Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(15): e2319525121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38564637

RESUMEN

The fine regulation of catalysts by the atomic-level removal of inactive atoms can promote the active site exposure for performance enhancement, whereas suffering from the difficulty in controllably removing atoms using current micro/nano-scale material fabrication technologies. Here, we developed a surface atom knockout method to promote the active site exposure in an alloy catalyst. Taking Cu3Pd alloy as an example, it refers to assemble a battery using Cu3Pd and Zn as cathode and anode, the charge process of which proceeds at about 1.1 V, equal to the theoretical potential difference between Cu2+/Cu and Zn2+/Zn, suggesting the electricity-driven dissolution of Cu atoms. The precise knockout of Cu atoms is confirmed by the linear relationship between the amount of the removed Cu atoms and the battery cumulative specific capacity, which is attributed to the inherent atom-electron-capacity correspondence. We observed the surface atom knockout process at different stages and studied the evolution of the chemical environment. The alloy catalyst achieves a higher current density for oxygen reduction reaction compared to the original alloy and Pt/C. This work provides an atomic fabrication method for material synthesis and regulation toward the wide applications in catalysis, energy, and others.

2.
Adv Mater ; 35(32): e2302906, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37309684

RESUMEN

Atomic-scale engineering typically involves bottom-up approaches, leveraging parameters such as temperature, partial pressures, and chemical affinity to promote spontaneous arrangement of atoms. These parameters are applied globally, resulting in atomic-scale features scattered probabilistically throughout the material. In a top-down approach, different regions of the material are exposed to different parameters, resulting in structural changes varying on the scale of the resolution. In this work, the application of global and local parameters is combined in an aberration-corrected scanning transmission electron microscope (STEM) to demonstrate atomic-scale precision patterning of atoms in twisted bilayer graphene. The focused electron beam is used to define attachment points for foreign atoms through the controlled ejection of carbon atoms from the graphene lattice. The sample environment is staged with nearby source materials such that the sample temperature can induce migration of the source atoms across the sample surface. Under these conditions, the electron-beam (top-down) enables carbon atoms in the graphene to be replaced spontaneously by diffusing adatoms (bottom-up). Using image-based feedback control, arbitrary patterns of atoms and atom clusters are attached to the twisted bilayer graphene with limited human interaction. The role of substrate temperature on adatom and vacancy diffusion is explored by first-principles simulations.

3.
Adv Mater ; 35(45): e2301560, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37574252

RESUMEN

The scanning transmission electron microscope, a workhorse instrument in materials characterization, is being transformed into an atomic-scale material-manipulation platform. With an eye on the trajectory of recent developments and the obstacles toward progress in this field, a vision for a path toward an expanded set of capabilities and applications is provided. The microscope is reconceptualized as an instrument for fabrication and synthesis with the capability to image and characterize atomic-scale structural formation as it occurs. Further development and refinement of this approach may have substantial impact on research in microelectronics, quantum information science, and catalysis, where precise control over atomic-scale structure and chemistry of a few "active sites" can have a dramatic impact on larger-scale functionality and where developing a better understanding of atomic-scale processes can help point the way to larger-scale synthesis approaches.

4.
ACS Nano ; 16(10): 17116-17127, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36206357

RESUMEN

A robust approach for real-time analysis of the scanning transmission electron microscopy (STEM) data streams, based on ensemble learning and iterative training (ELIT) of deep convolutional neural networks, is implemented on an operational microscope, enabling the exploration of the dynamics of specific atomic configurations under electron beam irradiation via an automated experiment in STEM. Combined with beam control, this approach allows studying beam effects on selected atomic groups and chemical bonds in a fully automated mode. Here, we demonstrate atomically precise engineering of single vacancy lines in transition metal dichalcogenides and the creation and identification of topological defects in graphene. The ELIT-based approach facilitates direct on-the-fly analysis of the STEM data and engenders real-time feedback schemes for probing electron beam chemistry, atomic manipulation, and atom by atom assembly.

5.
ACS Nano ; 14(3): 3316-3327, 2020 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-32142256

RESUMEN

Over the past two decades, prototype devices for future classical and quantum computing technologies have been fabricated by using scanning tunneling microscopy and hydrogen resist lithography to position phosphorus atoms in silicon with atomic-scale precision. Despite these successes, phosphine remains the only donor precursor molecule to have been demonstrated as compatible with the hydrogen resist lithography technique. The potential benefits of atomic-scale placement of alternative dopant species have, until now, remained unexplored. In this work, we demonstrate the successful fabrication of atomic-scale structures of arsenic-in-silicon. Using a scanning tunneling microscope tip, we pattern a monolayer hydrogen mask to selectively place arsenic atoms on the Si(001) surface using arsine as the precursor molecule. We fully elucidate the surface chemistry and reaction pathways of arsine on Si(001), revealing significant differences to phosphine. We explain how these differences result in enhanced surface immobilization and in-plane confinement of arsenic compared to phosphorus, and a dose-rate independent arsenic saturation density of 0.24 ± 0.04 monolayers. We demonstrate the successful encapsulation of arsenic delta-layers using silicon molecular beam epitaxy, and find electrical characteristics that are competitive with equivalent structures fabricated with phosphorus. Arsenic delta-layers are also found to offer confinement as good as similarly prepared phosphorus layers, while still retaining >80% carrier activation and sheet resistances of <2 kΩ/square. These excellent characteristics of arsenic represent opportunities to enhance existing capabilities of atomic-scale fabrication of dopant structures in silicon, and may be important for three-dimensional devices, where vertical control of the position of device components is critical.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA