic scaffold shows excellent properties for anti-tuberculosis drug development.


Asunto(s)
Antituberculosos , Azetidinas , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis , Nitrofuranos , Compuestos de Espiro , Mycobacterium tuberculosis/efectos de los fármacos , Antituberculosos/farmacología , Antituberculosos/química , Antituberculosos/síntesis química , Azetidinas/química , Azetidinas/farmacología , Nitrofuranos/farmacología , Nitrofuranos/química , Compuestos de Espiro/química , Compuestos de Espiro/farmacología , Compuestos de Espiro/síntesis química , Relación Estructura-Actividad , Estructura Molecular
7.
Molecules ; 29(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38675510

RESUMEN

Piper aduncum L. is widely distributed in tropical regions and the ethnobotanical uses of this species encompass medicinal applications for the treatment of respiratory, antimicrobial, and gynecological diseases. Chemical studies reveal a diverse array of secondary metabolites, including terpenes, flavonoids, and prenylated compounds. Extracts from P. aduncum have shown antibacterial, antifungal, and larvicidal activities. Our study explores the activity of extracts and partitions against Mycobacterium tuberculosis H37Rv, as well as the chemical diversity of the bioactive partition. This marks the first investigation of the bioactive partition of P. aduncum from agroecological cultivation. The ethyl acetate partition from the ethanolic leaf extract (PAEPL) was found to be the most active. PAEPL was subjected to column chromatography using Sephadex LH-20 and the obtained fractions were analyzed using UHPLC-HRMS/MS. The MS/MS data from the fractions were submitted to the online GNPS platform for the generation of the molecular network, which displayed 1714 nodes and 167 clusters. Compounds were identified via manual inspection and different libraries, allowing the annotation of 83 compounds, including flavonoids, benzoic acid derivatives, glycosides, free fatty acids, and glycerol-esterified fatty acids. This study provides the first chemical fingerprint of an antimycobacterial sample from P. aduncum cultivated in an agroecological system.


Asunto(s)
Piper , Extractos Vegetales , Espectrometría de Masas en Tándem , Piper/química , Cromatografía Líquida de Alta Presión/métodos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Hojas de la Planta/química , Flavonoides/química , Flavonoides/análisis , Pruebas de Sensibilidad Microbiana
8.
Bioorg Med Chem Lett ; 92: 129391, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37369331

RESUMEN

A series of 2-(tetrazol-5-yl)sulfonylacetamide derivatives were synthesized and evaluated for their in vitro inhibitory activity against Mycobacterium tuberculosis (Mtb) and Mycobacterium marinum (Mm). The most active compounds exhibited in vitro MIC90 values of 1.25 µg/mL against Mtb, but they were less effective against Mm (MIC90 ≥ 10 µg/mL). Despite the most active compounds having favourable physicochemical properties and one of them having a half-life of ∼3 h when incubated with mouse liver microsomes, two representative highly active compounds showed strong chemical reactivity to cysteine derivatives, as surrogate in vivo sulfur-centred nucleophiles, indicating excessive electrophilicity, and therefore, likely indiscriminate chemical reactivity in vivo, representing an unacceptably high risk of general toxicity, and low likelihood of being therapeutically effective.


Asunto(s)
Mycobacterium marinum , Mycobacterium tuberculosis , Animales , Ratones , Antituberculosos , Pruebas de Sensibilidad Microbiana , Relación Estructura-Actividad
9.
Bioorg Med Chem ; 95: 117504, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37871508

RESUMEN

Mycobacterial ATP synthase is a validated therapeutic target for combating drug-resistant tuberculosis. Inhibition of this enzyme has been featured as an efficient strategy for the development of new antimycobacterial agents against drug-resistant pathogens. In this study, we synthesised and explored two distinct series of squaric acid analogues designed to inhibit mycobacterial ATP synthase. Among the extensive array of compounds investigated, members of the phenyl-substituted sub-library emerged as primary hits. To gain deeper insights into their mechanisms of action, we conducted advanced biological studies, focusing on the compounds displaying a direct binding of a nitrogen heteroatom to the phenyl ring, resulting in the highest potency. Our investigations into spontaneous mutants led to the validation of a single point mutation within the atpB gene (Rv1304), responsible for encoding the ATP synthase subunit a. This genetic alteration sheds light on the molecular basis of resistance to squaramides. Furthermore, we explored the possibility of synergy between squaramides and the reference drug clofazimine using a checkerboard assay, highlighting the promising avenue for enhancing the effectiveness of existing treatments through combined therapeutic approaches. This study contributes to the expansion of investigating squaramides as promising drug candidates in the ongoing battle against drug-resistant tuberculosis.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Humanos , Adenosina Trifosfato/metabolismo , Antituberculosos/química , ATPasas de Translocación de Protón Mitocondriales/química , ATPasas de Translocación de Protón Mitocondriales/metabolismo
10.
Lett Appl Microbiol ; 76(2)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36794884

RESUMEN

The bacterial endophytes isolated from the halophyte Salicornia brachiata were explored for the antimicrobial potential to discover novel microbial inhibitors that combat multidrug resistance. Upon investigation, ethyl acetate extract of the endophyte Bacillus subtilis NPROOT3 displayed significant potency against Mycobacterium smegmatis MTCC6 as well as Mycobacterium tuberculosis H37Rv strain. Further investigation of ethyl acetate crude extract by repeated chromatographic separations followed by characterization using UV, HR-ESI-MS, MALDI-MS, MALDI-MS/MS, CD, and NMR spectroscopy yielded a series of five known siderophores, namely, SVK21 (1), bacillibactin C (2), bacillibactin B (3), tribenglthin A (4), and bacillibactin (5). A total of two out of five compounds, 4 (MIC 38.66 µM) and 5 (MIC 22.15 µM) exhibited significant inhibition against the strain M. smegmatis MTCC6 comparable with positive control rifampicin (MIC 12.15 µM). None of these five bacillibactin molecules are previously reported to exhibit bioactivity against Mycobacterium sp. Herein for the first time, all the compounds were screened for their antibacterial activities against a panel of bacterial pathogens of humans. Furthermore, the probable mechanism of action of bacillibactin compounds for their antimycobacterial activity is also discussed. The findings of this study open up a new chemotype for inhibition of the Mycobacterium sp. and other multidrug-resistant pathogens.


Asunto(s)
Mycobacterium tuberculosis , Sideróforos , Humanos , Sideróforos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Endófitos , Bacillus subtilis , Espectrometría de Masas en Tándem , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/farmacología
11.
J Enzyme Inhib Med Chem ; 38(1): 2250575, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37649381

RESUMEN

In this study, new benzothiazole-pyrimidine hybrids (5a-c, 6, 7a-f, and 8-15) were designed and synthesised. Two different functionalities on the pyrimidine moiety of lead compound 4 were subjected to a variety of chemical changes with the goal of creating various functionalities and cyclisation to further elucidate the target structures. The potency of the new molecules was tested against different tuberculosis (TB) strains. The results indicated that compounds 5c, 5b, 12, and 15 (MIC = 0.24-0.98 µg/mL) are highly active against the first-line drug-sensitive strain of Mycobacterium tuberculosis (ATCC 25177). Thereafter, the anti-tubercular activity was evaluated against the two drug-resistant TB strains; ATCC 35822 and RCMB 2674, where, many compounds exhibited good activity with MIC = 0.98-62.5 3 µg/mL and 3.9-62.5 µg/mL, respectively. Compounds 5c and 15 having the highest anti-tubercular efficiency towards sensitive strain, displayed the best activity for the resistant strains by showing the MIC = 0.98 and 1.95 µg/mL for MDR TB, and showing the MIC = 3.9 and 7.81 µg/mL for XDR TB, consecutively. Finally, molecular docking studies were performed for the two most active compounds 5c and 15 to explore their enzymatic inhibitory activities.


Asunto(s)
Mycobacterium tuberculosis , Simulación del Acoplamiento Molecular , Benzotiazoles/farmacología , Antihipertensivos , Pirimidinas/farmacología
12.
Mar Drugs ; 21(5)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37233505

RESUMEN

A shorter synthesis of the demethyl(oxy)aaptamine skeleton was developed via oxidative intramolecular cyclization of 1-(2-azidoethyl)-6-methoxyisoquinolin-7-ol followed by dehydrogenation with a hypervalent iodine reagent. This is the first example of oxidative cyclization at the ortho-position of phenol that does not involve spiro-cyclization, resulting in the improved total synthesis of 3-(phenethylamino)demethyl(oxy)aaptamine, a potent anti-dormant mycobacterial agent.


Asunto(s)
Fenol , Ciclización , Estrés Oxidativo , Fenoles , Naftiridinas/química
13.
Chem Biodivers ; 20(10): e202300895, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37696771

RESUMEN

Syzygium aromaticum is used in traditional and modern medicine for its various and outstanding pharmacological properties. Here, we studied the chemical composition of hexane extract and non-polar fractions (NPF) obtained from the maceration and fractionation of clove buds, in order to evaluate their in vitro antimycobacterial activity, as well as their contribution against efflux pump (EP) resistance through molecular docking experiments. The gas chromatography-mass spectrometry (GC-MS) analysis of the volatile profiles revealed the presence of eugenol, followed by eugenyl acetate, and ß-caryophyllene as common major compounds. According to Resazurin microtiter assay (REMA), Mycobacterium tuberculosis H37 Rv strain was sensitive to all volatile samples at concentration range between 10 and 100 µg/mL. The NPF of ethanol extract was the best inhibitor with a MIC=10 µg/mL. The in silico study revealed a strong binding affinity between eugenol and Mmr EP protein (-8.1 Kcal/mol), involving two binding modes of hydrogen bond and π-alkyl interactions. The non-polarity character of clove volatile constituents, and their potential additive or synergistic effects could be responsible for the antimycobacterial activity. In addition, these findings suggest the benefic effect of eugenol in the management of mycobacterium drug resistance, whether as potential inhibitor of Mmr drug EP, or modulator during combination therapy.

14.
Arch Pharm (Weinheim) ; 356(11): e2300356, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37667452

RESUMEN

Benzothiazinones (BTZs) have widely inspired medicinal chemistry and translational research due to their remarkable antitubercular potency and clinical potential. While most structure-activity relationship campaigns have largely focused on lateral chain modifications and substituents on the BTZ core, scaffold hopping strategies have been rarely investigated previously. In this work, we report the first example of ring expansion of the BTZ core toward benzofuran- and naphthalene-fused thiazinones. In vitro testing showed micromolar activity for both compounds, and molecular docking simulations provided insights into their reduced inhibitory capacity toward the enzymatic target (DprE1). Calculated electrochemical potentials revealed a lower susceptibility to reduction as opposed to BTZ drug candidates, in line with the mechanistic requirement for covalent binding.


Asunto(s)
Benzofuranos , Mycobacterium tuberculosis , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular , Antituberculosos/farmacología , Antituberculosos/química , Benzofuranos/farmacología , Naftalenos/farmacología
15.
Arch Pharm (Weinheim) ; 356(3): e2200444, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36461683

RESUMEN

In the present investigation, we devolved and synthesized a new series of pyrazole-embedded thiazolidin-4-one derivatives (9a-p) with the goal to produce promising antitubercular leads. The in vitro antimycobacterial activity of the synthesized compounds was tested against replicating and nonreplicating Mtb H37Rv strains. With MIC ranging from 3.03 to 22.55 µg/ml, five compounds (9a, 9c, 9d, 9e, and 9f) emerged as promising antitubercular agents. The active molecules were nontoxic to normal Vero cells. All the synthesized compounds were evaluated for in vitro anti-inflammatory studies. Compounds 9a, 9b, 9c, 9h, and 9i exhibited excellent anti-inflammatory efficacy. Docking study was performed to understand the binding pattern of the significantly active compound 9a with 1P44.


Asunto(s)
Simulación de Dinámica Molecular , Mycobacterium tuberculosis , Animales , Chlorocebus aethiops , Células Vero , Relación Estructura-Actividad , Antituberculosos/farmacología , Antituberculosos/química , Pirazoles/farmacología , Simulación del Acoplamiento Molecular , Estructura Molecular , Pruebas de Sensibilidad Microbiana
16.
Drug Dev Res ; 84(3): 470-483, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36744647

RESUMEN

In the quest to develop potent inhibitors for Mycobacterium tuberculosis, novel isoniazid-based pyridinium salts were designed, synthesized, and tested for their antimycobacterial activities against the H37 Rv strain of Mycobacterium tuberculosis using rifampicin as a standard. The pyridinium salts 4k, 4l, and 7d showed exceptional antimycobacterial activities with MIC90 at 1 µg/mL. The in vitro cytotoxicity and pharmacokinetics profiles of these compounds were established for the identification of a lead molecule using in vivo efficacy proof-of-concept studies and found that the lead compound 4k possesses LC50 value at 25 µg/mL. The in vitro antimycobacterial activity results were further supported by in silico studies with good binding affinities ranging from -9.8 to -11.6 kcal/mol for 4k, 4l, and 7d with the target oxidoreductase DprE1 enzyme. These results demonstrate that pyridinium salts derived from isoniazid can be a potentially promising pharmacophore for the development of novel antitubercular candidates.


Asunto(s)
Isoniazida , Mycobacterium tuberculosis , Isoniazida/farmacología , Simulación del Acoplamiento Molecular , Sales (Química) , Antituberculosos/química , Pruebas de Sensibilidad Microbiana
17.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36769275

RESUMEN

Tuberculosis remains a serious killer among infectious diseases due to its incidence, mortality, and occurrence of resistant mycobacterial strains. The challenge to discover new antimycobacterial agents forced us to prepare a series of N-(1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-6-yl)(hetero)aryl-2-carboxamides 1-19 via the acylation of 6-aminobenzo[c][1,2]oxaborol-1(3H)-ol with various activated (hetero)arylcarboxylic acids. These novel compounds have been tested in vitro against a panel of clinically important fungi and bacteria, including mycobacteria. Some of the compounds inhibited the growth of mycobacteria in the range of micromolar concentrations and retained this activity also against multidrug-resistant clinical isolates. Half the maximal inhibitory concentrations against the HepG2 cell line indicated an acceptable toxicological profile. No growth inhibition of other bacteria and fungi demonstrated selectivity of the compounds against mycobacteria. The structure-activity relationships have been derived and supported with a molecular docking study, which confirmed a selectivity toward the potential target leucyl-tRNA synthetase without an impact on the human enzyme. The presented compounds can become important materials in antimycobacterial research.


Asunto(s)
Aminoacil-ARNt Sintetasas , Antiinfecciosos , Mycobacterium tuberculosis , Humanos , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Antituberculosos/farmacología , Hongos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Amidas/química , Amidas/farmacología
18.
Molecules ; 28(8)2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37110828

RESUMEN

Lobophorins (LOBs) are a growing family of spirotetronate natural products with significant cytotoxicity, anti-inflammatory, and antibacterial activities. Herein, we report the transwell-based discovery of Streptomyces sp. CB09030 from a panel of 16 in-house Streptomyces strains, which has significant anti-mycobacterial activity and produces LOB A (1), LOB B (2), and LOB H8 (3). Genome sequencing and bioinformatic analyses revealed the potential biosynthetic gene cluster (BGC) for 1-3, which is highly homologous with the reported BGCs for LOBs. However, the glycosyltransferase LobG1 in S. sp. CB09030 has certain point mutations compared to the reported LobG1. Finally, LOB analogue 4 (O-ß-D-kijanosyl-(1→17)-kijanolide) was obtained through an acid-catalyzed hydrolysis of 2. Compounds 1-4 showed different antibacterial activities against Mycobacterium smegmatis and Bacillus subtilis, which revealed the varying roles of different sugars in their antibacterial activities.


Asunto(s)
Streptomyces , Streptomyces/química , Macrólidos/química , Antibacterianos/química , Secuencia de Bases , Familia de Multigenes
19.
S Afr J Bot ; 158: 158-165, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37206481

RESUMEN

Tuberculosis (TB) is currently rated as the 13th leading cause of mortality and the second leading cause of death after COVID-19, and above AIDS. Existing challenges relating to the development of multidrug-resistant strains and dangerous side effects of currently used drugs add impetus to the search for additional TB treatments. Hence, interest has grown in the use of medicinal plants as a source of bioactive preparations with efficacy against TB-causing organisms, and also with the ability to ameliorate the negative effects of TB drugs. This study aimed to evaluate the antimycobacterial and hepatoprotective potentials of extracts and isolated flavonoid compounds from invasive Chromolaena odorata. Test organisms used were pathogenic Mycobacterium bovis and M. tuberculosis H37RV, and the fast-growing M. aurum, M. fortuitum and M. smegmatis. The selectivity index (SI) values of the test substances were determined through cytotoxicity assays to promote these extracts and compounds as leads for the development of effective and safe anti-tubercular drugs. The antimycobacterial activity was evaluated using a serial microdilution method, and the SI was calculated from the 50% lethal concentrations calculated from cytotoxicity tests. Hepatoprotective activity was determined using HepG2 liver cells treated with rifampicin as a toxin. The extracts and compounds had a range of antimycobacterial activity with minimum inhibitory concentration (MIC) values ranging from 0.031 to 2.5 mg/mL. Two flavonoid compounds, 5,7,4'-trimethoxy flavanone and 5­hydroxy-3,7,4'-trimethoxyflavone showed promising antimycobacterial potential, and minimal toxicity was observed, as most SI values were higher than 1. The flavonoid compound 5,7,4'-trimethoxy flavanone had the highest SI (6.452), which was against M. tuberculosis H37RV. The HepG2 cells were reduced to 65% due to toxicity by rifampicin, however, the flavonoid compounds were able to improve cell viability to between 81 and 89% at different concentrations tested. Results obtained indicate that C. odorata may serve as a lead for the development of safe and effective antimycobacterial and hepatoprotective drugs.

20.
Antimicrob Agents Chemother ; 66(9): e0059222, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-35975988

RESUMEN

Moxifloxacin is central to treatment of multidrug-resistant tuberculosis. Effects of moxifloxacin on the Mycobacterium tuberculosis redox state were explored to identify strategies for increasing lethality and reducing the prevalence of extensively resistant tuberculosis. A noninvasive redox biosensor and a reactive oxygen species (ROS)-sensitive dye revealed that moxifloxacin induces oxidative stress correlated with M. tuberculosis death. Moxifloxacin lethality was mitigated by supplementing bacterial cultures with an ROS scavenger (thiourea), an iron chelator (bipyridyl), and, after drug removal, an antioxidant enzyme (catalase). Lethality was also reduced by hypoxia and nutrient starvation. Moxifloxacin increased the expression of genes involved in the oxidative stress response, iron-sulfur cluster biogenesis, and DNA repair. Surprisingly, and in contrast with Escherichia coli studies, moxifloxacin decreased expression of genes involved in respiration, suppressed oxygen consumption, increased the NADH/NAD+ ratio, and increased the labile iron pool in M. tuberculosis. Lowering the NADH/NAD+ ratio in M. tuberculosis revealed that NADH-reductive stress facilitates an iron-mediated ROS surge and moxifloxacin lethality. Treatment with N-acetyl cysteine (NAC) accelerated respiration and ROS production, increased moxifloxacin lethality, and lowered the mutant prevention concentration. Moxifloxacin induced redox stress in M. tuberculosis inside macrophages, and cotreatment with NAC potentiated the antimycobacterial efficacy of moxifloxacin during nutrient starvation, inside macrophages, and in mice, where NAC restricted the emergence of resistance. Thus, NADH-reductive stress contributes to moxifloxacin-mediated killing of M. tuberculosis, and the respiration stimulator (NAC) enhances lethality and suppresses the emergence of drug resistance.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , 2,2'-Dipiridil/farmacología , Animales , Antioxidantes/farmacología , Catalasa , Cisteína , Hierro , Quelantes del Hierro/farmacología , Ratones , Moxifloxacino/farmacología , NAD , Especies Reactivas de Oxígeno/metabolismo , Azufre/farmacología , Tiourea , Tuberculosis/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA